@@ -1627,10 +1627,8 @@ def coef__interval(self, alpha=0.05):
1627
1627
coef__interval : {tuple ((p, d) array, (p,d) array), tuple ((d,) array, (d,) array)}
1628
1628
The lower and upper bounds of the confidence interval of the coefficients
1629
1629
"""
1630
- return np .array ([_safe_norm_ppf (alpha / 2 , loc = p , scale = err )
1631
- for p , err in zip (self .coef_ , self .coef_stderr_ )]), \
1632
- np .array ([_safe_norm_ppf (1 - alpha / 2 , loc = p , scale = err )
1633
- for p , err in zip (self .coef_ , self .coef_stderr_ )])
1630
+ return (_safe_norm_ppf (alpha / 2 , loc = self .coef_ , scale = self .coef_stderr_ ),
1631
+ _safe_norm_ppf (1 - alpha / 2 , loc = self .coef_ , scale = self .coef_stderr_ ))
1634
1632
1635
1633
def intercept__interval (self , alpha = 0.05 ):
1636
1634
"""
@@ -1651,14 +1649,8 @@ def intercept__interval(self, alpha=0.05):
1651
1649
return (0 if self ._n_out == 0 else np .zeros (self ._n_out )), \
1652
1650
(0 if self ._n_out == 0 else np .zeros (self ._n_out ))
1653
1651
1654
- if self ._n_out == 0 :
1655
- return _safe_norm_ppf (alpha / 2 , loc = self .intercept_ , scale = self .intercept_stderr_ ), \
1656
- _safe_norm_ppf (1 - alpha / 2 , loc = self .intercept_ , scale = self .intercept_stderr_ )
1657
- else :
1658
- return np .array ([_safe_norm_ppf (alpha / 2 , loc = p , scale = err )
1659
- for p , err in zip (self .intercept_ , self .intercept_stderr_ )]), \
1660
- np .array ([_safe_norm_ppf (1 - alpha / 2 , loc = p , scale = err )
1661
- for p , err in zip (self .intercept_ , self .intercept_stderr_ )])
1652
+ return (_safe_norm_ppf (alpha / 2 , loc = self .intercept_ , scale = self .intercept_stderr_ ),
1653
+ _safe_norm_ppf (1 - alpha / 2 , loc = self .intercept_ , scale = self .intercept_stderr_ ))
1662
1654
1663
1655
def predict_interval (self , X , alpha = 0.05 ):
1664
1656
"""
@@ -1677,10 +1669,12 @@ def predict_interval(self, X, alpha=0.05):
1677
1669
prediction_intervals : {tuple ((n,) array, (n,) array), tuple ((n,p) array, (n,p) array)}
1678
1670
The lower and upper bounds of the confidence intervals of the predicted mean outcomes
1679
1671
"""
1680
- return np .array ([_safe_norm_ppf (alpha / 2 , loc = p , scale = err )
1681
- for p , err in zip (self .predict (X ), self .prediction_stderr (X ))]), \
1682
- np .array ([_safe_norm_ppf (1 - alpha / 2 , loc = p , scale = err )
1683
- for p , err in zip (self .predict (X ), self .prediction_stderr (X ))])
1672
+
1673
+ pred = self .predict (X )
1674
+ pred_stderr = self .prediction_stderr (X )
1675
+
1676
+ return (_safe_norm_ppf (alpha / 2 , loc = pred , scale = pred_stderr ),
1677
+ _safe_norm_ppf (1 - alpha / 2 , loc = pred , scale = pred_stderr ))
1684
1678
1685
1679
1686
1680
class StatsModelsLinearRegression (_StatsModelsWrapper ):
0 commit comments