You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
To see more complex examples, go to the [notebooks](https://github.com/Microsoft/EconML/tree/master/notebooks) section of the repository. For a more detailed description of the treatment effect estimation algorithms, see the EconML [documentation](https://econml.azurewebsites.net/).
@@ -196,9 +195,11 @@ The reStructuredText files that make up the documentation are stored in the [doc
196
195
197
196
# Blogs and Publications
198
197
198
+
* June 2019: [Treatment Effects with Instruments paper](https://arxiv.org/pdf/1905.10176.pdf)
199
+
199
200
* May 2019: [Open Data Science Conference Workshop](https://staging5.odsc.com/training/portfolio/machine-learning-estimation-of-heterogeneous-treatment-effect-the-microsoft-econml-library)
200
201
201
-
*2018: [Orthogonal Random Forests paper](https://arxiv.org/abs/1806.03467)
202
+
*2018: [Orthogonal Random Forests paper](http://proceedings.mlr.press/v97/oprescu19a.html)
[*Proceedings of the 36th International Conference on Machine Learning*](http://proceedings.mlr.press/v97/oprescu19a.html), 2019.
224
229
225
230
Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. **Deep IV: A flexible approach for counterfactual prediction.** [*Proceedings of the 34th International Conference on Machine Learning*](http://proceedings.mlr.press/v70/hartford17a/hartford17a.pdf), 2017.
0 commit comments