|
| 1 | +import warnings |
| 2 | +from enum import Enum |
1 | 3 | from typing import Hashable, Iterable, Union
|
| 4 | + |
2 | 5 | import pandas_flavor as pf
|
3 | 6 | import pandas as pd
|
4 | 7 | from pandas.api.types import is_list_like
|
5 |
| -import warnings |
| 8 | + |
6 | 9 | from janitor.utils import check, check_column, deprecated_alias
|
7 |
| -from enum import Enum |
8 | 10 |
|
9 | 11 |
|
10 | 12 | @pf.register_dataframe_method
|
@@ -90,17 +92,15 @@ def encode_categorical(
|
90 | 92 | >>> enc_df["foo"].cat.ordered
|
91 | 93 | True
|
92 | 94 |
|
93 |
| -
|
94 |
| -
|
95 | 95 | :param df: A pandas DataFrame object.
|
96 | 96 | :param column_names: A column name or an iterable (list or tuple)
|
97 | 97 | of column names.
|
98 |
| - :param kwargs: A mapping from column name to either `None`, |
99 |
| - `sort` or `appearance`, or a 1-D array. This is useful |
| 98 | + :param **kwargs: A mapping from column name to either `None`, |
| 99 | + `'sort'` or `'appearance'`, or a 1-D array. This is useful |
100 | 100 | in creating categorical columns that are ordered, or
|
101 | 101 | if the user needs to explicitly specify the categories.
|
102 | 102 | :returns: A pandas DataFrame.
|
103 |
| - :raises ValueError: if both `column_names` and `kwargs` are provided. |
| 103 | + :raises ValueError: If both `column_names` and `kwargs` are provided. |
104 | 104 | """ # noqa: E501
|
105 | 105 |
|
106 | 106 | if all((column_names, kwargs)):
|
@@ -167,21 +167,20 @@ def _as_categorical_checks(df: pd.DataFrame, **kwargs) -> dict:
|
167 | 167 | This function raises errors if columns in `kwargs` are
|
168 | 168 | absent from the dataframe's columns.
|
169 | 169 | It also raises errors if the value in `kwargs`
|
170 |
| - is not a string (`appearance` or `sort`), or a 1D array. |
| 170 | + is not a string (`'appearance'` or `'sort'`), or a 1D array. |
171 | 171 |
|
172 | 172 | This function is executed before proceeding to the computation phase.
|
173 | 173 |
|
174 | 174 | If all checks pass, a dictionary of column names and value is returned.
|
175 | 175 |
|
176 | 176 | :param df: The pandas DataFrame object.
|
177 |
| - :param kwargs: A pairing of column name and value. |
| 177 | + :param **kwargs: A pairing of column name and value. |
178 | 178 | :returns: A dictionary.
|
179 | 179 | :raises TypeError: If `value` is not a 1-D array, or a string.
|
180 | 180 | :raises ValueError: If `value` is a 1-D array, and contains nulls,
|
181 | 181 | or is non-unique.
|
182 | 182 | """
|
183 | 183 |
|
184 |
| - # column checks |
185 | 184 | check_column(df, kwargs)
|
186 | 185 |
|
187 | 186 | categories_dict = {}
|
@@ -255,7 +254,7 @@ def _as_categorical_checks(df: pd.DataFrame, **kwargs) -> dict:
|
255 | 254 | category_order_types = {ent.value for ent in _CategoryOrder}
|
256 | 255 | if value.lower() not in category_order_types:
|
257 | 256 | raise ValueError(
|
258 |
| - "argument should be one of `appearance` or `sort`." |
| 257 | + "argument should be one of 'appearance' or 'sort'." |
259 | 258 | )
|
260 | 259 |
|
261 | 260 | categories_dict[column_name] = value
|
|
0 commit comments