|
| 1 | +from dataclasses import dataclass, field |
| 2 | +from typing import Any, Union |
| 3 | + |
| 4 | +from pytensor import Variable |
| 5 | +from pytensor.graph import Op |
| 6 | + |
| 7 | + |
| 8 | +@dataclass(frozen=True, eq=False) |
| 9 | +class MatchPattern: |
| 10 | + name: str | None |
| 11 | + pattern: tuple |
| 12 | + |
| 13 | + def __repr__(self): |
| 14 | + if self.name is not None: |
| 15 | + return self.name |
| 16 | + return str(self.pattern) |
| 17 | + |
| 18 | + def __hash__(self): |
| 19 | + return id(self) |
| 20 | + |
| 21 | + def __eq__(self, other): |
| 22 | + return self is other |
| 23 | + |
| 24 | + |
| 25 | +@dataclass(frozen=True) |
| 26 | +class Literal: |
| 27 | + # Wrapper class to signal that a pattern is a literal value, not a pattern variable |
| 28 | + pattern: Any |
| 29 | + |
| 30 | + |
| 31 | +@dataclass(frozen=True) |
| 32 | +class TrieNode: |
| 33 | + # Class for Op level trie nodes |
| 34 | + # Each node has edges for exact Op matches, Op type matches, variable matches, and |
| 35 | + # edges for starting parametrized Op matches (which lead to ParameterTrieNodes) |
| 36 | + # Terminal patterns are stored at the nodes where patterns end |
| 37 | + op_edges: dict[Op, "TrieNode"] = field(default_factory=dict) |
| 38 | + op_type_edges: dict[type[Op], "TrieNode"] = field(default_factory=dict) |
| 39 | + start_parameter_edges: dict[type[Op], "ParameterTrieNode"] = field( |
| 40 | + default_factory=dict |
| 41 | + ) |
| 42 | + variable_edges: dict[str, "TrieNode"] = field(default_factory=dict) |
| 43 | + terminal_patterns: list[MatchPattern] = field(default_factory=list) |
| 44 | + |
| 45 | + |
| 46 | +@dataclass(frozen=False) |
| 47 | +class ParameterTrieNode: |
| 48 | + # Class for Op parameter level trie nodes |
| 49 | + # Each node has edges for matching Op parameters (key, pattern) pairs |
| 50 | + # (where pattern can be a variable name, an Op type, a literal value, or a nested parametrized Op (OpType, {param: value, ...})) |
| 51 | + |
| 52 | + # A ParameterTrieNode may have multiple parameter edges to move to the next ParameterTrieNode |
| 53 | + # A ParameterTrieNode may have an end_parameter_edge, to move back to the outer TrieNode/ ParameterTrieNode |
| 54 | + # This allows different patterns to match a different number of parameters. |
| 55 | + # Parameters are arranged in alphabetical order to help sharing of common paths. |
| 56 | + |
| 57 | + # A ParameterTrieNode may also have a sub_op_parameter_edge, to start matching parameters of a nested parametrized Op |
| 58 | + # A sub_op_parameter_edge always follows a parameter_edge for the same parameter key and op type. |
| 59 | + |
| 60 | + parameter_edges: list[tuple[str, Any], "ParameterTrieNode"] = field( |
| 61 | + default_factory=list |
| 62 | + ) |
| 63 | + sub_op_parameter_edge: tuple[str, "ParameterTrieNode"] | None = field(default=None) |
| 64 | + # A ParameterTrieNode may end up followed by a ParameterTrieNode, if it was a nested parametrized op |
| 65 | + # Or with a regular TrieNode, if it was the end of a parametrized op pattern |
| 66 | + end_parameter_edge: Union["TrieNode", "ParameterTrieNode"] | None = field( |
| 67 | + default=None |
| 68 | + ) |
| 69 | + |
| 70 | + # We can also have variable edges at the parameter level, to match parameter values that are variables |
| 71 | + variable_edges: dict[str, "ParameterTrieNode"] = field(default_factory=dict) |
| 72 | + |
| 73 | + |
| 74 | +@dataclass(frozen=True) |
| 75 | +class Trie: |
| 76 | + root_node: TrieNode = field(default_factory=TrieNode) |
| 77 | + |
| 78 | + def add_pattern(self, pattern: MatchPattern | tuple): |
| 79 | + """Expand Trie with new pattern""" |
| 80 | + if not isinstance(pattern, MatchPattern): |
| 81 | + pattern = MatchPattern(None, pattern) |
| 82 | + |
| 83 | + def validate_head_tuple(head): |
| 84 | + # We only allow very specific head tuples (to parametrize Ops) |
| 85 | + if not isinstance(head, tuple) and len(head) == 2: |
| 86 | + raise TypeError(f"Head tuple must have exactly two entries: {head}") |
| 87 | + head_op_type, head_dict = head |
| 88 | + if not (isinstance(head_op_type, type) and issubclass(head_op_type, Op)): |
| 89 | + raise TypeError( |
| 90 | + f"Invalid type for first entry of head tuple {type(head_op_type)}: {head_op_type}. Expected type(Op)" |
| 91 | + ) |
| 92 | + if not isinstance(head_dict, dict): |
| 93 | + raise TypeError( |
| 94 | + f"Invalid type for second entry of head tuple {head_dict}. Expected dict" |
| 95 | + ) |
| 96 | + return head_op_type, head_dict |
| 97 | + |
| 98 | + def get_parametrized_edge(parameter_edges, key, pattern) -> ParameterTrieNode: |
| 99 | + for edge in parameter_edges: |
| 100 | + (key_edge, pattern_edge), next_trie_node = edge |
| 101 | + if key != key_edge: |
| 102 | + if isinstance(pattern, type): |
| 103 | + if issubclass(pattern, pattern_edge): |
| 104 | + break |
| 105 | + elif pattern == pattern_edge: |
| 106 | + break |
| 107 | + else: # no-break, there's no trie yet for this key-pattern pair |
| 108 | + next_trie_node = ParameterTrieNode() |
| 109 | + parameter_edges.append(((key, pattern), next_trie_node)) |
| 110 | + return next_trie_node |
| 111 | + |
| 112 | + def recurse_with_op_parameters(trie_node, parameters, nested=False): |
| 113 | + assert isinstance(trie_node, ParameterTrieNode) |
| 114 | + if not parameters: |
| 115 | + # Base case: We consumed all the parameters. Add an end_parameter edge to signal we're done |
| 116 | + if trie_node.end_parameter_edge is None: |
| 117 | + trie_node.end_parameter_edge = ( |
| 118 | + ParameterTrieNode() if nested else TrieNode() |
| 119 | + ) |
| 120 | + return trie_node.end_parameter_edge |
| 121 | + |
| 122 | + (item_key, item_pattern), *rest_key_pattern_pairs = parameters |
| 123 | + |
| 124 | + if isinstance(item_pattern, tuple): |
| 125 | + # Nested parametrized op |
| 126 | + sub_op_type, sub_dict = validate_head_tuple(item_pattern) |
| 127 | + # Start with a parameter edge for the op parameter |
| 128 | + start_trie_node = get_parametrized_edge( |
| 129 | + trie_node.parameter_edges, item_key, sub_op_type |
| 130 | + ) |
| 131 | + if sub_dict: |
| 132 | + # Add a sub_op_parameter edge to start matching the nested Op parameters |
| 133 | + # A trie node can only have one sub_op_parameter edge, since it's always preceded by a parameter edge |
| 134 | + if start_trie_node.sub_op_parameter_edge is None: |
| 135 | + start_trie_node.sub_op_parameter_edge = ( |
| 136 | + item_key, |
| 137 | + ParameterTrieNode(), |
| 138 | + ) |
| 139 | + (sub_op_key, sub_op_trie_node) = ( |
| 140 | + start_trie_node.sub_op_parameter_edge |
| 141 | + ) |
| 142 | + assert sub_op_key == item_key |
| 143 | + next_trie_node = recurse_with_op_parameters( |
| 144 | + sub_op_trie_node, sorted(sub_dict.items()), nested=True |
| 145 | + ) |
| 146 | + else: |
| 147 | + # No parameters, just continue with the start_trie_node |
| 148 | + next_trie_node = start_trie_node |
| 149 | + else: |
| 150 | + # Simple parameter pattern: add a parameter edge |
| 151 | + next_trie_node = get_parametrized_edge( |
| 152 | + trie_node.parameter_edges, item_key, item_pattern |
| 153 | + ) |
| 154 | + |
| 155 | + # Recurse with the rest of the parameters |
| 156 | + return recurse_with_op_parameters( |
| 157 | + next_trie_node, rest_key_pattern_pairs, nested=nested |
| 158 | + ) |
| 159 | + |
| 160 | + def recurse(trie_node, sub_pattern): |
| 161 | + if not sub_pattern: |
| 162 | + # Base case: we've consumed the entire pattern |
| 163 | + trie_node.terminal_patterns.append(pattern) |
| 164 | + return |
| 165 | + |
| 166 | + head, *tail = sub_pattern |
| 167 | + |
| 168 | + if isinstance(head, tuple): |
| 169 | + if isinstance(head[0], tuple): |
| 170 | + # recurse on the head tuple, until it becomes an Op |
| 171 | + head_head, *tail_head = head |
| 172 | + return recurse(trie_node, (head_head, *tail_head, *tail)) |
| 173 | + else: |
| 174 | + # Parametrized Op (OpType, {param: value, ...}) |
| 175 | + head_op_type, head_dict = validate_head_tuple(head) |
| 176 | + if head_dict: |
| 177 | + # Start with an edge for the op type |
| 178 | + next_trie_node = trie_node.start_parameter_edges.get( |
| 179 | + head_op_type, None |
| 180 | + ) |
| 181 | + if next_trie_node is None: |
| 182 | + trie_node.start_parameter_edges[head_op_type] = ( |
| 183 | + next_trie_node |
| 184 | + ) = ParameterTrieNode() |
| 185 | + # Recurse into the parameters, with parameter edges |
| 186 | + next_trie_node = recurse_with_op_parameters( |
| 187 | + next_trie_node, sorted(head_dict.items()) |
| 188 | + ) |
| 189 | + else: |
| 190 | + # No parameters, just add an op_type edge |
| 191 | + next_trie_node = trie_node.op_type_edges.get(head_op_type, None) |
| 192 | + if next_trie_node is None: |
| 193 | + trie_node.op_type_edges[head_op_type] = next_trie_node = ( |
| 194 | + TrieNode() |
| 195 | + ) |
| 196 | + else: |
| 197 | + if isinstance(head, Op): |
| 198 | + edge_type = trie_node.op_edges |
| 199 | + elif isinstance(head, type) and issubclass(head, Op): |
| 200 | + edge_type = trie_node.op_type_edges |
| 201 | + elif isinstance(head, str): |
| 202 | + edge_type = trie_node.variable_edges |
| 203 | + else: |
| 204 | + raise TypeError(f"Invalid head type {type(head)}: {head}") |
| 205 | + next_trie_node = edge_type.get(head, None) |
| 206 | + if next_trie_node is None: |
| 207 | + edge_type[head] = next_trie_node = TrieNode() |
| 208 | + |
| 209 | + # Recurse with the tail of the pattern |
| 210 | + recurse(next_trie_node, tail) |
| 211 | + |
| 212 | + recurse(self.root_node, pattern.pattern) |
| 213 | + |
| 214 | + def match(self, variable): |
| 215 | + if not isinstance(variable, Variable): |
| 216 | + return False |
| 217 | + |
| 218 | + def recurse( |
| 219 | + trie_node: TrieNode | ParameterTrieNode, |
| 220 | + subject_pattern: tuple[Variable, tuple[Variable, ...]], |
| 221 | + subs: dict[str, Any], |
| 222 | + ): |
| 223 | + if isinstance(trie_node, TrieNode): |
| 224 | + # Base case, terminal patterns are successfully matched |
| 225 | + # whenever trie node is reached with no subject pattern left to unify |
| 226 | + if not subject_pattern: |
| 227 | + for terminal_pattern in trie_node.terminal_patterns: |
| 228 | + yield terminal_pattern, subs |
| 229 | + return None |
| 230 | + |
| 231 | + head, *tail = subject_pattern |
| 232 | + assert isinstance(head, Variable), (type(head), head) |
| 233 | + |
| 234 | + # Unify variables |
| 235 | + for variable, next_trie_node in trie_node.variable_edges.items(): |
| 236 | + if variable in subs: |
| 237 | + if subs[variable] == head: |
| 238 | + yield from recurse(next_trie_node, tail, subs) |
| 239 | + else: |
| 240 | + subs_copy = subs.copy() |
| 241 | + subs_copy[variable] = head |
| 242 | + yield from recurse(next_trie_node, tail, subs_copy) |
| 243 | + |
| 244 | + if head.owner is None: |
| 245 | + # head is a root variable, can only be matched to wildcard patterns above |
| 246 | + return False |
| 247 | + head_op = head.owner.op |
| 248 | + |
| 249 | + # Match op type or exact op |
| 250 | + # We consume the head variable and extend the tail pattern with its inputs |
| 251 | + if ( |
| 252 | + next_trie_node := trie_node.op_edges.get(head_op, None) |
| 253 | + ) is not None: |
| 254 | + yield from recurse( |
| 255 | + next_trie_node, (*head.owner.inputs, *tail), subs |
| 256 | + ) |
| 257 | + if ( |
| 258 | + next_trie_node := trie_node.op_type_edges.get(type(head_op), None) |
| 259 | + ) is not None: |
| 260 | + yield from recurse( |
| 261 | + next_trie_node, (*head.owner.inputs, *tail), subs |
| 262 | + ) |
| 263 | + |
| 264 | + # Match start of parametrized op pattern |
| 265 | + if ( |
| 266 | + next_trie_node := trie_node.start_parameter_edges.get( |
| 267 | + type(head_op), None |
| 268 | + ) |
| 269 | + ) is not None: |
| 270 | + # We place the Op variable at the head of the subject pattern |
| 271 | + # And extend the tail pattern with the inputs of the head variable, just like a regular op match |
| 272 | + yield from recurse( |
| 273 | + next_trie_node, (head_op, *head.owner.inputs, *tail), subs |
| 274 | + ) |
| 275 | + |
| 276 | + else: # ParameterTrieNode |
| 277 | + head_op, *tail = subject_pattern |
| 278 | + assert isinstance(head_op, Op), (type(head_op), head_op) |
| 279 | + |
| 280 | + # Exit parametrized op pattern matching |
| 281 | + if (next_trie_node := trie_node.end_parameter_edge) is not None: |
| 282 | + # We discard the head variable and keep working on the tail pattern |
| 283 | + yield from recurse(next_trie_node, tail, subs) |
| 284 | + |
| 285 | + # Match op parameters |
| 286 | + for ( |
| 287 | + op_param_key, |
| 288 | + op_param_pattern, |
| 289 | + ), next_trie_node in trie_node.parameter_edges: |
| 290 | + op_param_value = getattr(head_op, op_param_key) |
| 291 | + subs_copy = subs |
| 292 | + |
| 293 | + # Match variable pattern |
| 294 | + if isinstance(op_param_pattern, str): |
| 295 | + if op_param_pattern in subs: |
| 296 | + if subs[op_param_pattern] != op_param_value: |
| 297 | + continue # mismatch |
| 298 | + else: |
| 299 | + subs_copy = subs.copy() |
| 300 | + subs_copy[op_param_pattern] = op_param_value |
| 301 | + # Match op type |
| 302 | + elif isinstance(op_param_pattern, type) and issubclass( |
| 303 | + op_param_pattern, Op |
| 304 | + ): |
| 305 | + if not isinstance(op_param_value, op_param_pattern): |
| 306 | + continue # mismatch |
| 307 | + # Match literal value |
| 308 | + elif isinstance(op_param_pattern, Literal): |
| 309 | + if op_param_value != op_param_pattern.pattern: |
| 310 | + continue # mismatch |
| 311 | + # Match exact value |
| 312 | + elif op_param_value != op_param_pattern: |
| 313 | + continue # mismatch |
| 314 | + |
| 315 | + # We arrive here if there was no mismatch |
| 316 | + # For parameter edges, we continue to the next trie_node with the same pattern |
| 317 | + # as we may still need to check other parameters from the same Op |
| 318 | + # We'll eventually move to the tail pattern via an end_parameter edge |
| 319 | + yield from recurse(next_trie_node, subject_pattern, subs_copy) |
| 320 | + |
| 321 | + # Match nested op parametrizations |
| 322 | + # This always follows an op parameter edge |
| 323 | + if trie_node.sub_op_parameter_edge is not None: |
| 324 | + (sub_op_param_key, next_trie_node) = trie_node.sub_op_parameter_edge |
| 325 | + sub_op = getattr(head_op, sub_op_param_key) |
| 326 | + # For sub_op parameter edges, we continue to the next trie_node with the sub_op as the head |
| 327 | + yield from recurse(next_trie_node, (sub_op, *subject_pattern), subs) |
| 328 | + return None |
| 329 | + |
| 330 | + yield from recurse(self.root_node, (variable,), {}) |
| 331 | + return None |
0 commit comments