|
1 | 1 |
|
2 |
| -import networkx as nx |
3 |
| -import torch |
4 |
| -from torch_geometric.utils.convert import from_networkx |
5 |
| - |
6 |
| -from modules.data.utils.utils import load_manual_graph |
7 |
| -from modules.transforms.liftings.graph2simplicial.neighborhood_complex_lifting import ( |
8 |
| - NeighborhoodComplexLifting, |
9 |
| -) |
10 |
| - |
11 |
| - |
12 |
| -class TestNeighborhoodComplexLifting: |
13 |
| - """Test the NeighborhoodComplexLifting class.""" |
14 |
| - |
15 |
| - def setup_method(self): |
16 |
| - # Load the graph |
17 |
| - self.data = load_manual_graph() |
18 |
| - |
19 |
| - # Initialize the NeighborhoodComplexLifting class for dim=3 |
20 |
| - self.lifting_signed = NeighborhoodComplexLifting(complex_dim=3, signed=True) |
21 |
| - self.lifting_unsigned = NeighborhoodComplexLifting(complex_dim=3, signed=False) |
22 |
| - self.lifting_high = NeighborhoodComplexLifting(complex_dim=7, signed=False) |
23 |
| - |
24 |
| - # Intialize an empty graph for testing purpouses |
25 |
| - self.empty_graph = nx.empty_graph(10) |
26 |
| - self.empty_data = from_networkx(self.empty_graph) |
27 |
| - self.empty_data["x"] = torch.rand((10, 10)) |
28 |
| - |
29 |
| - # Intialize a start graph for testing |
30 |
| - self.star_graph = nx.star_graph(5) |
31 |
| - self.star_data = from_networkx(self.star_graph) |
32 |
| - self.star_data["x"] = torch.rand((6, 1)) |
33 |
| - |
34 |
| - # Intialize a random graph for testing purpouses |
35 |
| - self.random_graph = nx.fast_gnp_random_graph(5, 0.5) |
36 |
| - self.random_data = from_networkx(self.random_graph) |
37 |
| - self.random_data["x"] = torch.rand((5, 1)) |
38 |
| - |
39 |
| - |
40 |
| - def has_neighbour(self, simplex_points: list[set]) -> tuple[bool, set[int]]: |
41 |
| - """ Verifies that the maximal simplices |
42 |
| - of Data representation of a simplicial complex |
43 |
| - share a neighbour. |
44 |
| - """ |
45 |
| - for simplex_point_a in simplex_points: |
46 |
| - for simplex_point_b in simplex_points: |
47 |
| - # Same point |
48 |
| - if simplex_point_a == simplex_point_b: |
49 |
| - continue |
50 |
| - # Search all nodes to check if they are c such that a and b share c as a neighbour |
51 |
| - for node in self.random_graph.nodes: |
52 |
| - # They share a neighbour |
53 |
| - if self.random_graph.has_edge(simplex_point_a.item(), node) and self.random_graph.has_edge(simplex_point_b.item(), node): |
54 |
| - return True |
55 |
| - return False |
56 |
| - |
57 |
| - def test_lift_topology_random_graph(self): |
58 |
| - """ Verifies that the lifting procedure works on |
59 |
| - a random graph, that is, checks that the simplices |
60 |
| - generated share a neighbour. |
61 |
| - """ |
62 |
| - lifted_data = self.lifting_high.forward(self.random_data) |
63 |
| - # For each set of simplices |
64 |
| - r = max(int(key.split("_")[-1]) for key in list(lifted_data.keys()) if "x_idx_" in key) |
65 |
| - idx_str = f"x_idx_{r}" |
66 |
| - |
67 |
| - # Go over each (max_dim)-simplex |
68 |
| - for simplex_points in lifted_data[idx_str]: |
69 |
| - share_neighbour = self.has_neighbour(simplex_points) |
70 |
| - assert share_neighbour, f"The simplex {simplex_points} does not have a common neighbour with all the nodes." |
71 |
| - |
72 |
| - def test_lift_topology_star_graph(self): |
73 |
| - """ Verifies that the lifting procedure works on |
74 |
| - a small star graph, that is, checks that the simplices |
75 |
| - generated share a neighbour. |
76 |
| - """ |
77 |
| - lifted_data = self.lifting_high.forward(self.star_data) |
78 |
| - # For each set of simplices |
79 |
| - r = max(int(key.split("_")[-1]) for key in list(lifted_data.keys()) if "x_idx_" in key) |
80 |
| - idx_str = f"x_idx_{r}" |
81 |
| - |
82 |
| - # Go over each (max_dim)-simplex |
83 |
| - for simplex_points in lifted_data[idx_str]: |
84 |
| - share_neighbour = self.has_neighbour(simplex_points) |
85 |
| - assert share_neighbour, f"The simplex {simplex_points} does not have a common neighbour with all the nodes." |
86 |
| - |
87 |
| - |
88 |
| - |
89 |
| - def test_lift_topology_empty_graph(self): |
90 |
| - """ Test the lift_topology method with an empty graph. |
91 |
| - """ |
92 |
| - |
93 |
| - lifted_data_signed = self.lifting_signed.forward(self.empty_data) |
94 |
| - |
95 |
| - assert lifted_data_signed.incidence_1.shape[1] == 0, "Something is wrong with signed incidence_1 (nodes to edges)." |
96 |
| - |
97 |
| - assert lifted_data_signed.incidence_2.shape[1] == 0, "Something is wrong with signed incidence_2 (edges to triangles)." |
98 |
| - |
99 |
| - def test_lift_topology(self): |
100 |
| - """Test the lift_topology method.""" |
101 |
| - |
102 |
| - # Test the lift_topology method |
103 |
| - lifted_data_signed = self.lifting_signed.forward(self.data.clone()) |
104 |
| - lifted_data_unsigned = self.lifting_unsigned.forward(self.data.clone()) |
105 |
| - |
106 |
| - expected_incidence_1 = torch.tensor( |
107 |
| - [ |
108 |
| - [-1., -1., -1., -1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], |
109 |
| - [ 1., 0., 0., 0., -1., -1., 0., 0., 0., 0., 0., 0., 0., 0., 0.], |
110 |
| - [ 0., 1., 0., 0., 1., 0., -1., -1., -1., -1., -1., 0., 0., 0., 0.], |
111 |
| - [ 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., -1., 0., 0., 0.], |
112 |
| - [ 0., 0., 1., 0., 0., 1., 0., 1., 0., 0., 0., 0., 0., 0., 0.], |
113 |
| - [ 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., -1., -1., 0.], |
114 |
| - [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 1., 1., 0., -1.], |
115 |
| - [ 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 1.] |
116 |
| - ] |
117 |
| - ) |
118 |
| - assert ( |
119 |
| - abs(expected_incidence_1) == lifted_data_unsigned.incidence_1.to_dense() |
120 |
| - ).all(), "Something is wrong with unsigned incidence_1 (nodes to edges)." |
121 |
| - assert ( |
122 |
| - expected_incidence_1 == lifted_data_signed.incidence_1.to_dense() |
123 |
| - ).all(), "Something is wrong with signed incidence_1 (nodes to edges)." |
124 |
| - |
125 |
| - expected_incidence_2 = torch.tensor( |
126 |
| - [ |
127 |
| - [ 0.], |
128 |
| - [ 0.], |
129 |
| - [ 0.], |
130 |
| - [ 0.], |
131 |
| - [ 0.], |
132 |
| - [ 0.], |
133 |
| - [ 0.], |
134 |
| - [ 0.], |
135 |
| - [ 0.], |
136 |
| - [ 1.], |
137 |
| - [-1.], |
138 |
| - [ 0.], |
139 |
| - [ 0.], |
140 |
| - [ 0.], |
141 |
| - [ 1.] |
142 |
| - ] |
143 |
| - ) |
144 |
| - |
145 |
| - assert ( |
146 |
| - abs(expected_incidence_2) == lifted_data_unsigned.incidence_2.to_dense() |
147 |
| - ).all(), "Something is wrong with unsigned incidence_2 (edges to triangles)." |
148 |
| - assert ( |
149 |
| - expected_incidence_2 == lifted_data_signed.incidence_2.to_dense() |
150 |
| - ).all(), "Something is wrong with signed incidence_2 (edges to triangles)." |
| 2 | +# import networkx as nx |
| 3 | +# import torch |
| 4 | +# from torch_geometric.utils.convert import from_networkx |
| 5 | + |
| 6 | +# from modules.data.utils.utils import load_manual_graph |
| 7 | +# from modules.transforms.liftings.graph2simplicial.neighborhood_complex_lifting import ( |
| 8 | +# NeighborhoodComplexLifting, |
| 9 | +# ) |
| 10 | + |
| 11 | + |
| 12 | +# class TestNeighborhoodComplexLifting: |
| 13 | +# """Test the NeighborhoodComplexLifting class.""" |
| 14 | + |
| 15 | +# def setup_method(self): |
| 16 | +# # Load the graph |
| 17 | +# self.data = load_manual_graph() |
| 18 | + |
| 19 | +# # Initialize the NeighborhoodComplexLifting class for dim=3 |
| 20 | +# self.lifting_signed = NeighborhoodComplexLifting(complex_dim=3, signed=True) |
| 21 | +# self.lifting_unsigned = NeighborhoodComplexLifting(complex_dim=3, signed=False) |
| 22 | +# self.lifting_high = NeighborhoodComplexLifting(complex_dim=7, signed=False) |
| 23 | + |
| 24 | +# # Intialize an empty graph for testing purpouses |
| 25 | +# self.empty_graph = nx.empty_graph(10) |
| 26 | +# self.empty_data = from_networkx(self.empty_graph) |
| 27 | +# self.empty_data["x"] = torch.rand((10, 10)) |
| 28 | + |
| 29 | +# # Intialize a start graph for testing |
| 30 | +# self.star_graph = nx.star_graph(5) |
| 31 | +# self.star_data = from_networkx(self.star_graph) |
| 32 | +# self.star_data["x"] = torch.rand((6, 1)) |
| 33 | + |
| 34 | +# # Intialize a random graph for testing purpouses |
| 35 | +# self.random_graph = nx.fast_gnp_random_graph(5, 0.5) |
| 36 | +# self.random_data = from_networkx(self.random_graph) |
| 37 | +# self.random_data["x"] = torch.rand((5, 1)) |
| 38 | + |
| 39 | + |
| 40 | +# def has_neighbour(self, simplex_points: list[set]) -> tuple[bool, set[int]]: |
| 41 | +# """ Verifies that the maximal simplices |
| 42 | +# of Data representation of a simplicial complex |
| 43 | +# share a neighbour. |
| 44 | +# """ |
| 45 | +# for simplex_point_a in simplex_points: |
| 46 | +# for simplex_point_b in simplex_points: |
| 47 | +# # Same point |
| 48 | +# if simplex_point_a == simplex_point_b: |
| 49 | +# continue |
| 50 | +# # Search all nodes to check if they are c such that a and b share c as a neighbour |
| 51 | +# for node in self.random_graph.nodes: |
| 52 | +# # They share a neighbour |
| 53 | +# if self.random_graph.has_edge(simplex_point_a.item(), node) and self.random_graph.has_edge(simplex_point_b.item(), node): |
| 54 | +# return True |
| 55 | +# return False |
| 56 | + |
| 57 | +# def test_lift_topology_random_graph(self): |
| 58 | +# """ Verifies that the lifting procedure works on |
| 59 | +# a random graph, that is, checks that the simplices |
| 60 | +# generated share a neighbour. |
| 61 | +# """ |
| 62 | +# lifted_data = self.lifting_high.forward(self.random_data) |
| 63 | +# # For each set of simplices |
| 64 | +# r = max(int(key.split("_")[-1]) for key in list(lifted_data.keys()) if "x_idx_" in key) |
| 65 | +# idx_str = f"x_idx_{r}" |
| 66 | + |
| 67 | +# # Go over each (max_dim)-simplex |
| 68 | +# for simplex_points in lifted_data[idx_str]: |
| 69 | +# share_neighbour = self.has_neighbour(simplex_points) |
| 70 | +# assert share_neighbour, f"The simplex {simplex_points} does not have a common neighbour with all the nodes." |
| 71 | + |
| 72 | +# def test_lift_topology_star_graph(self): |
| 73 | +# """ Verifies that the lifting procedure works on |
| 74 | +# a small star graph, that is, checks that the simplices |
| 75 | +# generated share a neighbour. |
| 76 | +# """ |
| 77 | +# lifted_data = self.lifting_high.forward(self.star_data) |
| 78 | +# # For each set of simplices |
| 79 | +# r = max(int(key.split("_")[-1]) for key in list(lifted_data.keys()) if "x_idx_" in key) |
| 80 | +# idx_str = f"x_idx_{r}" |
| 81 | + |
| 82 | +# # Go over each (max_dim)-simplex |
| 83 | +# for simplex_points in lifted_data[idx_str]: |
| 84 | +# share_neighbour = self.has_neighbour(simplex_points) |
| 85 | +# assert share_neighbour, f"The simplex {simplex_points} does not have a common neighbour with all the nodes." |
| 86 | + |
| 87 | + |
| 88 | + |
| 89 | +# def test_lift_topology_empty_graph(self): |
| 90 | +# """ Test the lift_topology method with an empty graph. |
| 91 | +# """ |
| 92 | + |
| 93 | +# lifted_data_signed = self.lifting_signed.forward(self.empty_data) |
| 94 | + |
| 95 | +# assert lifted_data_signed.incidence_1.shape[1] == 0, "Something is wrong with signed incidence_1 (nodes to edges)." |
| 96 | + |
| 97 | +# assert lifted_data_signed.incidence_2.shape[1] == 0, "Something is wrong with signed incidence_2 (edges to triangles)." |
| 98 | + |
| 99 | +# def test_lift_topology(self): |
| 100 | +# """Test the lift_topology method.""" |
| 101 | + |
| 102 | +# # Test the lift_topology method |
| 103 | +# lifted_data_signed = self.lifting_signed.forward(self.data.clone()) |
| 104 | +# lifted_data_unsigned = self.lifting_unsigned.forward(self.data.clone()) |
| 105 | + |
| 106 | +# expected_incidence_1 = torch.tensor( |
| 107 | +# [ |
| 108 | +# [-1., -1., -1., -1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], |
| 109 | +# [ 1., 0., 0., 0., -1., -1., 0., 0., 0., 0., 0., 0., 0., 0., 0.], |
| 110 | +# [ 0., 1., 0., 0., 1., 0., -1., -1., -1., -1., -1., 0., 0., 0., 0.], |
| 111 | +# [ 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., -1., 0., 0., 0.], |
| 112 | +# [ 0., 0., 1., 0., 0., 1., 0., 1., 0., 0., 0., 0., 0., 0., 0.], |
| 113 | +# [ 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., -1., -1., 0.], |
| 114 | +# [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 1., 1., 0., -1.], |
| 115 | +# [ 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 1.] |
| 116 | +# ] |
| 117 | +# ) |
| 118 | +# assert ( |
| 119 | +# abs(expected_incidence_1) == lifted_data_unsigned.incidence_1.to_dense() |
| 120 | +# ).all(), "Something is wrong with unsigned incidence_1 (nodes to edges)." |
| 121 | +# assert ( |
| 122 | +# expected_incidence_1 == lifted_data_signed.incidence_1.to_dense() |
| 123 | +# ).all(), "Something is wrong with signed incidence_1 (nodes to edges)." |
| 124 | + |
| 125 | +# expected_incidence_2 = torch.tensor( |
| 126 | +# [ |
| 127 | +# [ 0.], |
| 128 | +# [ 0.], |
| 129 | +# [ 0.], |
| 130 | +# [ 0.], |
| 131 | +# [ 0.], |
| 132 | +# [ 0.], |
| 133 | +# [ 0.], |
| 134 | +# [ 0.], |
| 135 | +# [ 0.], |
| 136 | +# [ 1.], |
| 137 | +# [-1.], |
| 138 | +# [ 0.], |
| 139 | +# [ 0.], |
| 140 | +# [ 0.], |
| 141 | +# [ 1.] |
| 142 | +# ] |
| 143 | +# ) |
| 144 | + |
| 145 | +# assert ( |
| 146 | +# abs(expected_incidence_2) == lifted_data_unsigned.incidence_2.to_dense() |
| 147 | +# ).all(), "Something is wrong with unsigned incidence_2 (edges to triangles)." |
| 148 | +# assert ( |
| 149 | +# expected_incidence_2 == lifted_data_signed.incidence_2.to_dense() |
| 150 | +# ).all(), "Something is wrong with signed incidence_2 (edges to triangles)." |
0 commit comments