Skip to content

Files

Latest commit

db3c25c · May 17, 2021

History

History

examples

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
May 17, 2021

Example files for CReSCENT

CReSCENT SEURAT WRAPPERS

Our four Seurat scripts are meant to run in the following order:

  1. Runs_Seurat_v3_MultiDatasets_QC_Normalization.R
  2. Runs_Seurat_v3_MultiDatasets_Integration.R
  3. Runs_Seurat_v3_MultiDatasets_PCA_Clustering_DimReduction.R
  4. Runs_Seurat_v3_MultiDatasets_DGE.R

They can run as one-line-commad tools and each script has its own documentation, which can be found here: https://github.com/pughlab/crescent/tree/master/doc

Runs_Seurat_v3_MultiDatasets_QC_Normalization.R uses MTX files as inputs (e.g. from 10X Cell Ranger); whereas the other three scripts use R objects produced in previous steps. Users can obtain example MTX files and input parameters from here:
https://zenodo.org/record/4642759/files/crescent_v2.0_pbmc_example_infiles_and_commands.tar.bz2?download=1

And example outfiles producing these files and parameters:
https://zenodo.org/record/4642759/files/crescent_v2.0_pbmc_example_outfiles.tar.bz2?download=1

INTER-CONVERTING MTX AND GENE-VS-BARCODE FORMAT FILES

  • MTX files are three files (barcodes.tsv.gz, features.tsv.gz, matrix.mtx.gz), e.g. from Cell Ranger's filtered_feature_bc_matrix directory.
  • GENE-VS-BARCODE files are delimited files with genes in rows and barcodes in columns. The main advantage of MTX over GENE-VS-BARCODE files, are that MTX files don't store the 0's and hence save hard drive space.

Download example MTX files from (10X): http://cf.10xgenomics.com/samples/cell-exp/3.0.0/pbmc_1k_v3/pbmc_1k_v3_filtered_feature_bc_matrix.tar.gz

How to run scripts:

To convert a gene-vs-barcode file into MTX files use:
Rscript ~/path_to/obtains_mtx_files_from_gene_x_barcode_matrix.R -i ~/path_to/gene_vs_barcode_matrix.tsv -o ~/path_to_store_outfiles/ -p prefix_for_log_files -l n
Note: the gene-vs-barcode file may be gzipped

To convert MTX files into a gene-vs-barcode file use:
Rscript ~/path_to/obtains_gene_x_barcode_matrix_from_mtx_files.R -i ~/path_to/filtered_feature_bc_matrices/ -o ~/path_to_store_outfiles/ -p prefix_for_log_files_outfiles

INFERCNV WRAPPER (detect copy number variants)

Example infiles and outfiles for our R wrapper to run InferCNV are provided.

The wrapper can run as a one-line-commad tool and its documentation can be found here: https://github.com/pughlab/crescent/tree/master/doc

Runs_InferCNV.R uses an infile matrix with all cells (normal and cancer) in either format MTX or gene-vs-barcodes (DGE). Example infiles from glioblastoma can be downloaded from here:
https://zenodo.org/record/4766424/files/crescent_infercnv_glio_example_infiles_and_commands.tar.bz2?download=1

And example outfiles producing these files and parameters:
https://zenodo.org/record/4766424/files/crescent_infercnv_glio_example_outfiles_and_commands.tar.bz2?download=1

Example commands using the infiles above:
Rscript ~/r_programs/Runs_InferCNV.R -i INPUTS/glio.wGtexBrain.counts.matrix.gz -t DGE -j INPUTS/glio.wGtexBrain.sample_annots.txt -k Brain_Cerebellum,Brain_Caudate_basal_ganglia,Brain_Cortex,Brain_Nucleus_accumbens_basal_ganglia,Brain_Cerebellar_Hemisphere,Brain_Frontal_Cortex_BA9,Brain_Hippocampus -g INPUTS/gencode_v19_gene_pos.txt -m 0.1 -n 0.1 -s 0.15 -o OUTPUTS -p glio.wGtexBrain -u MAX -w 0 -a 10000

GSVA WRAPPER (assign cell type labels to cell clusters)

Example infiles and outfiles for our R wrapper to run GSVA to predic cell-cluster labels are provided.

The wrapper can run as a one-line-commad tool and its documentation can be found here: https://github.com/pughlab/crescent/tree/master/doc

Runs_GSVA.R uses an infile matrix with the average gene expression of cell clusters, e.g. *AverageGeneExpression_GlobalClustering_AllDatasets* files from Runs_Seurat_v3_MultiDatasets_PCA_Clustering_DimReduction.R, and a file with cell type gene sets in *gmt format. Example infiles from PBMCs can be downloaded from here:
https://zenodo.org/record/4766424/files/crescent_gsva_pbmcs_example_infiles_and_commands.tar.bz2?download=1

And example outfiles producing these files and parameters:
https://zenodo.org/record/4766424/files/crescent_gsva_pbmcs_example_outfiles_and_commands.tar.bz2?download=1

Example commands using the infiles above:
Rscript ~/r_programs/Runs_GSVA.R -i INFILES/pbmcs.SEURAT_AverageGeneExpression_GlobalClustering_AllDatasets_SCT.tsv.bz2 -t DGE -c INFILES/LM22_signature.cutoff3000.gmt -o OUTFILES -p pbmcs -u MAX -w 0