-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMST_example.java
245 lines (198 loc) · 6.58 KB
/
MST_example.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
/**
*
* @author pulkit4tech
*/
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
public class MST_example implements Runnable {
BufferedReader c;
PrintWriter pout;
// static long mod = 1000000007;
public void run() {
try {
c = new BufferedReader(new InputStreamReader(System.in));
pout = new PrintWriter(System.out, true);
solve();
pout.close();
} catch (Exception e) {
pout.close();
e.printStackTrace();
System.exit(1);
}
}
public static void main(String[] args) throws Exception {
new Thread(new MST_example()).start();
}
void solve() throws Exception {
// kruskal_mst();
prim_mst();
}
void prim_mst(){
int graph[][] = new int[][] {{0, 2, 0, 6, 0},
{2, 0, 3, 8, 5},
{0, 3, 0, 0, 7},
{6, 8, 0, 0, 9},
{0, 5, 7, 9, 0},
};
primMSThelper(graph);
}
int minKey(int key[],boolean mstSet[]){
int min = Integer.MAX_VALUE,min_i = -1;
for(int v=0;v<key.length;v++){
if(mstSet[v]==false&&key[v]<min){
min = key[v];
min_i = v;
}
}
return min_i;
}
void printMST(int parent[],int graph[][]){
pout.println("Edge weight");
for(int i=1;i<parent.length;i++){
pout.println(parent[i]+"-"+i+" "+graph[i][parent[i]]);
}
}
void primMSThelper(int graph[][]){
//to store parent
int parent[] = new int[graph.length];
//key to pickup min vertices
int key[] = new int[graph.length];
boolean set[]= new boolean[graph.length];
Arrays.fill(key, Integer.MAX_VALUE);
Arrays.fill(set, false);
key[0] = 0;
parent[0] = -1;
for(int i=0;i<graph.length-1;i++){
int u = minKey(key, set);
set[u] = true;
for(int v=0;v<graph.length;v++){
if(graph[u][v]!=0&&!set[v]&&graph[u][v]<key[v]){
parent[v] = u;
key[v] = graph[u][v];
}
}
}
printMST(parent, graph);
}
void kruskal_mst() {
//reference geeksforgeeks
int V = 4;
int E = 5;
Graph graph = new Graph(V, E);
// add edge 0-1
graph.edge[0].src = 0;
graph.edge[0].dest = 1;
graph.edge[0].weight = 10;
// add edge 0-2
graph.edge[1].src = 0;
graph.edge[1].dest = 2;
graph.edge[1].weight = 6;
// add edge 0-3
graph.edge[2].src = 0;
graph.edge[2].dest = 3;
graph.edge[2].weight = 5;
// add edge 1-3
graph.edge[3].src = 1;
graph.edge[3].dest = 3;
graph.edge[3].weight = 15;
// add edge 2-3
graph.edge[4].src = 2;
graph.edge[4].dest = 3;
graph.edge[4].weight = 4;
graph.KruskalMST();
}
class Graph {
class Edge implements Comparable<Edge> {
int src, dest, weight;
public int compareTo(Edge compareEdge) {
return this.weight - compareEdge.weight;
}
};
// A class to represent a subset for union-find
class subset {
int parent, rank;
};
int V, E;
Edge edge[];
Graph(int v, int e) {
V = v;
E = e;
edge = new Edge[E];
for (int i = 0; i < e; ++i) {
edge[i] = new Edge();
}
}
int find(subset subsets[], int i) {
if (subsets[i].parent != i) {
subsets[i].parent = find(subsets, subsets[i].parent);
}
return subsets[i].parent;
}
// A function that does union of two sets of x and y
// (uses union by rank)
void Union(subset subsets[], int x, int y) {
int xroot = find(subsets, x);
int yroot = find(subsets, y);
// Attach smaller rank tree under root of high rank tree
// (Union by Rank)
if (subsets[xroot].rank < subsets[yroot].rank) {
subsets[xroot].parent = yroot;
} else if (subsets[xroot].rank > subsets[yroot].rank) {
subsets[yroot].parent = xroot;
} // If ranks are same, then make one as root and increment
// its rank by one
else {
subsets[yroot].parent = xroot;
subsets[xroot].rank++;
}
}
// The main function to construct MST using Kruskal's algorithm
void KruskalMST() {
Edge result[] = new Edge[V]; // Tnis will store the resultant MST
int e = 0; // An index variable, used for result[]
int i = 0; // An index variable, used for sorted edges
for (i = 0; i < V; ++i) {
result[i] = new Edge();
}
// Step 1: Sort all the edges in non-decreasing order of their
// weight. If we are not allowed to change the given graph, we
// can create a copy of array of edges
Arrays.sort(edge);
// Allocate memory for creating V ssubsets
subset subsets[] = new subset[V];
for (i = 0; i < V; ++i) {
subsets[i] = new subset();
}
// Create V subsets with single elements
for (int v = 0; v < V; ++v) {
subsets[v].parent = v;
subsets[v].rank = 0;
}
i = 0; // Index used to pick next edge
// Number of edges to be taken is equal to V-1
while (e < V - 1) {
// Step 2: Pick the smallest edge. And increment the index
// for next iteration
Edge next_edge = new Edge();
next_edge = edge[i++];
int x = find(subsets, next_edge.src);
int y = find(subsets, next_edge.dest);
// If including this edge does't cause cycle, include it
// in result and increment the index of result for next edge
if (x != y) {
result[e++] = next_edge;
Union(subsets, x, y);
}
// Else discard the next_edge
}
// print the contents of result[] to display the built MST
System.out.println("Following are the edges in the constructed MST");
for (i = 0; i < e; ++i) {
System.out.println(result[i].src + " -- " + result[i].dest + " == "
+ result[i].weight);
}
}
}
}