-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
43 lines (36 loc) · 1.22 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy as np
from flask import Flask, request, jsonify, render_template
import pickle
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
import re
from nltk.corpus import stopwords
from nltk.stem import SnowballStemmer
app = Flask(__name__)
vect = pickle.load(open("vectorizer.pickle",'rb'))
model = tf.keras.models.load_model('model.h5')
def preprocess(text, stem=False):
text = re.sub("@\S+|https?:\S+|http?:\S|[^A-Za-z0-9]+", ' ', str(text).lower()).strip()
stop_words = stopwords.words('english')
stemmer = SnowballStemmer('english')
tokens = []
for token in text.split():
if token not in stop_words:
if stem:
tokens.append(stemmer.stem(token))
else:
tokens.append(token)
return " ".join(tokens)
@app.route('/')
def home():
return render_template('index.html')
@app.route('/predict',methods=['POST'])
def predict():
inp = [x for x in request.form.values()]
inp = preprocess(inp)
inp = vect.transform([inp]).toarray().reshape(1,1,2500)
output = model.predict(inp)[0]
return render_template('index.html', prediction_text='{}'.format(output[0]), anchor="services")
if __name__ == "__main__":
app.run(host="127.0.0.1", port=3000, debug=True)