-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtucker_decompose.py
176 lines (150 loc) · 5.42 KB
/
tucker_decompose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import datetime
import argparse
import copy
import wandb
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.utils.data.distributed
import torch.utils.data
from thop import profile
import utils.common as utils
from data import cifar10
from utils.train import train, validate
from models.cifar10 import *
from tucker import tucker_decompose_model
def parse_args():
parser = argparse.ArgumentParser("Cifar-10 Tucker decomposition")
parser.add_argument(
"--data_dir", type=str, default="../data", help="path to dataset"
)
parser.add_argument(
"--arch",
type=str,
default="vgg_16_bn",
choices=("vgg_16_bn", "resnet_56", "resnet_110", "densenet_40"),
help="architecture",
)
parser.add_argument(
"--ckpt",
type=str,
default="checkpoint/cifar10/vgg_16_bn.pt",
help="checkpoint path",
)
parser.add_argument(
"--job_dir", type=str, default="result", help="path for saving models"
)
parser.add_argument("--batch_size", type=int, default=256, help="batch size")
parser.add_argument(
"--epochs", type=int, default=400, help="num of fine-tuning epochs"
)
parser.add_argument("--lr", type=float, default=0.05, help="init learning rate")
parser.add_argument(
"--lr-warmup-epochs",
default=5,
type=int,
help="the number of epochs to warmup (default: 5)",
)
parser.add_argument(
"--lr-warmup-decay", default=0.01, type=float, help="the decay for lr"
)
parser.add_argument("--momentum", type=float, default=0.9, help="momentum")
parser.add_argument("--weight_decay", type=float, default=5e-4, help="weight decay")
parser.add_argument("--gpu", type=str, default="0", help="Select gpu to use")
parser.add_argument(
"-rd",
"--rank_divisor",
type=float,
default=2,
help="use pre-specified rank divisor for all layers",
)
parser.add_argument("--name", type=str, default="", help="wandb project name")
return parser.parse_args()
args = parse_args()
print(args)
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
args.job_dir = os.path.join(args.job_dir, args.arch, str(args.rank_divisor))
if not os.path.isdir(args.job_dir):
os.makedirs(args.job_dir)
utils.record_config(args)
now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
logger = utils.get_logger(os.path.join(args.job_dir, now + ".txt"))
def main():
logger.info("args = %s", args)
name = f"{args.rank_divisor}"
wandb.init(
name=name,
project=f"NORTON_COMPONENT_Decompose_{args.name}_{args.arch}",
config=vars(args),
)
# setup
train_loader, val_loader = cifar10.load_data(args.data_dir, args.batch_size)
criterion = nn.CrossEntropyLoss()
criterion = criterion.cuda()
cudnn.benchmark = True
cudnn.enabled = True
# load model
logger.info("Loading baseline or pruned model")
model = eval(args.arch)().cuda()
ckpt = torch.load(args.ckpt, map_location="cuda:0")
model.load_state_dict(ckpt["state_dict"], strict=False)
# decompose
logger.info("Decomposing model:")
model = tucker_decompose_model(model, args.rank_divisor)
logger.info(model)
input = torch.randn(1, 3, 32, 32).to(0)
macs, params = profile(model, inputs=(input,))
wandb.log({"macs": macs, "params": params})
logger.info(f"macs {macs}, params {params}")
_, dcp_acc, _ = validate(val_loader, model, criterion, logger)
wandb.log({"decomposed_acc": dcp_acc})
# finetune
logger.info("Finetuning model:")
model = finetune(model, train_loader, val_loader, args.epochs, criterion)
# save model
path = os.path.join(args.job_dir, f"{args.arch}_{name}_{dcp_acc}.pt")
torch.save(
{"state_dict": model.state_dict(), "rank_divisor": args.rank_divisor}, path
)
def finetune(model, train_loader, val_loader, epochs, criterion):
optimizer = torch.optim.SGD(
model.parameters(),
lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
)
main_lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, T_max=epochs - args.lr_warmup_epochs
)
warmup_lr_scheduler = torch.optim.lr_scheduler.LinearLR(
optimizer, start_factor=args.lr_warmup_decay, total_iters=args.lr_warmup_epochs
)
scheduler = torch.optim.lr_scheduler.SequentialLR(
optimizer,
schedulers=[warmup_lr_scheduler, main_lr_scheduler],
milestones=[args.lr_warmup_epochs],
)
_, best_top1_acc, _ = validate(val_loader, model, criterion, logger)
best_model_state = copy.deepcopy(model.state_dict())
epoch = 0
while epoch < epochs:
train(epoch, train_loader, model, criterion, optimizer, scheduler, logger)
_, valid_top1_acc, _ = validate(val_loader, model, criterion, logger)
if valid_top1_acc > best_top1_acc:
best_top1_acc = valid_top1_acc
best_model_state = copy.deepcopy(model.state_dict())
cur_lr = optimizer.param_groups[0]["lr"]
wandb.log(
{
"best_acc": max(valid_top1_acc, best_top1_acc),
"top1": valid_top1_acc,
"lr": cur_lr,
}
)
epoch += 1
logger.info("=>Best accuracy {:.3f}".format(best_top1_acc))
model.load_state_dict(best_model_state)
return model
if __name__ == "__main__":
main()