-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
51 lines (39 loc) · 1.34 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import matplotlib.pyplot as plt
import numpy as np
import click
import yaml
import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.optim as optim
from pipeline_manager import pipeline_manager
@click.group()
def main():
pass
@main.command()
def train():
manager.train(trainloader)
@main.command()
def test():
manager.test(testloader)
@main.command()
def test_folder():
manager.test_folder(testloader)
if __name__=="__main__":
config=yaml.safe_load(open("config/config.yaml","r"))
bs=config["batch_size"]
print("batch_size:-"+str(bs))
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR100(root='./data', train=True,
download=False, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=bs,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR100(root='./data', train=False,
download=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=bs,
shuffle=False, num_workers=2)
manager=pipeline_manager(torch.cuda.is_available(),config)
main()