|
| 1 | +"""Implementation of summarise.""" |
| 2 | + |
| 3 | +from __future__ import annotations |
| 4 | + |
| 5 | +from functools import singledispatch |
| 6 | +from typing import Any |
| 7 | + |
| 8 | +import pandas as pd |
| 9 | +import pandas_flavor as pf |
| 10 | +from pandas.api.types import is_scalar |
| 11 | +from pandas.core.groupby.generic import DataFrameGroupBy |
| 12 | + |
| 13 | +from janitor.functions.select import get_index_labels |
| 14 | + |
| 15 | + |
| 16 | +@pf.register_dataframe_method |
| 17 | +def summarise( |
| 18 | + df: pd.DataFrame, |
| 19 | + *args: tuple[dict | tuple], |
| 20 | + by: Any = None, |
| 21 | +) -> pd.DataFrame | pd.Series: |
| 22 | + """ |
| 23 | +
|
| 24 | + !!! info "New in version 0.31.0" |
| 25 | +
|
| 26 | + !!!note |
| 27 | +
|
| 28 | + Before reaching for `summarise`, try `pd.DataFrame.agg`. |
| 29 | +
|
| 30 | + summarise creates a new dataframe; |
| 31 | + it returns one row for each combination of grouping columns. |
| 32 | + If there are no grouping variables, |
| 33 | + the output will have a single row |
| 34 | + summarising all observations in the input. |
| 35 | +
|
| 36 | + The argument provided to *args* should be either a dictionary or a tuple. |
| 37 | +
|
| 38 | + - **dictionary argument**: |
| 39 | + If the argument is a dictionary, |
| 40 | + the value in the `{key:value}` pairing |
| 41 | + should be either a string, a callable or a tuple. |
| 42 | +
|
| 43 | + - If the value in the dictionary |
| 44 | + is a string or a callable, |
| 45 | + the key of the dictionary |
| 46 | + should be an existing column name. |
| 47 | +
|
| 48 | + !!!note |
| 49 | +
|
| 50 | + - If the value is a string, |
| 51 | + the string should be a pandas string function, |
| 52 | + e.g "sum", "mean", etc. |
| 53 | +
|
| 54 | + - If the value of the dictionary is a tuple, |
| 55 | + it should be of length 2, and of the form |
| 56 | + `(column_name, mutation_func)`, |
| 57 | + where `column_name` should exist in the DataFrame, |
| 58 | + and `mutation_func` should be either a string or a callable. |
| 59 | +
|
| 60 | + !!!note |
| 61 | +
|
| 62 | + - If `mutation_func` is a string, |
| 63 | + the string should be a pandas string function, |
| 64 | + e.g "sum", "mean", etc. |
| 65 | +
|
| 66 | + The key in the dictionary can be a new column name. |
| 67 | +
|
| 68 | + - **tuple argument**: |
| 69 | + If the argument is a tuple, it should be of length 2, |
| 70 | + and of the form |
| 71 | + `(column_name, mutation_func)`, |
| 72 | + where column_name should exist in the DataFrame, |
| 73 | + and `mutation_func` should be either a string or a callable. |
| 74 | +
|
| 75 | + !!!note |
| 76 | +
|
| 77 | + - if `mutation_func` is a string, |
| 78 | + the string should be a pandas string function, |
| 79 | + e.g "sum", "mean", etc. |
| 80 | +
|
| 81 | + !!!note |
| 82 | +
|
| 83 | + - `column_name` can be anything supported by the |
| 84 | + [`select`][janitor.functions.select.select] syntax; |
| 85 | + as such multiple columns can be processed here - |
| 86 | + they will be processed individually. |
| 87 | +
|
| 88 | + - **callable argument**: |
| 89 | + If the argument is a callable, the callable is applied |
| 90 | + on the DataFrame or GroupBy object. |
| 91 | + The result from the callable should be a pandas Series |
| 92 | + or DataFrame. |
| 93 | +
|
| 94 | +
|
| 95 | + Aggregated columns cannot be reused in `summarise`. |
| 96 | +
|
| 97 | +
|
| 98 | + `by` can be a `DataFrameGroupBy` object; it is assumed that |
| 99 | + `by` was created from `df` - the onus is on the user to |
| 100 | + ensure that, or the aggregations may yield incorrect results. |
| 101 | +
|
| 102 | + `by` accepts anything supported by `pd.DataFrame.groupby`. |
| 103 | +
|
| 104 | + Arguments supported in `pd.DataFrame.groupby` |
| 105 | + can also be passed to `by` via a dictionary. |
| 106 | +
|
| 107 | + Examples: |
| 108 | + >>> import pandas as pd |
| 109 | + >>> import janitor |
| 110 | + >>> data = {'avg_jump': [3, 4, 1, 2, 3, 4], |
| 111 | + ... 'avg_run': [3, 4, 1, 3, 2, 4], |
| 112 | + ... 'combine_id': [100200, 100200, |
| 113 | + ... 101200, 101200, |
| 114 | + ... 102201, 103202]} |
| 115 | + >>> df = pd.DataFrame(data) |
| 116 | + >>> df |
| 117 | + avg_jump avg_run combine_id |
| 118 | + 0 3 3 100200 |
| 119 | + 1 4 4 100200 |
| 120 | + 2 1 1 101200 |
| 121 | + 3 2 3 101200 |
| 122 | + 4 3 2 102201 |
| 123 | + 5 4 4 103202 |
| 124 | +
|
| 125 | + Aggregation via a callable: |
| 126 | + >>> df.summarise(lambda df: df.sum(),by='combine_id') |
| 127 | + avg_jump avg_run |
| 128 | + combine_id |
| 129 | + 100200 7 7 |
| 130 | + 101200 3 4 |
| 131 | + 102201 3 2 |
| 132 | + 103202 4 4 |
| 133 | +
|
| 134 | + Aggregation via a tuple: |
| 135 | + >>> df.summarise(("avg_run","mean"), by='combine_id') |
| 136 | + avg_run |
| 137 | + combine_id |
| 138 | + 100200 3.5 |
| 139 | + 101200 2.0 |
| 140 | + 102201 2.0 |
| 141 | + 103202 4.0 |
| 142 | +
|
| 143 | + Aggregation via a dictionary: |
| 144 | + >>> df.summarise({"avg_run":"mean"}, by='combine_id') |
| 145 | + avg_run |
| 146 | + combine_id |
| 147 | + 100200 3.5 |
| 148 | + 101200 2.0 |
| 149 | + 102201 2.0 |
| 150 | + 103202 4.0 |
| 151 | + >>> df.summarise({"avg_run_2":("avg_run","mean")}, by='combine_id') |
| 152 | + avg_run_2 |
| 153 | + combine_id |
| 154 | + 100200 3.5 |
| 155 | + 101200 2.0 |
| 156 | + 102201 2.0 |
| 157 | + 103202 4.0 |
| 158 | +
|
| 159 | + Args: |
| 160 | + df: A pandas DataFrame. |
| 161 | + args: Either a dictionary or a tuple. |
| 162 | + by: Column(s) to group by. |
| 163 | +
|
| 164 | + Raises: |
| 165 | + ValueError: If a tuple is passed and the length is not 2. |
| 166 | +
|
| 167 | + Returns: |
| 168 | + A pandas DataFrame or Series with aggregated columns. |
| 169 | +
|
| 170 | + """ # noqa: E501 |
| 171 | + |
| 172 | + if by is not None: |
| 173 | + # it is assumed that by is created from df |
| 174 | + # onus is on user to ensure that |
| 175 | + if isinstance(by, DataFrameGroupBy): |
| 176 | + pass |
| 177 | + elif isinstance(by, dict): |
| 178 | + by = df.groupby(**by) |
| 179 | + else: |
| 180 | + if is_scalar(by): |
| 181 | + by = [by] |
| 182 | + by = df.groupby(by, sort=False, observed=True) |
| 183 | + dictionary = {} |
| 184 | + for arg in args: |
| 185 | + aggregate = _mutator(arg, df=df, by=by) |
| 186 | + dictionary.update(aggregate) |
| 187 | + values = map(is_scalar, dictionary.values()) |
| 188 | + if all(values): |
| 189 | + return pd.Series(dictionary) |
| 190 | + return pd.concat(dictionary, axis=1, sort=False, copy=False) |
| 191 | + |
| 192 | + |
| 193 | +@singledispatch |
| 194 | +def _mutator(arg, df, by): |
| 195 | + if not callable(arg): |
| 196 | + raise NotImplementedError( |
| 197 | + f"janitor.summarise is not supported for {type(arg)}" |
| 198 | + ) |
| 199 | + if by is None: |
| 200 | + val = df |
| 201 | + else: |
| 202 | + val = by |
| 203 | + outcome = _process_maybe_callable(func=arg, obj=val) |
| 204 | + if isinstance(outcome, pd.Series): |
| 205 | + if not outcome.name: |
| 206 | + raise ValueError("Ensure the pandas Series object has a name") |
| 207 | + return {outcome.name: outcome} |
| 208 | + # assumption: should return a DataFrame |
| 209 | + outcome = {key: outcome[key] for key in outcome} |
| 210 | + return outcome |
| 211 | + |
| 212 | + |
| 213 | +@_mutator.register(dict) |
| 214 | +def _(arg, df, by): |
| 215 | + """Dispatch function for dictionary""" |
| 216 | + if by is None: |
| 217 | + val = df |
| 218 | + else: |
| 219 | + val = by |
| 220 | + |
| 221 | + dictionary = {} |
| 222 | + for column_name, mutator in arg.items(): |
| 223 | + if isinstance(mutator, tuple): |
| 224 | + column, func = mutator |
| 225 | + column = _process_within_dict(mutator=func, obj=val[column]) |
| 226 | + else: |
| 227 | + column = _process_within_dict( |
| 228 | + mutator=mutator, obj=val[column_name] |
| 229 | + ) |
| 230 | + dictionary[column_name] = column |
| 231 | + return dictionary |
| 232 | + |
| 233 | + |
| 234 | +@_mutator.register(tuple) |
| 235 | +def _(arg, df, by): |
| 236 | + """Dispatch function for tuple""" |
| 237 | + if len(arg) != 2: |
| 238 | + raise ValueError("the tuple has to be a length of 2") |
| 239 | + column_names, mutator = arg |
| 240 | + column_names = get_index_labels(arg=[column_names], df=df, axis="columns") |
| 241 | + mapping = {column_name: mutator for column_name in column_names} |
| 242 | + return _mutator(mapping, df=df, by=by) |
| 243 | + |
| 244 | + |
| 245 | +def _process_maybe_callable(func: callable, obj): |
| 246 | + """Function to handle callables""" |
| 247 | + try: |
| 248 | + column = obj.agg(func) |
| 249 | + except: # noqa: E722 |
| 250 | + column = func(obj) |
| 251 | + return column |
| 252 | + |
| 253 | + |
| 254 | +def _process_maybe_string(func: str, obj): |
| 255 | + """Function to handle pandas string functions""" |
| 256 | + # treat as a pandas approved string function |
| 257 | + # https://pandas.pydata.org/docs/user_guide/groupby.html#built-in-aggregation-methods |
| 258 | + return obj.agg(func) |
| 259 | + |
| 260 | + |
| 261 | +def _process_within_dict(mutator, obj): |
| 262 | + """Handle str/callables within a dictionary""" |
| 263 | + if isinstance(mutator, str): |
| 264 | + return _process_maybe_string(func=mutator, obj=obj) |
| 265 | + return _process_maybe_callable(func=mutator, obj=obj) |
0 commit comments