-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy patharguments.py
63 lines (51 loc) · 3.61 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import argparse
import yaml
import ast
import os
def parse_arguments():
parser = argparse.ArgumentParser(description="evaluation on downstream tasks")
parser.add_argument("--config", type=str, default=None, help="path to config file")
parser.add_argument("--tag", type=str, default="eval", help="tag to add to the output file")
# model setting
parser.add_argument("--model_name_or_path", type=str, default=None)
parser.add_argument("--use_vllm", action="store_true", help="whether to use vllm engine")
# data paths
parser.add_argument("--datasets", type=str, default=None)
parser.add_argument("--demo_files", type=str, default=None)
parser.add_argument("--test_files", type=str, default=None)
parser.add_argument("--output_dir", type=str, default=None, help="path to save the predictions")
parser.add_argument("--overwrite", action="store_true", help="whether to the saved file")
parser.add_argument("--max_test_samples", type=int, default=None)
parser.add_argument("--num_workers", type=int, default=4)
parser.add_argument("--num_depths", type=int, default=10)
# dataset specific settings
parser.add_argument("--popularity_threshold", type=int, default=3)
# evaluation settings
parser.add_argument("--shots", type=int, default=5, help="total number of demos (encoder + decoder)")
parser.add_argument("--input_max_length", type=str, default='8192', help="the maximum number of tokens of the input, we truncate the end of the context; can be separated by comma to match the specified datasets")
# generation settings
parser.add_argument("--do_sample", type=ast.literal_eval, choices=[True, False], default=False, help="whether to use sampling (false is greedy), overwrites temperature")
parser.add_argument("--generation_max_length", type=str, default='10', help="max number of tokens to generate, can be separated by comma to match the specified datasets")
parser.add_argument("--generation_min_length", type=int, default=0, help="min number of tokens to generate")
parser.add_argument("--temperature", type=float, default=1.0, help="generation temperature")
parser.add_argument("--top_p", type=float, default=1.0, help="top-p parameter for nucleus sampling")
parser.add_argument("--stop_newline", type=ast.literal_eval, choices=[True, False], default=False, help="whether to stop generation at newline")
# model specific settings
parser.add_argument("--seed", type=int, default=42, help="random seed")
parser.add_argument("--no_cuda", action="store_true", help="disable cuda")
parser.add_argument("--no_bf16", action="store_true", help="disable bf16 and use fp32")
parser.add_argument("--no_torch_compile", action="store_true", help="disable cuda")
parser.add_argument("--use_chat_template", type=ast.literal_eval, choices=[True, False], default=False, help="whether to use chat template")
parser.add_argument("--rope_theta", type=int, default=None, help="override rope theta")
# misc
parser.add_argument("--debug", action="store_true", help="for debugging")
parser.add_argument("--count_tokens", action="store_true", help="instead of running generation, just count the number of tokens (only for HF models not API)")
args = parser.parse_args()
config = yaml.safe_load(open(args.config)) if args.config is not None else {}
parser.set_defaults(**config)
args = parser.parse_args()
if args.output_dir is None:
args.output_dir = f"output/{os.path.basename(args.model_name_or_path)}"
if args.rope_theta is not None:
args.output_dir = args.output_dir + f"-override-rope{args.rope_theta}"
return args