|
| 1 | + |
| 2 | +import networkx as nx |
| 3 | +import torch |
| 4 | +from torch_geometric.utils.convert import from_networkx |
| 5 | + |
| 6 | +from modules.data.utils.utils import load_manual_graph |
| 7 | +from modules.transforms.liftings.graph2simplicial.neighborhood_complex_lifting import ( |
| 8 | + NeighborhoodComplexLifting, |
| 9 | +) |
| 10 | + |
| 11 | + |
| 12 | +class TestNeighborhoodComplexLifting: |
| 13 | + """Test the NeighborhoodComplexLifting class.""" |
| 14 | + |
| 15 | + def setup_method(self): |
| 16 | + # Load the graph |
| 17 | + self.data = load_manual_graph() |
| 18 | + |
| 19 | + # Initialize the NeighborhoodComplexLifting class for dim=3 |
| 20 | + self.lifting_signed = NeighborhoodComplexLifting(complex_dim=3, signed=True) |
| 21 | + self.lifting_unsigned = NeighborhoodComplexLifting(complex_dim=3, signed=False) |
| 22 | + self.lifting_high = NeighborhoodComplexLifting(complex_dim=7, signed=False) |
| 23 | + |
| 24 | + # Intialize an empty graph for testing purpouses |
| 25 | + self.empty_graph = nx.empty_graph(10) |
| 26 | + self.empty_data = from_networkx(self.empty_graph) |
| 27 | + self.empty_data["x"] = torch.rand((10, 10)) |
| 28 | + |
| 29 | + # Intialize a start graph for testing |
| 30 | + self.star_graph = nx.star_graph(5) |
| 31 | + self.star_data = from_networkx(self.star_graph) |
| 32 | + self.star_data["x"] = torch.rand((6, 1)) |
| 33 | + |
| 34 | + # Intialize a random graph for testing purpouses |
| 35 | + self.random_graph = nx.fast_gnp_random_graph(5, 0.5) |
| 36 | + self.random_data = from_networkx(self.random_graph) |
| 37 | + self.random_data["x"] = torch.rand((5, 1)) |
| 38 | + |
| 39 | + |
| 40 | + def has_neighbour(self, simplex_points: list[set]) -> tuple[bool, set[int]]: |
| 41 | + """ Verifies that the maximal simplices |
| 42 | + of Data representation of a simplicial complex |
| 43 | + share a neighbour. |
| 44 | + """ |
| 45 | + for simplex_point_a in simplex_points: |
| 46 | + for simplex_point_b in simplex_points: |
| 47 | + # Same point |
| 48 | + if simplex_point_a == simplex_point_b: |
| 49 | + continue |
| 50 | + # Search all nodes to check if they are c such that a and b share c as a neighbour |
| 51 | + for node in self.random_graph.nodes: |
| 52 | + # They share a neighbour |
| 53 | + if self.random_graph.has_edge(simplex_point_a.item(), node) and self.random_graph.has_edge(simplex_point_b.item(), node): |
| 54 | + return True |
| 55 | + return False |
| 56 | + |
| 57 | + def test_lift_topology_random_graph(self): |
| 58 | + """ Verifies that the lifting procedure works on |
| 59 | + a random graph, that is, checks that the simplices |
| 60 | + generated share a neighbour. |
| 61 | + """ |
| 62 | + lifted_data = self.lifting_high.forward(self.random_data) |
| 63 | + # For each set of simplices |
| 64 | + r = max(int(key.split("_")[-1]) for key in list(lifted_data.keys()) if "x_idx_" in key) |
| 65 | + idx_str = f"x_idx_{r}" |
| 66 | + |
| 67 | + # Go over each (max_dim)-simplex |
| 68 | + for simplex_points in lifted_data[idx_str]: |
| 69 | + share_neighbour = self.has_neighbour(simplex_points) |
| 70 | + assert share_neighbour, f"The simplex {simplex_points} does not have a common neighbour with all the nodes." |
| 71 | + |
| 72 | + def test_lift_topology_star_graph(self): |
| 73 | + """ Verifies that the lifting procedure works on |
| 74 | + a small star graph, that is, checks that the simplices |
| 75 | + generated share a neighbour. |
| 76 | + """ |
| 77 | + lifted_data = self.lifting_high.forward(self.star_data) |
| 78 | + # For each set of simplices |
| 79 | + r = max(int(key.split("_")[-1]) for key in list(lifted_data.keys()) if "x_idx_" in key) |
| 80 | + idx_str = f"x_idx_{r}" |
| 81 | + |
| 82 | + # Go over each (max_dim)-simplex |
| 83 | + for simplex_points in lifted_data[idx_str]: |
| 84 | + share_neighbour = self.has_neighbour(simplex_points) |
| 85 | + assert share_neighbour, f"The simplex {simplex_points} does not have a common neighbour with all the nodes." |
| 86 | + |
| 87 | + |
| 88 | + |
| 89 | + def test_lift_topology_empty_graph(self): |
| 90 | + """ Test the lift_topology method with an empty graph. |
| 91 | + """ |
| 92 | + |
| 93 | + lifted_data_signed = self.lifting_signed.forward(self.empty_data) |
| 94 | + |
| 95 | + assert lifted_data_signed.incidence_1.shape[1] == 0, "Something is wrong with signed incidence_1 (nodes to edges)." |
| 96 | + |
| 97 | + assert lifted_data_signed.incidence_2.shape[1] == 0, "Something is wrong with signed incidence_2 (edges to triangles)." |
| 98 | + |
| 99 | + def test_lift_topology(self): |
| 100 | + """Test the lift_topology method.""" |
| 101 | + |
| 102 | + # Test the lift_topology method |
| 103 | + lifted_data_signed = self.lifting_signed.forward(self.data.clone()) |
| 104 | + lifted_data_unsigned = self.lifting_unsigned.forward(self.data.clone()) |
| 105 | + |
| 106 | + expected_incidence_1 = torch.tensor( |
| 107 | + [ |
| 108 | + [-1., -1., -1., -1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], |
| 109 | + [ 1., 0., 0., 0., -1., -1., 0., 0., 0., 0., 0., 0., 0., 0., 0.], |
| 110 | + [ 0., 1., 0., 0., 1., 0., -1., -1., -1., -1., -1., 0., 0., 0., 0.], |
| 111 | + [ 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., -1., 0., 0., 0.], |
| 112 | + [ 0., 0., 1., 0., 0., 1., 0., 1., 0., 0., 0., 0., 0., 0., 0.], |
| 113 | + [ 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., -1., -1., 0.], |
| 114 | + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 1., 1., 0., -1.], |
| 115 | + [ 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 1.] |
| 116 | + ] |
| 117 | + ) |
| 118 | + assert ( |
| 119 | + abs(expected_incidence_1) == lifted_data_unsigned.incidence_1.to_dense() |
| 120 | + ).all(), "Something is wrong with unsigned incidence_1 (nodes to edges)." |
| 121 | + assert ( |
| 122 | + expected_incidence_1 == lifted_data_signed.incidence_1.to_dense() |
| 123 | + ).all(), "Something is wrong with signed incidence_1 (nodes to edges)." |
| 124 | + |
| 125 | + expected_incidence_2 = torch.tensor( |
| 126 | + [ |
| 127 | + [ 0.], |
| 128 | + [ 0.], |
| 129 | + [ 0.], |
| 130 | + [ 0.], |
| 131 | + [ 0.], |
| 132 | + [ 0.], |
| 133 | + [ 0.], |
| 134 | + [ 0.], |
| 135 | + [ 0.], |
| 136 | + [ 1.], |
| 137 | + [-1.], |
| 138 | + [ 0.], |
| 139 | + [ 0.], |
| 140 | + [ 0.], |
| 141 | + [ 1.] |
| 142 | + ] |
| 143 | + ) |
| 144 | + |
| 145 | + assert ( |
| 146 | + abs(expected_incidence_2) == lifted_data_unsigned.incidence_2.to_dense() |
| 147 | + ).all(), "Something is wrong with unsigned incidence_2 (edges to triangles)." |
| 148 | + assert ( |
| 149 | + expected_incidence_2 == lifted_data_signed.incidence_2.to_dense() |
| 150 | + ).all(), "Something is wrong with signed incidence_2 (edges to triangles)." |
0 commit comments