-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearchindex.js
1 lines (1 loc) · 44 KB
/
searchindex.js
1
Search.setIndex({"docnames": ["api", "examples", "index", "installation", "introduction", "references", "user_guide"], "filenames": ["api.rst", "examples.rst", "index.rst", "installation.rst", "introduction.rst", "references.rst", "user_guide.rst"], "titles": ["<span class=\"section-number\">6. </span>Reference Guide", "<span class=\"section-number\">4. </span>Examples", "pypmc", "<span class=\"section-number\">2. </span>Installation", "<span class=\"section-number\">1. </span>Overview", "<span class=\"section-number\">5. </span>References", "<span class=\"section-number\">3. </span>User guide"], "terms": {"collect": [0, 1, 6], "abstract": 0, "base": [0, 3, 4, 6], "class": [0, 2, 5, 6], "pypmc": [0, 1, 3, 4, 6], "localdens": [0, 2], "sourc": [0, 1, 3, 6], "object": [0, 1, 6], "local": [0, 1, 4, 6], "can": [0, 1, 2, 3, 4, 6], "us": [0, 1, 3, 4, 5, 6], "propos": [0, 1, 2, 6], "evalu": [0, 1, 6], "x": [0, 1, 4, 5, 6], "y": 0, "log": [0, 1, 6], "given": [0, 1, 6], "name": [0, 6], "q": [0, 4, 6], "paramet": [0, 1, 2, 4, 6], "vector": [0, 4, 6], "like": [0, 3, 6], "arrai": [0, 1, 6], "point": [0, 1, 2, 6], "current": 0, "self": [0, 3], "rng": 0, "numpi": [0, 1, 3, 6], "random": [0, 1, 4, 6], "mtrand": 0, "new": [0, 4, 6], "number": [0, 1, 5, 6], "gener": [0, 1, 3, 4, 5, 6], "posit": [0, 1], "state": 0, "probabilitydens": [0, 2], "multi_evalu": 0, "out": [0, 1, 6], "none": [0, 1], "each": [0, 1, 4, 6], "row": 0, "matrix": [0, 1, 6], "expect": [0, 1, 3, 6], "i": [0, 1, 2, 3, 4, 6], "th": [0, 4], "access": [0, 1, 6], "length": 0, "len": [0, 1, 6], "option": [0, 3, 4, 6], "If": [0, 1, 2, 3, 6], "provid": [0, 4, 6], "output": [0, 1, 6], "written": 0, "thi": [0, 1, 3, 4, 6], "n": [0, 1, 4, 6], "1": [0, 1, 2, 4, 6], "integ": [0, 6], "gaussian": [0, 1, 2, 4, 5, 6], "mu": [0, 1, 6], "sigma": [0, 1, 6], "A": [0, 1, 2, 4, 5, 6], "compon": [0, 1, 2, 4], "mixturedens": [0, 1, 6], "": [0, 1, 2, 3, 4, 5], "mean": [0, 1, 6], "covari": [0, 1, 6], "ndarrai": 0, "int": [0, 4, 6], "_np": 0, "must": [0, 1], "meet": 0, "requir": [0, 2, 3, 4, 6], "localgauss": [0, 1, 6], "updat": [0, 1, 2, 6], "re": 0, "initi": [0, 1, 2, 5], "On": [0, 3], "linalgerror": 0, "old": [0, 1], "ar": [0, 1, 3, 4, 6], "plug": 0, "remain": 0, "valid": [0, 6], "multivari": 0, "redefin": 0, "return": [0, 1, 6], "from": [0, 1, 2, 3, 4, 5, 6], "normal": [0, 1, 6], "0": [0, 1, 5, 6], "standard": [0, 2, 3], "distribut": [0, 1, 4, 6], "student": [0, 1, 2, 4], "t": [0, 1, 2, 3, 4], "student_t": [0, 1, 6], "localstudentt": [0, 1, 6], "doubl": 0, "dof": [0, 1, 6], "float": [0, 1], "degre": [0, 1, 4, 6], "freedom": [0, 1, 4, 6], "chisquar": 0, "degree_of_freedom": 0, "ani": [0, 1, 2, 3, 6], "chi": 0, "squar": [0, 1], "nu": [0, 1, 6], "weight": [0, 1, 4, 5, 6], "iter": [0, 1, 5, 6], "automat": [0, 1, 3, 4, 6], "dure": 0, "individu": [0, 4, 6], "fals": [0, 1, 6], "bool": 0, "true": [0, 1, 6], "an": [0, 1, 4, 5, 6], "function": [0, 1, 2], "assum": [0, 6], "e": [0, 1, 6], "all": [0, 1, 2, 3, 4], "specifi": [0, 6], "you": [0, 1, 2, 3, 6], "need": [0, 1, 2, 3, 4, 6], "want": [0, 1, 2, 3], "comput": [0, 2, 4, 6], "onli": [0, 1, 3, 6], "onc": [0, 4], "increas": [0, 1, 4, 6], "effici": [0, 2, 5], "d": [0, 1, 4, 6], "one": [0, 1, 2, 4, 6], "dim": [0, 1, 6], "per": [0, 1, 4, 6], "write": 0, "k": [0, 1, 5, 6], "calcul": [0, 1, 4], "sum": [0, 1], "up": [0, 1, 2, 6], "check": [0, 1, 3, 6], "trace": 0, "shuffl": 0, "default": [0, 1, 6], "disord": 0, "otherwis": [0, 6], "order": [0, 1, 6], "contain": [0, 1, 6], "respons": [0, 6], "just": [0, 1, 2, 3, 6], "multinomi": 0, "pval": 0, "when": [0, 1, 6], "call": [0, 1, 4, 6], "place": [0, 1, 6], "prune": [0, 1, 6], "threshold": [0, 6], "remov": [0, 1, 6], "less": [0, 1, 2, 4, 6], "equal": [0, 1, 4, 6], "list": [0, 1, 6], "form": [0, 1, 6], "index": [0, 2, 3], "lower": [0, 1, 6], "delet": [0, 1], "create_gaussian_mixtur": [0, 1, 6], "cov": 0, "creat": [0, 1, 2, 6], "The": [0, 1, 2, 3, 4, 6], "algorithm": [0, 1, 2, 4, 5, 6], "recover_gaussian_mixtur": 0, "create_t_mixtur": [0, 1, 6], "recover_t_mixtur": 0, "3d": 0, "interpret": [0, 1], "get": [0, 1, 4, 6], "extract": [0, 1, 4], "decompos": 0, "modul": [0, 2, 3, 6], "markov_chain": [0, 1, 6], "markovchain": [0, 6], "target": [0, 1, 2, 3, 4, 6], "start": [0, 1, 2, 4, 6], "accept": [0, 1, 6], "1d": 0, "p": [0, 4, 5, 6], "should": [0, 1, 2, 3, 6], "type": 0, "your": [0, 2, 6], "symmetr": [0, 1], "defin": [0, 1, 2, 4, 6], "member": 0, "variabl": [0, 1, 6], "omit": 0, "metropoli": [0, 5], "hast": 0, "step": [0, 1, 2, 4], "receiv": [0, 6], "proposed_point": 0, "reject": 0, "without": [0, 1, 2], "support": [0, 2, 6], "prealloc": 0, "which": [0, 1, 6], "memori": [0, 6], "alloc": 0, "more": [0, 1, 3, 4, 6], "demand": 0, "speed": [0, 6], "particular": 0, "known": [0, 6], "advanc": [0, 6], "how": [0, 1, 4, 6], "long": [0, 6], "run": [0, 1, 3, 4], "save_target_valu": 0, "store": [0, 1, 6], "everi": [0, 1, 6], "visit": [0, 1], "target_valu": 0, "pass": [0, 1, 6], "uniform": [0, 1], "rand": 0, "also": [0, 1, 4, 6], "fulfil": [0, 1], "adaptivemarkovchain": [0, 1, 6], "hst01": [0, 4, 5, 6], "some": [0, 1, 6], "main": [0, 4], "importancesampl": [0, 1, 6], "util": 0, "importance_sampl": [0, 1, 6], "calculate_covari": 0, "unnorm": [0, 1, 6], "calculate_expect": 0, "f": [0, 6], "denot": [0, 4], "x_n": 0, "w_n": 0, "its": [0, 1, 6], "follow": [0, 1, 2, 6], "sum_": [0, 4, 6], "mathrm": 0, "where": [0, 1, 2, 4, 6], "overset": 0, "callabl": 0, "calculate_mean": 0, "combine_weight": [0, 1, 6], "determinist": [0, 2], "accord": [0, 1, 6], "cor": [0, 1, 4, 5, 6], "12": [0, 1, 4, 5, 6], "same": [0, 1, 3, 6], "differ": [0, 1, 6], "easili": [0, 6], "whose": [0, 6], "shall": [0, 1], "combin": [0, 1, 4, 6], "One": [0, 6], "x_i": [0, 4, 6], "q_t": 0, "thei": [0, 1, 6], "size": [0, 1, 4, 6], "ha": [0, 1, 3, 4, 6], "match": [0, 1], "entri": [0, 1], "instanc": 0, "have": [0, 1, 3, 4, 6], "been": [0, 1, 6], "drawn": [0, 1, 4, 6], "zero": [0, 1, 6], "data": [0, 1, 6], "describ": [0, 6], "gr04": [0, 4, 5, 6], "mix_adapt": [0, 1, 6], "input_compon": 0, "initial_guess": [0, 1, 6], "find": [0, 1, 6], "g": [0, 1], "g_j": 0, "most": [0, 1, 4, 6], "close": [0, 1, 4, 6], "f_i": 0, "em": [0, 2, 5], "procedur": [0, 6], "altern": [0, 4, 6], "between": [0, 6], "regroup": [0, 6], "refit": [0, 6], "maximum": [0, 1, 6], "reduc": [0, 1, 4, 6], "guess": [0, 1, 4, 6], "ep": [0, 6], "0001": [0, 1], "kill": [0, 6], "max_step": [0, 6], "50": [0, 1], "verbos": [0, 1, 6], "perform": [0, 2, 6], "input": [0, 1, 2, 6], "result": [0, 1], "avail": [0, 1, 6], "rel": [0, 6], "chang": [0, 1, 3, 6], "distanc": [0, 1], "last": [0, 6], "fall": 0, "below": [0, 6], "declar": [0, 1, 6], "frac": [0, 4, 6], "varepsilon": 0, "assign": [0, 6], "kullback_leibl": 0, "c1": 0, "c2": 0, "kullback": [0, 6], "leibler": [0, 6], "diverg": [0, 6], "two": [0, 1, 4, 6], "kl": [0, 6], "2": [0, 1, 5, 6], "bis06": [0, 4, 5, 6], "dirichlet_log_c": 0, "alpha": [0, 6], "constant": 0, "dirichlet": 0, "scale": [0, 1, 6], "b": [0, 5], "23": 0, "gaussianinfer": [0, 1, 6], "first": [0, 1, 2, 6], "kwarg": 0, "approxim": [0, 1, 4, 6], "approach": [0, 2, 5], "motiv": [0, 6], "notat": 0, "deriv": [0, 2, 6], "explain": [0, 2, 6], "detail": [0, 2, 6], "chapter": 0, "10": [0, 1, 5, 6], "typic": [0, 2, 4, 6], "usag": [0, 1], "until": [0, 6], "interest": [0, 1, 4], "classif": 0, "attribut": [0, 6], "els": [0, 1, 6], "mode": [0, 1, 6], "posterior": [0, 2, 4, 5, 6], "make_mixtur": [0, 1, 6], "anoth": [0, 1], "implement": [0, 2, 4, 6], "found": 0, "http": [0, 1, 5], "github": 0, "com": 0, "jamesmcinernei": 0, "vbmm": 0, "dimension": [0, 4, 6], "Will": 0, "detect": 0, "nonneg": 0, "finit": 0, "string": 0, "allow": [0, 1, 4, 6], "m": [0, 1, 5], "randomli": [0, 6], "select": [0, 6], "For": [0, 1, 2, 4, 6], "reproduc": [0, 6], "set": [0, 1, 4, 6], "seed": [0, 1], "123": 0, "overrid": 0, "other": [0, 1, 3, 5], "w": [0, 1, 6], "keyword": [0, 6], "argument": [0, 1, 6], "process": [0, 1, 4], "set_variational_paramet": [0, 6], "e_step": 0, "summari": 0, "statist": [0, 5], "m_step": 0, "wishart": [0, 1, 6], "likelihood_bound": 0, "bound": [0, 1, 6], "margin": [0, 1, 2, 6], "likelihood": [0, 6], "l": [0, 6], "estim": [0, 1, 4, 6], "posterior2prior": [0, 1], "dict": 0, "infer": [0, 1, 2, 5, 6], "prior": [0, 4, 6], "prior_posterior": [0, 6], "effect": [0, 1, 4, 6], "n_k": [0, 6], "minimum": [0, 6], "surviv": [0, 1], "1000": [0, 1, 6], "rel_tol": [0, 1, 6], "1e": [0, 1, 6], "abs_tol": [0, 1, 6], "5": [0, 1, 6], "decreas": [0, 1], "modif": 0, "properti": [0, 6], "mai": [0, 1, 6], "hold": [0, 1], "after": [0, 1, 3, 6], "associ": [0, 5, 6], "deactiv": 0, "toler": [0, 6], "epsilon": 0, "consecut": 0, "l_t": 0, "l_": 0, "precis": [0, 6], "left": 0, "right": [0, 1, 2, 6], "absolut": 0, "epsilon_": 0, "epsilon_a": 0, "arg": [0, 6], "reset": 0, "submit": 0, "subscript": 0, "alpha_0": 0, "hyperparamet": [0, 1, 4, 6], "wai": [0, 3, 4, 6], "It": [0, 1, 2, 6], "copi": [0, 1, 6], "separ": [0, 1, 4], "boldsymbol": [0, 6], "lambda": [0, 1], "prod_": [0, 6], "mathcal": [0, 6], "_k": 0, "m_k": 0, "beta_k": 0, "w_k": 0, "nu_k": [0, 6], "pi": 0, "dir": 0, "obtain": [0, 1, 3, 4, 6], "alpha0": [0, 1], "mix": [0, 1, 6], "coeffici": 0, "alpha_i": 0, "dot": [0, 1, 6], "scalar": 0, "promot": 0, "too": [0, 1, 6], "beta": 0, "beta0": 0, "restrict": 0, "appli": [0, 1], "beta_0": 0, "nu0": 0, "well": [0, 1, 6], "wishard": 0, "nu_0": 0, "geq": 0, "m0": 0, "time": [0, 1, 3, 4, 6], "mu_k": 0, "lambda_k": 0, "_0": 0, "sequenc": [0, 5], "space": 0, "reshap": [0, 6], "dimens": [0, 1, 2, 6], "ident": [0, 6], "advis": [0, 6], "scatter": [0, 6], "them": [0, 1, 2, 6], "avoid": 0, "singular": 0, "behavior": 0, "w0": [0, 1], "definit": 0, "recalcul": 0, "equat": [0, 6], "vbmerg": [0, 1, 2], "input_mixtur": [0, 1, 6], "parsimoni": [0, 5], "reduct": [0, 2, 5], "model": [0, 1, 5, 6], "bgp10": [0, 4, 5, 6], "idea": [0, 1, 2, 4, 6], "overli": [0, 6], "complex": [0, 1, 6], "while": [0, 6], "retain": [0, 6], "accur": [0, 4, 6], "descript": [0, 6], "origin": [0, 1, 4, 6], "henc": [0, 6], "much": [0, 1, 6], "faster": [0, 6], "compar": [0, 6], "great": [0, 6], "advantag": [0, 6], "chosen": [0, 1, 6], "mani": [0, 1, 2, 6], "those": [0, 1, 6], "vanish": [0, 6], "method": [0, 1, 4, 6], "user": [0, 2, 4], "taken": [0, 6], "over": [0, 2, 4, 6], "document": [0, 1, 3], "compress": [0, 6], "virtual": [0, 6], "exampl": [0, 2, 3, 6], "wa": [0, 3, 6], "fit": [0, 1, 4, 6], "optim": [0, 6], "possibl": [0, 1, 4], "ignor": [0, 6], "wishart_h": 0, "log_det": 0, "entropi": 0, "82": 0, "wishart_expect_log_lambda": 0, "81": 0, "wishart_log_b": 0, "part": [0, 4], "79": 0, "dxd": 0, "determin": [0, 1, 4, 6], "popul": [0, 2, 4, 5, 6], "mont": [0, 2, 4, 5, 6], "carlo": [0, 2, 4, 5, 6], "latent": [0, 1, 6], "rb": [0, 1, 6], "mincount": [0, 1, 6], "cap": [0, 4, 5, 6], "08": [0, 4, 5, 6], "_": [0, 1, 6], "kil": [0, 5], "09": [0, 5], "hod12": [0, 4, 5, 6], "turn": [0, 6], "multipl": [0, 1, 2, 4, 5], "often": [0, 6], "NOT": [0, 1], "consid": [0, 1], "unknown": [0, 6], "rao": [0, 1, 6], "blackwel": [0, 1, 6], "non": [0, 1], "scheme": [0, 6], "disabl": [0, 6], "featur": [0, 4, 6], "veri": [0, 1, 4, 6], "small": [0, 1, 6], "few": [0, 1, 3, 6], "so": [0, 1, 4, 6], "becom": [0, 6], "unstabl": 0, "simpli": 0, "addit": [0, 1], "standalon": [0, 4], "log_likelihood": 0, "via": [0, 1, 2, 4, 5, 6], "gaussian_pmc": [0, 1, 6], "untouch": 0, "overwritten": 0, "student_t_pmc": [0, 6], "dof_solver_step": [0, 6], "100": [0, 1, 6], "mindof": [0, 6], "maxdof": [0, 6], "1e3": 0, "stundentt": 0, "There": [0, 1, 2], "solut": [0, 6], "solv": [0, 6], "numer": [0, 6], "take": [0, 1, 2, 6], "diment": 0, "root": 0, "problem": [0, 1, 2, 4, 6], "finder": 0, "scipi": [0, 1, 3], "brentq": 0, "interv": 0, "search": [0, 2], "gr92": [0, 1, 5], "r_valu": [0, 1], "make_r_gaussmix": [0, 1], "k_g": [0, 1], "15": 0, "critical_r": [0, 1], "approx": [0, 1, 4, 6], "simul": [0, 5], "patch": 0, "bc13": [0, 4, 5, 6], "group": [0, 2], "r_group": [0, 1], "empir": 0, "make_r_tmix": 0, "item": 0, "bring": 0, "larg": [0, 1, 4, 6], "matric": [0, 1], "neglect": 0, "uncertainti": [0, 6], "induc": 0, "varianc": [0, 1, 4, 6], "common": [0, 1, 6], "than": [0, 1, 6], "quantifi": 0, "explor": [0, 1], "region": [0, 1], "helper": 0, "purpos": [0, 1, 6], "rate": [0, 1, 6], "qualiti": 0, "ess": [0, 1], "lc95": [0, 5], "omega_i": 0, "terribl": 0, "perfect": 0, "c": [0, 1, 4], "bar": 0, "omega": 0, "_i": 0, "sum_i": 0, "perp": [0, 1], "perplex": [0, 1], "exp": 0, "h": [0, 1, 6], "save": [0, 1, 6], "append": [0, 1, 6], "count": [0, 1, 6], "run_nr": 0, "run_begin": 0, "run_end": 0, "includ": [0, 1, 2, 4], "exclud": 0, "neg": [0, 1], "latest": [0, 3], "rang": [0, 1, 6], "second": [0, 4], "entir": 0, "new_points_len": 0, "wrap": 0, "clear": [0, 1, 6], "ball": [0, 6], "center": 0, "radiu": 0, "bdy": 0, "fix": [0, 6], "boundari": [0, 6], "ball_ind": 0, "hyperrectangl": [0, 6], "upper": [0, 6], "hr_indic": 0, "merge_function_with_ind": [0, 6], "equival": [0, 6], "note": [0, 1, 2, 6], "mpi4pi": [0, 1, 2, 3, 4], "parallel_sampl": [0, 1], "mpisampl": [0, 1], "sampler_typ": 0, "comm": [0, 1], "mpi": [0, 1], "comm_world": [0, 1], "mpi_tag": 0, "commun": [0, 1], "constructor": [0, 6], "divis": 0, "minim": [0, 6], "lexicograph": 0, "3": [0, 1, 3, 6], "patch_data": 0, "try_diag": 0, "shorter": 0, "divisor": 0, "doe": [0, 4, 6], "proper": 0, "cannot": [0, 1, 6], "handl": [0, 3, 6], "case": [0, 1, 6], "off": [0, 1, 6], "diagon": [0, 1], "element": [0, 1], "tri": 0, "again": [0, 1], "fail": [0, 3], "skip": 0, "directli": 0, "plot_mixtur": [0, 1, 6], "j": [0, 1, 5, 6], "center_styl": 0, "cmap": [0, 1, 6], "nipy_spectr": [0, 1], "cutoff": [0, 1], "ellipse_styl": 0, "solid_edg": 0, "visualize_weight": [0, 1], "ellips": 0, "plane": 0, "empti": 0, "style": 0, "color": [0, 1, 6], "map": [0, 1, 6], "choos": [0, 1, 4, 6], "face": 0, "unaffect": 0, "depend": [0, 1, 3, 6], "cut": 0, "draw": [0, 1, 6], "edg": 0, "solid": 0, "opaqu": 0, "line": [0, 1], "do": [0, 6], "plt": [0, 1, 6], "colorbar": [0, 1], "read": [0, 2], "total": [0, 6], "make": [0, 1, 3, 4, 6], "easier": 0, "track": [0, 6], "subsequ": [0, 1, 4], "plot_respons": 0, "classifi": 0, "2d": [0, 1, 6], "intern": [0, 6], "uniti": 0, "1st": 0, "2nd": 0, "agre": 0, "colormap": 0, "checkout": 1, "repositori": 1, "directori": [1, 3], "illustr": [1, 6], "markov": [1, 2, 4, 5], "chain": [1, 2, 4, 5], "import": [1, 2, 3, 4, 5], "np": [1, 6], "prop_dof": [1, 6], "prop_sigma": [1, 6], "02": [1, 6], "prop": [1, 6], "densiti": [1, 2], "sampl": [1, 2, 4, 5], "In": [1, 2, 3, 4, 6], "target_mean": 1, "target_sigma": 1, "log_target": [1, 6], "01": 1, "003": 1, "0025": 1, "inv_target_sigma": 1, "linalg": 1, "inv": 1, "4": [1, 5, 6], "def": [1, 6], "unnormalized_log_pdf_gauss": 1, "inv_sigma": 1, "diff": 1, "bad": 1, "mc": [1, 6], "sampler": [1, 2, 6], "burn": [1, 6], "000": [1, 6], "adapt": [1, 2, 4, 5], "500": [1, 6], "herebi": [1, 6], "accept_count": [1, 6], "200": [1, 6], "refer": [1, 2], "histori": [1, 2, 6], "accept_r": 1, "print": 1, "2f": 1, "plot": [1, 2, 3, 6], "try": [1, 2], "matplotlib": [1, 3, 6], "pyplot": [1, 6], "except": 1, "importerror": 1, "instal": [1, 2], "exit": 1, "hexbin": 1, "gridsiz": 1, "40": [1, 2, 6], "gray_r": 1, "show": [1, 2, 6], "code": [1, 4, 6], "png": [1, 6], "hire": [1, 6], "pdf": [1, 5, 6], "bimod": 1, "component_weight": 1, "7": [1, 5], "mean0": 1, "covariance0": 1, "inv_covariance0": 1, "mean1": 1, "covariance1": 1, "inv_covariance1": 1, "component_mean": 1, "component_covari": 1, "target_mixtur": 1, "three": [1, 6], "modal": 1, "unit": [1, 6], "initial_prop_mean": 1, "initial_prop_covari": 1, "ey": [1, 6], "initial_prop_compon": [1, 6], "gauss": [1, 2, 4, 6], "initial_propos": [1, 6], "With": [1, 4], "die": [1, 6], "might": 1, "lost": [1, 6], "generating_compon": [1, 6], "rstep": 1, "end": [1, 6], "trace_sort": [1, 6], "20": [1, 3, 6], "rsampl": 1, "finish": 1, "inform": [1, 6], "about": [1, 2, 4], "final": [1, 2, 6], "enumer": 1, "sep": 1, "set_axlimit": 1, "xlim": [1, 6], "6": [1, 3, 6], "ylim": [1, 6], "401": 1, "subplot": [1, 6], "221": 1, "titl": [1, 6], "tool": [1, 2, 6], "jet": 1, "222": 1, "223": 1, "224": 1, "hist2d": 1, "bin": 1, "tight_layout": 1, "environ": [1, 3], "multiprocess": 1, "enviro": 1, "invok": [1, 6], "script": 1, "mpirun": 1, "python": [1, 2, 3, 4, 6], "pmc_mpi": 1, "py": [1, 3], "submodul": 1, "version": [1, 2, 3], "These": 1, "exactli": 1, "sequenti": [1, 4, 5], "singl": [1, 4, 6], "we": [1, 2, 4, 6], "now": 1, "instead": 1, "sequentiali": 1, "sure": 1, "get_rank": 1, "randint": 1, "1e5": 1, "bcast": 1, "invoc": 1, "get_siz": 1, "master": 1, "own": 1, "last_generating_compon": 1, "send": 1, "let": [1, 4, 6], "samples_list": 1, "weights_list": 1, "sort": 1, "respos": 1, "held": 1, "_list": 1, "produc": 1, "vstack": 1, "history_item": 1, "hstack": 1, "new_propos": 1, "broadcast": 1, "dummi": 1, "see": [1, 6], "tutori": 1, "section": [1, 2, 6], "org": 1, "doc": [1, 3], "usrman": 1, "html": 1, "replac": 1, "all_sampl": 1, "all_weight": 1, "last_sampl": 1, "last_weight": 1, "str": 1, "whether": [1, 2, 6], "offer": [1, 4], "five": 1, "togeth": [1, 2], "here": 1, "setup": [1, 3], "999": 1, "discard": [1, 6], "stacked_valu": 1, "expected_group": 1, "axi": 1, "ensur": 1, "manual": [1, 2, 6], "found_group": 1, "var": 1, "hint": 1, "what": [1, 6], "best": 1, "demo": 1, "target_mix": 1, "command": 1, "essenti": [1, 6], "reason": 1, "complic": [1, 4, 6], "care": 1, "choic": 1, "crucial": [1, 6], "As": [1, 6], "rule": [1, 6], "thumb": [1, 6], "smaller": [1, 6], "howev": [1, 6], "good": [1, 2, 4, 6], "enough": [1, 6], "vb": [1, 4, 6], "converg": [1, 2, 6], "probabl": [1, 2, 6], "fit_mixtur": 1, "nthe": 1, "did": 1, "nconverg": 1, "winter": 1, "demonstr": [1, 6], "hierarch": [1, 2, 4, 5], "cluster": [1, 2, 4, 5], "stat": [1, 5], "chi2": 1, "400": 1, "shape": 1, "chol": 1, "choleski": 1, "tmp": 1, "sqrt": 1, "rv": 1, "put": [1, 2], "around": [1, 6], "multivariate_norm": 1, "ones": [1, 6], "k_out": 1, "resembl": [1, 4], "laid": 1, "spheric": 1, "preserv": [1, 6], "gave": 1, "rise": 1, "arbitrari": [1, 6], "plai": 1, "adjust": 1, "gca": [1, 6], "set_aspect": [1, 6], "autumn": 1, "integr": [1, 2, 4, 6], "present": 1, "littl": 1, "analyt": [1, 6], "knowledg": [1, 4, 6], "impli": 1, "locat": 1, "multimod": [1, 2, 6], "8": 1, "25": 1, "mean2": 1, "covariance2": 1, "13": [1, 6], "17": [1, 6], "suppos": [1, 6], "ten": 1, "deal": 1, "fact": 1, "low": 1, "thu": [1, 6], "unlik": 1, "To": [1, 3, 6], "sever": [1, 4, 6], "hope": 1, "walk": [1, 4, 6], "diag": 1, "real": 1, "overal": [1, 4, 6], "38": [1, 6], "achiev": [1, 2, 3], "mc_prop": 1, "move": 1, "high": [1, 6], "repres": [1, 6], "Then": [1, 4, 6], "yield": [1, 6], "satisfactori": 1, "mc_samples_sorted_by_chain": 1, "mc_sampl": 1, "zeros_lik": 1, "unimod": [1, 4], "long_patch": 1, "comment": 1, "o": [1, 5], "strongli": 1, "correl": 1, "thin": 1, "independ": [1, 4], "1e10": 1, "sensit": [1, 6], "Its": 1, "invers": 1, "actual": [1, 6], "domin": 1, "usual": [1, 4, 6], "lead": [1, 6], "unneccessari": 1, "emploi": 1, "prove": 1, "our": [1, 4, 6], "experi": [1, 6], "vb_prune": 1, "But": [1, 6], "evid": [1, 2, 4, 6], "befor": [1, 6], "potenti": 1, "useless": 1, "trade": 1, "vbmix": [1, 4], "instanti": 1, "becaus": [1, 4], "attract": 1, "could": 1, "highli": 1, "correct": 1, "mass": [1, 6], "u": [1, 6], "gain": 1, "know": [1, 2], "trust": 1, "nevertheless": 1, "reli": 1, "encod": [1, 6], "prior_for_proposal_upd": 1, "pop": 1, "vb2": 1, "leav": 1, "keep": [1, 6], "contribut": [1, 4, 6], "least": [1, 6], "vb2mix": 1, "error": 1, "By": 1, "central": 1, "limit": [1, 6], "theorem": 1, "integral_estim": 1, "integral_uncertainty_estim": 1, "closer": 1, "better": [1, 6], "outlier": [1, 4, 6], "tail": [1, 6], "significantli": [1, 6], "abov": 1, "averag": 1, "tad": 1, "mention": 1, "begin": [1, 6], "reinterpret": 1, "figur": [1, 6], "clim": 1, "visual": 1, "packag": [2, 3], "focus": 2, "applic": 2, "bayesian": [2, 5], "kei": [2, 4], "mixtur": [2, 4, 5], "abl": 2, "30": [2, 6], "level": [2, 3, 4], "accuraci": 2, "parallel": [2, 3, 4], "machin": [2, 4, 5], "stand": 2, "alon": 2, "variat": [2, 5], "bay": [2, 5], "don": [2, 3, 6], "yet": 2, "through": 2, "overview": 2, "introduc": 2, "basic": [2, 4], "give": [2, 6], "instruct": 2, "guid": 2, "simpl": [2, 6], "work": [2, 3, 4], "look": 2, "help": [2, 4], "specif": 2, "pmc": 2, "develop": 2, "debian": 2, "conda": 2, "comparison": [2, 5], "classic": 2, "mcmc": [2, 4, 6], "serial": [2, 6], "gelman": [2, 5], "rubin": [2, 5], "r": 2, "valu": [2, 4, 6], "studentt": [2, 6], "diagnost": 2, "partit": 2, "page": 2, "test": [3, 6], "higher": 3, "cython": [3, 4], "build": 3, "setuptool": 3, "pip": 3, "easiest": 3, "download": 3, "necessari": [3, 6], "nose": 3, "blank": 3, "insid": 3, "nosetest": 3, "due": [3, 6], "mismatch": 3, "success": 3, "yourself": 3, "facilit": 3, "makefil": 3, "top": 3, "sdist": 3, "system": 3, "ubuntu": 3, "04": 3, "manag": 3, "sudo": 3, "apt": 3, "cython3": 3, "python3": 3, "sphinx": 3, "rtd": 3, "theme": 3, "sphinx_rtd_them": 3, "mbox": 4, "w_i": [4, 6], "equiv": 4, "goal": 4, "compos": 4, "either": [4, 6], "q_j": [4, 6], "sum_j": 4, "alpha_j": [4, 6], "ingredi": [4, 6], "bulk": [4, 6], "At": 4, "suggest": 4, "beaujean": [4, 5], "caldwel": [4, 5], "capp\u00e9": [4, 5, 6], "et": [4, 5, 6], "al": [4, 5, 6], "improv": [4, 6], "That": [4, 6], "power": [4, 6], "wallclock": 4, "undesir": 4, "advers": 4, "affect": 4, "variant": [4, 6], "therefor": 4, "manner": 4, "increment": 4, "arriv": 4, "natur": [4, 6], "lend": 4, "itself": 4, "massiv": 4, "even": 4, "moder": 4, "expens": 4, "whole": 4, "similarli": [4, 6], "major": 4, "profil": 4, "program": 4, "transfer": 4, "relev": 4, "loop": 4, "compil": 4, "design": [4, 6], "full": 4, "control": 4, "interact": [4, 6], "frederik": 5, "2013": 5, "arxiv": 5, "1304": 5, "7808": 5, "bruneau": 5, "pierrick": 5, "gelgon": 5, "marc": 5, "picarougn": 5, "fabien": 5, "2010": 5, "pattern": [5, 6], "recognit": 5, "43": 5, "pp": 5, "850": 5, "858": 5, "doi": 5, "1016": 5, "patcog": 5, "2009": 5, "006": 5, "bishop": 5, "christoph": 5, "learn": [5, 6], "springer": 5, "2006": 5, "isbn": 5, "978": 5, "387": 5, "31073": 5, "comp": 5, "18": 5, "447": 5, "459": 5, "1007": 5, "s11222": 5, "008": 5, "9059": 5, "cornuet": 5, "2012": 5, "scandinavian": 5, "journal": 5, "39": 5, "798": 5, "812": 5, "1111": 5, "1467": 5, "9469": 5, "2011": 5, "00756": 5, "andrew": 5, "donald": 5, "1992": 5, "scienc": 5, "volum": [5, 6], "No": 5, "457": 5, "511": 5, "1214": 5, "ss": 5, "1177011136": 5, "goldberg": 5, "rowei": 5, "2004": 5, "machinelearn": 5, "wustl": 5, "edu": 5, "mlpaper": 5, "paper_fil": 5, "nips2005_63": 5, "hoogerheid": 5, "lennart": 5, "opschoor": 5, "ann": 5, "van": 5, "dijk": 5, "herman": 5, "robust": [5, 6], "predict": 5, "econometr": 5, "171": 5, "issu": 5, "101": 5, "120": 5, "jeconom": 5, "06": 5, "011": 5, "haario": 5, "heikki": 5, "saksman": 5, "eero": 5, "tamminen": 5, "johanna": 5, "2001": 5, "jstor": 5, "3318737": 5, "kilbing": 5, "martin": 5, "wraith": 5, "darren": 5, "robert": 5, "christian": 5, "benab": 5, "karim": 5, "capp": 5, "olivi": 5, "cosmologi": 5, "0912": 5, "1614": 5, "liu": 5, "jun": 5, "chen": 5, "rong": 5, "blind": 5, "deconvolut": 5, "imput": 5, "1995": 5, "american": 5, "90": 5, "430": 5, "567": 5, "576": 5, "1080": 5, "01621459": 5, "10476549": 5, "revolv": 6, "mu_j": 6, "sigma_j": 6, "free": 6, "theta": 6, "nu_j": 6, "come": 6, "001": 6, "vari": 6, "previou": 6, "would": 6, "local_gauss": 6, "conveni": 6, "shortcut": 6, "60": 6, "gauss_mixtur": 6, "first_compon": 6, "second_weight": 6, "mathbf": 6, "_v": 6, "v": 6, "discuss": 6, "rm": 6, "merg": 6, "unbound": 6, "wrapper": 6, "infti": 6, "target_dens": 6, "ind_low": 6, "range_min": 6, "ind_upp": 6, "range_max": 6, "ind": 6, "inf": 6, "similar": 6, "constrain": 6, "lie": 6, "signific": 6, "slow": 6, "prototyp": 6, "warm": 6, "tune": 6, "contin": 6, "still": 6, "asymptot": 6, "desir": 6, "set_adapt_param": 6, "under": 6, "e_p": 6, "dx": 6, "sim": 6, "log_propos": 6, "clever": 6, "though": 6, "were": 6, "unbiased": 6, "fundament": 6, "q_l": 6, "n_l": 6, "regular": 6, "combined_weight": 6, "slightli": 6, "cpu": 6, "throw": 6, "awai": 6, "both": 6, "maxim": 6, "task": 6, "suppli": 6, "simplest": 6, "heurist": 6, "criterion": 6, "reach": 6, "came": 6, "irrelev": 6, "down": 6, "harm": 6, "recommend": 6, "correspond": 6, "consum": 6, "prefer": 6, "suspect": 6, "had": 6, "add": 6, "flexibl": 6, "burden": 6, "16": 6, "involv": 6, "digamma": 6, "counterpart": 6, "extra": 6, "solver": 6, "practic": 6, "suffici": 6, "overhead": 6, "sinc": 6, "intoler": 6, "eq": 6, "sought": 6, "hundr": 6, "decid": 6, "cost": 6, "worth": 6, "quit": 6, "optimum": 6, "stop": 6, "heavi": 6, "lift": 6, "pedagog": 6, "ch": 6, "nutshel": 6, "joint": 6, "hidden": 6, "z": 6, "vecth": 6, "factor": 6, "sum_k": 6, "alpha_k": 6, "q_k": 6, "conjug": 6, "vecgamma_0": 6, "vecgamma": 6, "respect": 6, "captur": 6, "seek": 6, "ast": 6, "rather": 6, "fulli": 6, "account": 6, "forc": 6, "max_": 6, "perhap": 6, "biggest": 6, "noninform": 6, "prevent": 6, "pathologi": 6, "excess": 6, "shrink": 6, "suitabl": 6, "oppos": 6, "configur": 6, "wide": 6, "fewer": 6, "aris": 6, "recov": 6, "exact": 6, "past": 6, "shell": 6, "shown": 6, "modulo": 6, "grai": 6, "initial_mix": 6, "gist_rainbow": 6, "x_rang": 6, "y_rang": 6, "acceler": 6, "sensibl": 6, "info": 6, "forward": 6, "symbol": 6, "carri": 6, "placement": 6, "safe": 6, "larger": 6, "lot": 6, "monitor": 6, "progress": 6, "continu": 6, "inspect": 6, "fed": 6, "parent": 6, "ad": 6, "hoc": 6, "proxi": 6, "metric": 6, "made": 6, "unchang": 6, "discret": 6, "doesn": 6, "rare": 6, "therebi": 6, "guidanc": 6, "decent": 6, "share": 6, "interfac": 6, "pleas": 6, "next": 6, "variou": 6, "rerun": 6, "repeat": 6}, "objects": {"pypmc": [[0, 0, 0, "-", "density"], [0, 0, 0, "-", "mix_adapt"], [0, 0, 0, "-", "sampler"], [0, 0, 0, "-", "tools"]], "pypmc.density": [[0, 0, 0, "-", "base"], [0, 0, 0, "-", "gauss"], [0, 0, 0, "-", "mixture"], [0, 0, 0, "-", "student_t"]], "pypmc.density.base": [[0, 1, 1, "", "LocalDensity"], [0, 1, 1, "", "ProbabilityDensity"]], "pypmc.density.base.LocalDensity": [[0, 2, 1, "", "evaluate"], [0, 2, 1, "", "propose"]], "pypmc.density.base.ProbabilityDensity": [[0, 2, 1, "", "evaluate"], [0, 2, 1, "", "multi_evaluate"], [0, 2, 1, "", "propose"]], "pypmc.density.gauss": [[0, 1, 1, "", "Gauss"], [0, 1, 1, "", "LocalGauss"]], "pypmc.density.gauss.Gauss": [[0, 2, 1, "", "evaluate"], [0, 2, 1, "", "multi_evaluate"], [0, 2, 1, "", "propose"], [0, 2, 1, "", "update"]], "pypmc.density.gauss.LocalGauss": [[0, 2, 1, "", "evaluate"], [0, 2, 1, "", "propose"], [0, 2, 1, "", "update"]], "pypmc.density.mixture": [[0, 1, 1, "", "MixtureDensity"], [0, 3, 1, "", "create_gaussian_mixture"], [0, 3, 1, "", "create_t_mixture"], [0, 3, 1, "", "recover_gaussian_mixture"], [0, 3, 1, "", "recover_t_mixture"]], "pypmc.density.mixture.MixtureDensity": [[0, 2, 1, "", "evaluate"], [0, 2, 1, "", "multi_evaluate"], [0, 2, 1, "", "normalize"], [0, 2, 1, "", "normalized"], [0, 2, 1, "", "propose"], [0, 2, 1, "", "prune"]], "pypmc.density.student_t": [[0, 1, 1, "", "LocalStudentT"], [0, 1, 1, "", "StudentT"]], "pypmc.density.student_t.LocalStudentT": [[0, 2, 1, "", "evaluate"], [0, 2, 1, "", "propose"]], "pypmc.density.student_t.StudentT": [[0, 2, 1, "", "evaluate"], [0, 2, 1, "", "multi_evaluate"], [0, 2, 1, "", "propose"], [0, 2, 1, "", "update"]], "pypmc.mix_adapt": [[0, 0, 0, "-", "hierarchical"], [0, 0, 0, "-", "pmc"], [0, 0, 0, "-", "r_value"], [0, 0, 0, "-", "variational"]], "pypmc.mix_adapt.hierarchical": [[0, 1, 1, "", "Hierarchical"], [0, 3, 1, "", "kullback_leibler"]], "pypmc.mix_adapt.hierarchical.Hierarchical": [[0, 2, 1, "", "run"]], "pypmc.mix_adapt.pmc": [[0, 1, 1, "", "PMC"], [0, 3, 1, "", "gaussian_pmc"], [0, 3, 1, "", "student_t_pmc"]], "pypmc.mix_adapt.pmc.PMC": [[0, 2, 1, "", "log_likelihood"], [0, 2, 1, "", "run"]], "pypmc.mix_adapt.r_value": [[0, 3, 1, "", "make_r_gaussmix"], [0, 3, 1, "", "make_r_tmix"], [0, 3, 1, "", "r_group"], [0, 3, 1, "", "r_value"]], "pypmc.mix_adapt.variational": [[0, 3, 1, "", "Dirichlet_log_C"], [0, 1, 1, "", "GaussianInference"], [0, 1, 1, "", "VBMerge"], [0, 3, 1, "", "Wishart_H"], [0, 3, 1, "", "Wishart_expect_log_lambda"], [0, 3, 1, "", "Wishart_log_B"]], "pypmc.mix_adapt.variational.GaussianInference": [[0, 2, 1, "", "E_step"], [0, 2, 1, "", "M_step"], [0, 2, 1, "", "likelihood_bound"], [0, 2, 1, "", "make_mixture"], [0, 2, 1, "", "posterior2prior"], [0, 2, 1, "", "prior_posterior"], [0, 2, 1, "", "prune"], [0, 2, 1, "", "run"], [0, 2, 1, "", "set_variational_parameters"], [0, 2, 1, "", "update"]], "pypmc.sampler": [[0, 0, 0, "-", "importance_sampling"], [0, 0, 0, "-", "markov_chain"]], "pypmc.sampler.importance_sampling": [[0, 1, 1, "", "ImportanceSampler"], [0, 3, 1, "", "calculate_covariance"], [0, 3, 1, "", "calculate_expectation"], [0, 3, 1, "", "calculate_mean"], [0, 3, 1, "", "combine_weights"]], "pypmc.sampler.markov_chain": [[0, 1, 1, "", "AdaptiveMarkovChain"], [0, 1, 1, "", "MarkovChain"]], "pypmc.tools": [[0, 1, 1, "", "History"], [0, 0, 0, "-", "convergence"], [0, 0, 0, "-", "indicator"], [0, 0, 0, "-", "parallel_sampler"], [0, 3, 1, "", "partition"], [0, 3, 1, "", "patch_data"], [0, 3, 1, "", "plot_mixture"], [0, 3, 1, "", "plot_responsibility"]], "pypmc.tools.History": [[0, 2, 1, "", "append"], [0, 2, 1, "", "clear"]], "pypmc.tools.convergence": [[0, 3, 1, "", "ess"], [0, 3, 1, "", "perp"]], "pypmc.tools.indicator": [[0, 3, 1, "", "ball"], [0, 3, 1, "", "hyperrectangle"], [0, 3, 1, "", "merge_function_with_indicator"]], "pypmc.tools.parallel_sampler": [[0, 1, 1, "", "MPISampler"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"]}, "titleterms": {"refer": [0, 5], "guid": [0, 6], "probabl": 0, "densiti": [0, 4, 6], "gauss": 0, "studentt": 0, "mixtur": [0, 1, 6], "sampler": 0, "markov": [0, 6], "chain": [0, 6], "import": [0, 6], "sampl": [0, 6], "adapt": [0, 6], "hierarch": [0, 6], "cluster": [0, 6], "variat": [0, 1, 4, 6], "bay": [0, 1, 4, 6], "pmc": [0, 1, 4, 6], "gelman": [0, 1], "rubin": [0, 1], "r": [0, 1], "valu": [0, 1], "tool": 0, "converg": 0, "diagnost": 0, "histori": 0, "indic": [0, 2, 6], "parallel": [0, 1], "partit": 0, "plot": 0, "exampl": 1, "mcmc": 1, "serial": 1, "group": 1, "reduct": [1, 6], "pypmc": 2, "how": 2, "us": 2, "thi": 2, "document": 2, "tabl": 2, "instal": 3, "develop": 3, "note": 3, "debian": 3, "deriv": 3, "conda": 3, "overview": 4, "initi": [4, 6], "propos": 4, "updat": 4, "perform": 4, "user": 6, "compon": 6, "function": 6, "standard": 6, "determinist": 6, "comparison": 6, "basic": 6, "approach": 6, "student": 6, "": 6, "t": 6, "multipl": 6, "em": 6, "step": 6, "classic": 6, "version": 6, "run": 6, "result": 6, "vbmerg": 6, "put": 6, "all": 6, "togeth": 6}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1, "sphinx": 57}, "alltitles": {"Reference Guide": [[0, "reference-guide"]], "Probability density": [[0, "module-pypmc.density"]], "Gauss": [[0, "module-pypmc.density.gauss"]], "StudentT": [[0, "module-pypmc.density.student_t"]], "Mixture": [[0, "module-pypmc.density.mixture"]], "Sampler": [[0, "module-pypmc.sampler"]], "Markov Chain": [[0, "module-pypmc.sampler.markov_chain"]], "Importance Sampling": [[0, "module-pypmc.sampler.importance_sampling"]], "Mixture adaptation": [[0, "module-pypmc.mix_adapt"]], "Hierarchical clustering": [[0, "module-pypmc.mix_adapt.hierarchical"], [6, "hierarchical-clustering"]], "Variational Bayes": [[0, "module-pypmc.mix_adapt.variational"], [1, "variational-bayes"], [4, "variational-bayes"], [6, "variational-bayes"]], "PMC": [[0, "module-pypmc.mix_adapt.pmc"], [1, "pmc"], [4, "pmc"], [6, "pmc"]], "Gelman-Rubin R-value": [[0, "module-pypmc.mix_adapt.r_value"]], "Tools": [[0, "module-pypmc.tools"]], "Convergence diagnostics": [[0, "module-pypmc.tools.convergence"]], "History": [[0, "history"]], "Indicator": [[0, "module-pypmc.tools.indicator"]], "Parallel sampler": [[0, "module-pypmc.tools.parallel_sampler"]], "Partition": [[0, "partition"]], "Plot": [[0, "plot"]], "Examples": [[1, "examples"]], "MCMC": [[1, "mcmc"]], "Serial": [[1, "serial"]], "Parallel": [[1, "parallel"]], "Grouping by Gelman-Rubin R value": [[1, "grouping-by-gelman-rubin-r-value"]], "Mixture reduction": [[1, "mixture-reduction"], [6, "mixture-reduction"]], "MCMC + variational Bayes": [[1, "mcmc-variational-bayes"]], "pypmc": [[2, "pypmc"]], "How to use this documentation": [[2, "how-to-use-this-documentation"]], "Indices and tables": [[2, "indices-and-tables"]], "Installation": [[3, "installation"]], "Developer notes": [[3, "developer-notes"]], "Debian or derivative": [[3, "debian-or-derivative"]], "Conda": [[3, "conda"]], "Overview": [[4, "overview"]], "Initial proposal density": [[4, "initial-proposal-density"]], "Proposal updates": [[4, "proposal-updates"]], "Performance": [[4, "performance"]], "References": [[5, "references"]], "User guide": [[6, "user-guide"]], "Densities": [[6, "densities"]], "Component density": [[6, "component-density"]], "Mixture density": [[6, "mixture-density"]], "Indicator function": [[6, "indicator-function"]], "Markov chain": [[6, "markov-chain"]], "Initialization": [[6, "initialization"], [6, "id13"]], "Adaptation": [[6, "adaptation"]], "Importance sampling": [[6, "importance-sampling"]], "Standard": [[6, "standard"]], "Deterministic mixture": [[6, "deterministic-mixture"]], "Comparison": [[6, "comparison"]], "Basic approach": [[6, "basic-approach"]], "Student\u2019s t": [[6, "id6"]], "PMC with multiple EM steps": [[6, "pmc-with-multiple-em-steps"]], "Classic version": [[6, "classic-version"]], "Running": [[6, "running"]], "Results": [[6, "results"]], "VBmerge": [[6, "vbmerge"]], "Putting it all together": [[6, "putting-it-all-together"]]}, "indexentries": {"adaptivemarkovchain (class in pypmc.sampler.markov_chain)": [[0, "pypmc.sampler.markov_chain.AdaptiveMarkovChain"]], "dirichlet_log_c() (in module pypmc.mix_adapt.variational)": [[0, "pypmc.mix_adapt.variational.Dirichlet_log_C"]], "e_step() (pypmc.mix_adapt.variational.gaussianinference method)": [[0, "pypmc.mix_adapt.variational.GaussianInference.E_step"]], "gauss (class in pypmc.density.gauss)": [[0, "pypmc.density.gauss.Gauss"]], "gaussianinference (class in pypmc.mix_adapt.variational)": [[0, "pypmc.mix_adapt.variational.GaussianInference"]], "hierarchical (class in pypmc.mix_adapt.hierarchical)": [[0, "pypmc.mix_adapt.hierarchical.Hierarchical"]], "history (class in pypmc.tools)": [[0, "pypmc.tools.History"]], "importancesampler (class in pypmc.sampler.importance_sampling)": [[0, "pypmc.sampler.importance_sampling.ImportanceSampler"]], "localdensity (class in pypmc.density.base)": [[0, "pypmc.density.base.LocalDensity"]], "localgauss (class in pypmc.density.gauss)": [[0, "pypmc.density.gauss.LocalGauss"]], "localstudentt (class in pypmc.density.student_t)": [[0, "pypmc.density.student_t.LocalStudentT"]], "mpisampler (class in pypmc.tools.parallel_sampler)": [[0, "pypmc.tools.parallel_sampler.MPISampler"]], "m_step() (pypmc.mix_adapt.variational.gaussianinference method)": [[0, "pypmc.mix_adapt.variational.GaussianInference.M_step"]], "markovchain (class in pypmc.sampler.markov_chain)": [[0, "pypmc.sampler.markov_chain.MarkovChain"]], "mixturedensity (class in pypmc.density.mixture)": [[0, "pypmc.density.mixture.MixtureDensity"]], "pmc (class in pypmc.mix_adapt.pmc)": [[0, "pypmc.mix_adapt.pmc.PMC"]], "probabilitydensity (class in pypmc.density.base)": [[0, "pypmc.density.base.ProbabilityDensity"]], "studentt (class in pypmc.density.student_t)": [[0, "pypmc.density.student_t.StudentT"]], "vbmerge (class in pypmc.mix_adapt.variational)": [[0, "pypmc.mix_adapt.variational.VBMerge"]], "wishart_h() (in module pypmc.mix_adapt.variational)": [[0, "pypmc.mix_adapt.variational.Wishart_H"]], "wishart_expect_log_lambda() (in module pypmc.mix_adapt.variational)": [[0, "pypmc.mix_adapt.variational.Wishart_expect_log_lambda"]], "wishart_log_b() (in module pypmc.mix_adapt.variational)": [[0, "pypmc.mix_adapt.variational.Wishart_log_B"]], "append() (pypmc.tools.history method)": [[0, "pypmc.tools.History.append"]], "ball() (in module pypmc.tools.indicator)": [[0, "pypmc.tools.indicator.ball"]], "calculate_covariance() (in module pypmc.sampler.importance_sampling)": [[0, "pypmc.sampler.importance_sampling.calculate_covariance"]], "calculate_expectation() (in module pypmc.sampler.importance_sampling)": [[0, "pypmc.sampler.importance_sampling.calculate_expectation"]], "calculate_mean() (in module pypmc.sampler.importance_sampling)": [[0, "pypmc.sampler.importance_sampling.calculate_mean"]], "clear() (pypmc.tools.history method)": [[0, "pypmc.tools.History.clear"]], "combine_weights() (in module pypmc.sampler.importance_sampling)": [[0, "pypmc.sampler.importance_sampling.combine_weights"]], "create_gaussian_mixture() (in module pypmc.density.mixture)": [[0, "pypmc.density.mixture.create_gaussian_mixture"]], "create_t_mixture() (in module pypmc.density.mixture)": [[0, "pypmc.density.mixture.create_t_mixture"]], "ess() (in module pypmc.tools.convergence)": [[0, "pypmc.tools.convergence.ess"]], "evaluate() (pypmc.density.base.localdensity method)": [[0, "pypmc.density.base.LocalDensity.evaluate"]], "evaluate() (pypmc.density.base.probabilitydensity method)": [[0, "pypmc.density.base.ProbabilityDensity.evaluate"]], "evaluate() (pypmc.density.gauss.gauss method)": [[0, "pypmc.density.gauss.Gauss.evaluate"]], "evaluate() (pypmc.density.gauss.localgauss method)": [[0, "pypmc.density.gauss.LocalGauss.evaluate"]], "evaluate() (pypmc.density.mixture.mixturedensity method)": [[0, "pypmc.density.mixture.MixtureDensity.evaluate"]], "evaluate() (pypmc.density.student_t.localstudentt method)": [[0, "pypmc.density.student_t.LocalStudentT.evaluate"]], "evaluate() (pypmc.density.student_t.studentt method)": [[0, "pypmc.density.student_t.StudentT.evaluate"]], "gaussian_pmc() (in module pypmc.mix_adapt.pmc)": [[0, "pypmc.mix_adapt.pmc.gaussian_pmc"]], "hyperrectangle() (in module pypmc.tools.indicator)": [[0, "pypmc.tools.indicator.hyperrectangle"]], "kullback_leibler() (in module pypmc.mix_adapt.hierarchical)": [[0, "pypmc.mix_adapt.hierarchical.kullback_leibler"]], "likelihood_bound() (pypmc.mix_adapt.variational.gaussianinference method)": [[0, "pypmc.mix_adapt.variational.GaussianInference.likelihood_bound"]], "log_likelihood() (pypmc.mix_adapt.pmc.pmc method)": [[0, "pypmc.mix_adapt.pmc.PMC.log_likelihood"]], "make_mixture() (pypmc.mix_adapt.variational.gaussianinference method)": [[0, "pypmc.mix_adapt.variational.GaussianInference.make_mixture"]], "make_r_gaussmix() (in module pypmc.mix_adapt.r_value)": [[0, "pypmc.mix_adapt.r_value.make_r_gaussmix"]], "make_r_tmix() (in module pypmc.mix_adapt.r_value)": [[0, "pypmc.mix_adapt.r_value.make_r_tmix"]], "merge_function_with_indicator() (in module pypmc.tools.indicator)": [[0, "pypmc.tools.indicator.merge_function_with_indicator"]], "module": [[0, "module-pypmc.density"], [0, "module-pypmc.density.base"], [0, "module-pypmc.density.gauss"], [0, "module-pypmc.density.mixture"], [0, "module-pypmc.density.student_t"], [0, "module-pypmc.mix_adapt"], [0, "module-pypmc.mix_adapt.hierarchical"], [0, "module-pypmc.mix_adapt.pmc"], [0, "module-pypmc.mix_adapt.r_value"], [0, "module-pypmc.mix_adapt.variational"], [0, "module-pypmc.sampler"], [0, "module-pypmc.sampler.importance_sampling"], [0, "module-pypmc.sampler.markov_chain"], [0, "module-pypmc.tools"], [0, "module-pypmc.tools.convergence"], [0, "module-pypmc.tools.indicator"], [0, "module-pypmc.tools.parallel_sampler"]], "multi_evaluate() (pypmc.density.base.probabilitydensity method)": [[0, "pypmc.density.base.ProbabilityDensity.multi_evaluate"]], "multi_evaluate() (pypmc.density.gauss.gauss method)": [[0, "pypmc.density.gauss.Gauss.multi_evaluate"]], "multi_evaluate() (pypmc.density.mixture.mixturedensity method)": [[0, "pypmc.density.mixture.MixtureDensity.multi_evaluate"]], "multi_evaluate() (pypmc.density.student_t.studentt method)": [[0, "pypmc.density.student_t.StudentT.multi_evaluate"]], "normalize() (pypmc.density.mixture.mixturedensity method)": [[0, "pypmc.density.mixture.MixtureDensity.normalize"]], "normalized() (pypmc.density.mixture.mixturedensity method)": [[0, "pypmc.density.mixture.MixtureDensity.normalized"]], "partition() (in module pypmc.tools)": [[0, "pypmc.tools.partition"]], "patch_data() (in module pypmc.tools)": [[0, "pypmc.tools.patch_data"]], "perp() (in module pypmc.tools.convergence)": [[0, "pypmc.tools.convergence.perp"]], "plot_mixture() (in module pypmc.tools)": [[0, "pypmc.tools.plot_mixture"]], "plot_responsibility() (in module pypmc.tools)": [[0, "pypmc.tools.plot_responsibility"]], "posterior2prior() (pypmc.mix_adapt.variational.gaussianinference method)": [[0, "pypmc.mix_adapt.variational.GaussianInference.posterior2prior"]], "prior_posterior() (pypmc.mix_adapt.variational.gaussianinference method)": [[0, "pypmc.mix_adapt.variational.GaussianInference.prior_posterior"]], "propose() (pypmc.density.base.localdensity method)": [[0, "pypmc.density.base.LocalDensity.propose"]], "propose() (pypmc.density.base.probabilitydensity method)": [[0, "pypmc.density.base.ProbabilityDensity.propose"]], "propose() (pypmc.density.gauss.gauss method)": [[0, "pypmc.density.gauss.Gauss.propose"]], "propose() (pypmc.density.gauss.localgauss method)": [[0, "pypmc.density.gauss.LocalGauss.propose"]], "propose() (pypmc.density.mixture.mixturedensity method)": [[0, "pypmc.density.mixture.MixtureDensity.propose"]], "propose() (pypmc.density.student_t.localstudentt method)": [[0, "pypmc.density.student_t.LocalStudentT.propose"]], "propose() (pypmc.density.student_t.studentt method)": [[0, "pypmc.density.student_t.StudentT.propose"]], "prune() (pypmc.density.mixture.mixturedensity method)": [[0, "pypmc.density.mixture.MixtureDensity.prune"]], "prune() (pypmc.mix_adapt.variational.gaussianinference method)": [[0, "pypmc.mix_adapt.variational.GaussianInference.prune"]], "pypmc.density": [[0, "module-pypmc.density"]], "pypmc.density.base": [[0, "module-pypmc.density.base"]], "pypmc.density.gauss": [[0, "module-pypmc.density.gauss"]], "pypmc.density.mixture": [[0, "module-pypmc.density.mixture"]], "pypmc.density.student_t": [[0, "module-pypmc.density.student_t"]], "pypmc.mix_adapt": [[0, "module-pypmc.mix_adapt"]], "pypmc.mix_adapt.hierarchical": [[0, "module-pypmc.mix_adapt.hierarchical"]], "pypmc.mix_adapt.pmc": [[0, "module-pypmc.mix_adapt.pmc"]], "pypmc.mix_adapt.r_value": [[0, "module-pypmc.mix_adapt.r_value"]], "pypmc.mix_adapt.variational": [[0, "module-pypmc.mix_adapt.variational"]], "pypmc.sampler": [[0, "module-pypmc.sampler"]], "pypmc.sampler.importance_sampling": [[0, "module-pypmc.sampler.importance_sampling"]], "pypmc.sampler.markov_chain": [[0, "module-pypmc.sampler.markov_chain"]], "pypmc.tools": [[0, "module-pypmc.tools"]], "pypmc.tools.convergence": [[0, "module-pypmc.tools.convergence"]], "pypmc.tools.indicator": [[0, "module-pypmc.tools.indicator"]], "pypmc.tools.parallel_sampler": [[0, "module-pypmc.tools.parallel_sampler"]], "r_group() (in module pypmc.mix_adapt.r_value)": [[0, "pypmc.mix_adapt.r_value.r_group"]], "r_value() (in module pypmc.mix_adapt.r_value)": [[0, "pypmc.mix_adapt.r_value.r_value"]], "recover_gaussian_mixture() (in module pypmc.density.mixture)": [[0, "pypmc.density.mixture.recover_gaussian_mixture"]], "recover_t_mixture() (in module pypmc.density.mixture)": [[0, "pypmc.density.mixture.recover_t_mixture"]], "run() (pypmc.mix_adapt.hierarchical.hierarchical method)": [[0, "pypmc.mix_adapt.hierarchical.Hierarchical.run"]], "run() (pypmc.mix_adapt.pmc.pmc method)": [[0, "pypmc.mix_adapt.pmc.PMC.run"]], "run() (pypmc.mix_adapt.variational.gaussianinference method)": [[0, "pypmc.mix_adapt.variational.GaussianInference.run"]], "set_variational_parameters() (pypmc.mix_adapt.variational.gaussianinference method)": [[0, "pypmc.mix_adapt.variational.GaussianInference.set_variational_parameters"]], "student_t_pmc() (in module pypmc.mix_adapt.pmc)": [[0, "pypmc.mix_adapt.pmc.student_t_pmc"]], "update() (pypmc.density.gauss.gauss method)": [[0, "pypmc.density.gauss.Gauss.update"]], "update() (pypmc.density.gauss.localgauss method)": [[0, "pypmc.density.gauss.LocalGauss.update"]], "update() (pypmc.density.student_t.studentt method)": [[0, "pypmc.density.student_t.StudentT.update"]], "update() (pypmc.mix_adapt.variational.gaussianinference method)": [[0, "pypmc.mix_adapt.variational.GaussianInference.update"]]}})