-
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathapp.py
137 lines (107 loc) · 6.45 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import streamlit as st
import os
import pandas as pd
from dif import *
from PIL import Image
import shutil
st.set_page_config(
page_title="Duplicate Image Finder",
page_icon="🖼",
layout="wide",
initial_sidebar_state="auto",
)
@st.cache(persist=True,allow_output_mutation=False,show_spinner=True,suppress_st_warning=True)
def clean_directory(dir):
shutil.rmtree(dir)
os.makedirs(dir)
single_folder_upload_path = "single_uploads/"
multi_folder1_upload_path = "multi_uploads/folder_1/"
multi_folder2_upload_path = "multi_uploads/folder_2/"
clean_directory(single_folder_upload_path)
clean_directory(multi_folder1_upload_path)
clean_directory(multi_folder2_upload_path)
top_image = Image.open('static/banner_top.png')
bottom_image = Image.open('static/banner_bottom.png')
st.sidebar.image(top_image,use_column_width='auto')
selection_choice = st.sidebar.selectbox('Search for duplicate Images under? 🎯',["Single Directory","Two Directories"])
st.sidebar.image(bottom_image,use_column_width='auto')
st.title("👨💻 Duplicate Image Finder 📷")
st.info('✨ Supports all popular image formats 📷 - PNG, JPG, BMP 😉')
if selection_choice == "Single Directory":
uploaded_files = st.file_uploader("Upload Images 🚀", type=["png","jpg","bmp","jpeg"], accept_multiple_files=True)
with st.spinner(f"Working... 💫"):
if uploaded_files:
for uploaded_file in uploaded_files:
with open(os.path.join(single_folder_upload_path,uploaded_file.name),"wb") as f:
f.write((uploaded_file).getbuffer())
search = dif("single_uploads/")
dup_imgs = [key for key in search.result.keys()]
low_res_imgs = [str(img.split("/")[-1]) for img in search.lower_quality]
stats_metrics = [search.stats[key] for key in search.stats.keys()]
time_metrics = [stats_metrics[2][key] for key in stats_metrics[2].keys()]
similarity_grade = str(stats_metrics[3])
similarity_mse = str(stats_metrics[4])
total_imgs_searched = str(stats_metrics[5])
total_imgs_found = str(stats_metrics[6])
strt_datetime = str(time_metrics[0])+ " " + str(time_metrics[1])
end_datetime = str(time_metrics[2])+ " " + str(time_metrics[3])
secs_elapsed = str(time_metrics[-1])
df = pd.DataFrame(columns = ['names of duplicate images'])
df['names of duplicate images'] = dup_imgs
df['names of lowest quality images'] = low_res_imgs
if len(total_imgs_searched) != 0:
col1, col2, col3 = st.columns(3)
col1.metric("Total Images Searched", total_imgs_searched)
col2.metric("Duplicate Images Found", total_imgs_found)
col3.metric("Lowest Quality Images Found", len(low_res_imgs))
col1.metric("Similarity Grade", similarity_grade.title())
col2.metric("Similarity MSE", similarity_mse)
col3.metric("Seconds Elapsed", secs_elapsed)
with col2:
st.markdown("<br>", unsafe_allow_html=True)
st.dataframe(df)
else:
st.warning('⚠ Please upload your images! 😯')
if selection_choice == "Two Directories":
main_col1, main_col2 = st.columns(2)
with main_col1:
multi_folder1_uploaded_files = st.file_uploader("Upload Images (folder 1)🖼", type=["png","jpg","bmp","jpeg"], accept_multiple_files=True)
with main_col2:
multi_folder2_uploaded_files = st.file_uploader("Upload Images (folder 2)🖼", type=["png","jpg","bmp","jpeg"], accept_multiple_files=True)
with st.spinner(f"Working... 💫"):
if multi_folder1_uploaded_files and multi_folder2_uploaded_files:
for uploaded_file in multi_folder1_uploaded_files:
with open(os.path.join(multi_folder1_upload_path,uploaded_file.name),"wb") as f:
f.write((uploaded_file).getbuffer())
for uploaded_file in multi_folder2_uploaded_files:
with open(os.path.join(multi_folder2_upload_path,uploaded_file.name),"wb") as f:
f.write((uploaded_file).getbuffer())
search = dif("multi_uploads/folder_1/", "multi_uploads/folder_2/")
dup_imgs = [key for key in search.result.keys()]
low_res_imgs = [str(img.split("/")[-1]) for img in search.lower_quality]
stats_metrics = [search.stats[key] for key in search.stats.keys()]
time_metrics = [stats_metrics[2][key] for key in stats_metrics[2].keys()]
similarity_grade = str(stats_metrics[3])
similarity_mse = str(stats_metrics[4])
total_imgs_searched = str(stats_metrics[5])
total_imgs_found = str(stats_metrics[6])
strt_datetime = str(time_metrics[0])+ " " + str(time_metrics[1])
end_datetime = str(time_metrics[2])+ " " + str(time_metrics[3])
secs_elapsed = str(time_metrics[-1])
df = pd.DataFrame(columns = ['names of duplicate images'])
df['names of duplicate images'] = dup_imgs
df['names of lowest quality images'] = low_res_imgs
if len(total_imgs_searched) != 0:
col1, col2, col3 = st.columns(3)
col1.metric("Total Images Searched", total_imgs_searched)
col2.metric("Duplicate Images Found", total_imgs_found)
col3.metric("Lowest Quality Images Found", len(low_res_imgs))
col1.metric("Similarity Grade", similarity_grade.title())
col2.metric("Similarity MSE", similarity_mse)
col3.metric("Seconds Elapsed", secs_elapsed)
with col2:
st.markdown("<br>", unsafe_allow_html=True)
st.dataframe(df)
else:
st.warning('⚠ Please upload your images! 😯')
st.markdown("<br><hr><center>Made with ❤️ by <a href='mailto:[email protected]?subject=Instance Segmentator WebApp!&body=Please specify the issue you are facing with the app.'><strong>Prateek Ralhan</strong></a> with the help of [difPy](https://github.com/elisemercury/Duplicate-Image-Finder) built by [elsiemercury](https://github.com/elisemercury) ✨</center><hr>", unsafe_allow_html=True)