-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsearch.py.bak
146 lines (118 loc) · 4.54 KB
/
search.py.bak
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# search.py
# ---------
# Licensing Information: Please do not distribute or publish solutions to this
# project. You are free to use and extend these projects for educational
# purposes. The Pacman AI projects were developed at UC Berkeley, primarily by
# John DeNero ([email protected]) and Dan Klein ([email protected]).
# For more info, see http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html
"""
In search.py, you will implement generic search algorithms which are called
by Pacman agents (in searchAgents.py).
"""
import util
class SearchProblem:
"""
This class outlines the structure of a search problem, but doesn't implement
any of the methods (in object-oriented terminology: an abstract class).
You do not need to change anything in this class, ever.
"""
def getStartState(self):
"""
Returns the start state for the search problem
"""
util.raiseNotDefined()
def isGoalState(self, state):
"""
state: Search state
Returns True if and only if the state is a valid goal state
"""
util.raiseNotDefined()
def getSuccessors(self, state):
"""
state: Search state
For a given state, this should return a list of triples,
(successor, action, stepCost), where 'successor' is a
successor to the current state, 'action' is the action
required to get there, and 'stepCost' is the incremental
cost of expanding to that successor
"""
util.raiseNotDefined()
def getCostOfActions(self, actions):
"""
actions: A list of actions to take
This method returns the total cost of a particular sequence of actions. The sequence must
be composed of legal moves
"""
util.raiseNotDefined()
def graphSearch(problem, frontier):
"""page n. 77 in the book."""
# init the frontier using the init state of problem
frontier.push((problem.getStartState(), []))
# init the explored set to be empty
explored = []
# if the frontier and we didn't get
# any solution we failed
while not frontier.isEmpty():
# choose a leaf node and remove it from the frontier
state, actions = frontier.pop()
# if the node contains a goal state return the solution
if problem.isGoalState(state):
return actions
if state not in explored:
# add the node is not in the explored
explored.append(state)
# expand the chosen node, adding the result
# nodes that is not in the explored to the frontier
for successor, action, stepCost in problem.getSuccessors(state):
if successor not in explored:
next_actions = actions + [action]
successor_node = (successor, next_actions)
frontier.push(successor_node)
return []
def tinyMazeSearch(problem):
"""
Returns a sequence of moves that solves tinyMaze. For any other
maze, the sequence of moves will be incorrect, so only use this for tinyMaze
"""
from game import Directions
s = Directions.SOUTH
w = Directions.WEST
return [s, s, w, s, w, w, s, w]
def depthFirstSearch(problem):
"""page n. 85 3.4.3"""
# use LIFO and graphSearch
frontier = util.Stack()
return graphSearch(problem, frontier)
def breadthFirstSearch(problem):
"""page n. 85 3.4.3"""
# use FIFO and graphSearch
def costFn((state, actions)):
return len(actions)
# use FIFO and graphSearch
frontier = util.PriorityQueueWithFunction(costFn)
frontier.push((problem.getStartState(), []))
return graphSearch(problem, frontier)
def uniformCostSearch(problem):
"""page n. 85 3.4.3"""
# use the problem cost function
def costFn((state, actions)):
return problem.getCostOfActions(actions)
# use FIFO and graphSearch
frontier = util.PriorityQueueWithFunction(costFn)
return graphSearch(problem, frontier)
def nullHeuristic(state, problem=None):
"""
A heuristic function estimates the cost from the current state to the nearest
goal in the provided SearchProblem. This heuristic is trivial.
"""
return 0
def aStarSearch(problem, heuristic=nullHeuristic):
def costFn((state, actions)):
return problem.getCostOfActions(actions) + heuristic(state, problem)
frontier = util.PriorityQueueWithFunction(costFn)
return graphSearch(problem, frontier)
# Abbreviations
bfs = breadthFirstSearch
dfs = depthFirstSearch
astar = aStarSearch
ucs = uniformCostSearch