Skip to content

Poor numerical consistency with numpy for reductions with dtype=float16 specified #191

Open
@jcrist

Description

@jcrist

Reductions like COO.sum and COO.mean fail to match numpy in all cases when dtype=numpy.float16 is specified. For example:

import sparse
import numpy as np
x = np.array([[[    0,     0,  4526,     0],
               [    0,     0,   -37,     0],
               [ 8372,     0,  7915,     0]],
              [[    0,     0,     0,     0],
               [    0,     0, -7917,     0],
               [-9719,     0,     0,     0]]], dtype='i4')

s = sparse.COO.from_numpy(x)
res = s.sum(axis=(0, 2), dtype='f2')
sol = x.sum(axis=(0, 2), dtype='f2')
print(res.todense())
print(sol)

outputs:

[ 4530. -7950.  6564.]
[ 4530. -7950.  6570.]

It's not clear if each of these will need to be fixed per-method, or if there's a general fix in the reduce code. For sum, numpy interprets x.sum(dtype='f2') the same as x.astype('f2').sum(), but this is not true for x.mean(dtype='f2').

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugIndicates an unexpected problem or unintended behavior

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions