|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Definition" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "markdown", |
| 12 | + "metadata": {}, |
| 13 | + "source": [ |
| 14 | + "It is a sorting regression which uses the outputs between 0 to 1 for classification of the input data given" |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "markdown", |
| 19 | + "metadata": {}, |
| 20 | + "source": [ |
| 21 | + "Sigmoid function:\n", |
| 22 | + "s(z) = 1 / (1+e**(-z))" |
| 23 | + ] |
| 24 | + }, |
| 25 | + { |
| 26 | + "cell_type": "markdown", |
| 27 | + "metadata": {}, |
| 28 | + "source": [ |
| 29 | + "As z->-(1/0):s(z)->0 ||\n", |
| 30 | + "As z->(1/0):s(z)->1 ||\n", |
| 31 | + "At z=0:s(z)=0.5" |
| 32 | + ] |
| 33 | + }, |
| 34 | + { |
| 35 | + "cell_type": "markdown", |
| 36 | + "metadata": {}, |
| 37 | + "source": [ |
| 38 | + "Generally,z is a function" |
| 39 | + ] |
| 40 | + }, |
| 41 | + { |
| 42 | + "cell_type": "code", |
| 43 | + "execution_count": 1, |
| 44 | + "metadata": {}, |
| 45 | + "outputs": [], |
| 46 | + "source": [ |
| 47 | + "import numpy as np\n", |
| 48 | + "import pandas as pd" |
| 49 | + ] |
| 50 | + }, |
| 51 | + { |
| 52 | + "cell_type": "code", |
| 53 | + "execution_count": 2, |
| 54 | + "metadata": {}, |
| 55 | + "outputs": [], |
| 56 | + "source": [ |
| 57 | + "from sklearn import datasets\n", |
| 58 | + "from sklearn.linear_model import LogisticRegression" |
| 59 | + ] |
| 60 | + }, |
| 61 | + { |
| 62 | + "cell_type": "code", |
| 63 | + "execution_count": 3, |
| 64 | + "metadata": {}, |
| 65 | + "outputs": [ |
| 66 | + { |
| 67 | + "data": { |
| 68 | + "text/plain": [ |
| 69 | + "{'data': array([[1.799e+01, 1.038e+01, 1.228e+02, ..., 2.654e-01, 4.601e-01,\n", |
| 70 | + " 1.189e-01],\n", |
| 71 | + " [2.057e+01, 1.777e+01, 1.329e+02, ..., 1.860e-01, 2.750e-01,\n", |
| 72 | + " 8.902e-02],\n", |
| 73 | + " [1.969e+01, 2.125e+01, 1.300e+02, ..., 2.430e-01, 3.613e-01,\n", |
| 74 | + " 8.758e-02],\n", |
| 75 | + " ...,\n", |
| 76 | + " [1.660e+01, 2.808e+01, 1.083e+02, ..., 1.418e-01, 2.218e-01,\n", |
| 77 | + " 7.820e-02],\n", |
| 78 | + " [2.060e+01, 2.933e+01, 1.401e+02, ..., 2.650e-01, 4.087e-01,\n", |
| 79 | + " 1.240e-01],\n", |
| 80 | + " [7.760e+00, 2.454e+01, 4.792e+01, ..., 0.000e+00, 2.871e-01,\n", |
| 81 | + " 7.039e-02]]),\n", |
| 82 | + " 'target': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,\n", |
| 83 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,\n", |
| 84 | + " 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,\n", |
| 85 | + " 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,\n", |
| 86 | + " 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,\n", |
| 87 | + " 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,\n", |
| 88 | + " 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,\n", |
| 89 | + " 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1,\n", |
| 90 | + " 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0,\n", |
| 91 | + " 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0,\n", |
| 92 | + " 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,\n", |
| 93 | + " 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 94 | + " 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1,\n", |
| 95 | + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1,\n", |
| 96 | + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0,\n", |
| 97 | + " 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0,\n", |
| 98 | + " 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,\n", |
| 99 | + " 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1,\n", |
| 100 | + " 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0,\n", |
| 101 | + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1,\n", |
| 102 | + " 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,\n", |
| 103 | + " 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,\n", |
| 104 | + " 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1,\n", |
| 105 | + " 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,\n", |
| 106 | + " 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", |
| 107 | + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1]),\n", |
| 108 | + " 'target_names': array(['malignant', 'benign'], dtype='<U9'),\n", |
| 109 | + " 'DESCR': '.. _breast_cancer_dataset:\\n\\nBreast cancer wisconsin (diagnostic) dataset\\n--------------------------------------------\\n\\n**Data Set Characteristics:**\\n\\n :Number of Instances: 569\\n\\n :Number of Attributes: 30 numeric, predictive attributes and the class\\n\\n :Attribute Information:\\n - radius (mean of distances from center to points on the perimeter)\\n - texture (standard deviation of gray-scale values)\\n - perimeter\\n - area\\n - smoothness (local variation in radius lengths)\\n - compactness (perimeter^2 / area - 1.0)\\n - concavity (severity of concave portions of the contour)\\n - concave points (number of concave portions of the contour)\\n - symmetry \\n - fractal dimension (\"coastline approximation\" - 1)\\n\\n The mean, standard error, and \"worst\" or largest (mean of the three\\n largest values) of these features were computed for each image,\\n resulting in 30 features. For instance, field 3 is Mean Radius, field\\n 13 is Radius SE, field 23 is Worst Radius.\\n\\n - class:\\n - WDBC-Malignant\\n - WDBC-Benign\\n\\n :Summary Statistics:\\n\\n ===================================== ====== ======\\n Min Max\\n ===================================== ====== ======\\n radius (mean): 6.981 28.11\\n texture (mean): 9.71 39.28\\n perimeter (mean): 43.79 188.5\\n area (mean): 143.5 2501.0\\n smoothness (mean): 0.053 0.163\\n compactness (mean): 0.019 0.345\\n concavity (mean): 0.0 0.427\\n concave points (mean): 0.0 0.201\\n symmetry (mean): 0.106 0.304\\n fractal dimension (mean): 0.05 0.097\\n radius (standard error): 0.112 2.873\\n texture (standard error): 0.36 4.885\\n perimeter (standard error): 0.757 21.98\\n area (standard error): 6.802 542.2\\n smoothness (standard error): 0.002 0.031\\n compactness (standard error): 0.002 0.135\\n concavity (standard error): 0.0 0.396\\n concave points (standard error): 0.0 0.053\\n symmetry (standard error): 0.008 0.079\\n fractal dimension (standard error): 0.001 0.03\\n radius (worst): 7.93 36.04\\n texture (worst): 12.02 49.54\\n perimeter (worst): 50.41 251.2\\n area (worst): 185.2 4254.0\\n smoothness (worst): 0.071 0.223\\n compactness (worst): 0.027 1.058\\n concavity (worst): 0.0 1.252\\n concave points (worst): 0.0 0.291\\n symmetry (worst): 0.156 0.664\\n fractal dimension (worst): 0.055 0.208\\n ===================================== ====== ======\\n\\n :Missing Attribute Values: None\\n\\n :Class Distribution: 212 - Malignant, 357 - Benign\\n\\n :Creator: Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian\\n\\n :Donor: Nick Street\\n\\n :Date: November, 1995\\n\\nThis is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets.\\nhttps://goo.gl/U2Uwz2\\n\\nFeatures are computed from a digitized image of a fine needle\\naspirate (FNA) of a breast mass. They describe\\ncharacteristics of the cell nuclei present in the image.\\n\\nSeparating plane described above was obtained using\\nMultisurface Method-Tree (MSM-T) [K. P. Bennett, \"Decision Tree\\nConstruction Via Linear Programming.\" Proceedings of the 4th\\nMidwest Artificial Intelligence and Cognitive Science Society,\\npp. 97-101, 1992], a classification method which uses linear\\nprogramming to construct a decision tree. Relevant features\\nwere selected using an exhaustive search in the space of 1-4\\nfeatures and 1-3 separating planes.\\n\\nThe actual linear program used to obtain the separating plane\\nin the 3-dimensional space is that described in:\\n[K. P. Bennett and O. L. Mangasarian: \"Robust Linear\\nProgramming Discrimination of Two Linearly Inseparable Sets\",\\nOptimization Methods and Software 1, 1992, 23-34].\\n\\nThis database is also available through the UW CS ftp server:\\n\\nftp ftp.cs.wisc.edu\\ncd math-prog/cpo-dataset/machine-learn/WDBC/\\n\\n.. topic:: References\\n\\n - W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction \\n for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on \\n Electronic Imaging: Science and Technology, volume 1905, pages 861-870,\\n San Jose, CA, 1993.\\n - O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and \\n prognosis via linear programming. Operations Research, 43(4), pages 570-577, \\n July-August 1995.\\n - W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques\\n to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994) \\n 163-171.',\n", |
| 110 | + " 'feature_names': array(['mean radius', 'mean texture', 'mean perimeter', 'mean area',\n", |
| 111 | + " 'mean smoothness', 'mean compactness', 'mean concavity',\n", |
| 112 | + " 'mean concave points', 'mean symmetry', 'mean fractal dimension',\n", |
| 113 | + " 'radius error', 'texture error', 'perimeter error', 'area error',\n", |
| 114 | + " 'smoothness error', 'compactness error', 'concavity error',\n", |
| 115 | + " 'concave points error', 'symmetry error',\n", |
| 116 | + " 'fractal dimension error', 'worst radius', 'worst texture',\n", |
| 117 | + " 'worst perimeter', 'worst area', 'worst smoothness',\n", |
| 118 | + " 'worst compactness', 'worst concavity', 'worst concave points',\n", |
| 119 | + " 'worst symmetry', 'worst fractal dimension'], dtype='<U23'),\n", |
| 120 | + " 'filename': 'C:\\\\Users\\\\Psyfer\\\\Anaconda3\\\\lib\\\\site-packages\\\\sklearn\\\\datasets\\\\data\\\\breast_cancer.csv'}" |
| 121 | + ] |
| 122 | + }, |
| 123 | + "execution_count": 3, |
| 124 | + "metadata": {}, |
| 125 | + "output_type": "execute_result" |
| 126 | + } |
| 127 | + ], |
| 128 | + "source": [ |
| 129 | + "cancer_ds = datasets.load_breast_cancer()\n", |
| 130 | + "cancer_ds" |
| 131 | + ] |
| 132 | + }, |
| 133 | + { |
| 134 | + "cell_type": "code", |
| 135 | + "execution_count": 5, |
| 136 | + "metadata": {}, |
| 137 | + "outputs": [ |
| 138 | + { |
| 139 | + "name": "stderr", |
| 140 | + "output_type": "stream", |
| 141 | + "text": [ |
| 142 | + "C:\\Users\\Psyfer\\Anaconda3\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", |
| 143 | + " FutureWarning)\n" |
| 144 | + ] |
| 145 | + }, |
| 146 | + { |
| 147 | + "data": { |
| 148 | + "text/plain": [ |
| 149 | + "LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,\n", |
| 150 | + " intercept_scaling=1, max_iter=100, multi_class='warn',\n", |
| 151 | + " n_jobs=None, penalty='l2', random_state=None, solver='warn',\n", |
| 152 | + " tol=0.0001, verbose=0, warm_start=False)" |
| 153 | + ] |
| 154 | + }, |
| 155 | + "execution_count": 5, |
| 156 | + "metadata": {}, |
| 157 | + "output_type": "execute_result" |
| 158 | + } |
| 159 | + ], |
| 160 | + "source": [ |
| 161 | + "clf = LogisticRegression()\n", |
| 162 | + "clf.fit(cancer_ds.data,cancer_ds.target)" |
| 163 | + ] |
| 164 | + }, |
| 165 | + { |
| 166 | + "cell_type": "code", |
| 167 | + "execution_count": 6, |
| 168 | + "metadata": {}, |
| 169 | + "outputs": [ |
| 170 | + { |
| 171 | + "data": { |
| 172 | + "text/plain": [ |
| 173 | + "0.9595782073813708" |
| 174 | + ] |
| 175 | + }, |
| 176 | + "execution_count": 6, |
| 177 | + "metadata": {}, |
| 178 | + "output_type": "execute_result" |
| 179 | + } |
| 180 | + ], |
| 181 | + "source": [ |
| 182 | + "clf.score(cancer_ds.data,cancer_ds.target)" |
| 183 | + ] |
| 184 | + }, |
| 185 | + { |
| 186 | + "cell_type": "code", |
| 187 | + "execution_count": 10, |
| 188 | + "metadata": {}, |
| 189 | + "outputs": [ |
| 190 | + { |
| 191 | + "data": { |
| 192 | + "text/plain": [ |
| 193 | + "array([0.27956832, 0.72043168])" |
| 194 | + ] |
| 195 | + }, |
| 196 | + "execution_count": 10, |
| 197 | + "metadata": {}, |
| 198 | + "output_type": "execute_result" |
| 199 | + } |
| 200 | + ], |
| 201 | + "source": [ |
| 202 | + "clf.predict_proba(cancer_ds.data)[13]" |
| 203 | + ] |
| 204 | + }, |
| 205 | + { |
| 206 | + "cell_type": "code", |
| 207 | + "execution_count": 7, |
| 208 | + "metadata": {}, |
| 209 | + "outputs": [ |
| 210 | + { |
| 211 | + "data": { |
| 212 | + "text/plain": [ |
| 213 | + "array([ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,\n", |
| 214 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 215 | + " 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,\n", |
| 216 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 217 | + " 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 218 | + " 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 219 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 220 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,\n", |
| 221 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,\n", |
| 222 | + " 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 223 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 224 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 225 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,\n", |
| 226 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 227 | + " -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 228 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 229 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 230 | + " 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 231 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 232 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 233 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 234 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 235 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,\n", |
| 236 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 237 | + " 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 238 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 239 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0,\n", |
| 240 | + " 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 241 | + " -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0,\n", |
| 242 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 243 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 244 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0,\n", |
| 245 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 246 | + " 0, 0, 0, 0, 0, 0, 0, 0])" |
| 247 | + ] |
| 248 | + }, |
| 249 | + "execution_count": 7, |
| 250 | + "metadata": {}, |
| 251 | + "output_type": "execute_result" |
| 252 | + } |
| 253 | + ], |
| 254 | + "source": [ |
| 255 | + "clf.predict(cancer_ds.data) - cancer_ds.target" |
| 256 | + ] |
| 257 | + }, |
| 258 | + { |
| 259 | + "cell_type": "code", |
| 260 | + "execution_count": null, |
| 261 | + "metadata": {}, |
| 262 | + "outputs": [], |
| 263 | + "source": [] |
| 264 | + } |
| 265 | + ], |
| 266 | + "metadata": { |
| 267 | + "kernelspec": { |
| 268 | + "display_name": "Python 3", |
| 269 | + "language": "python", |
| 270 | + "name": "python3" |
| 271 | + }, |
| 272 | + "language_info": { |
| 273 | + "codemirror_mode": { |
| 274 | + "name": "ipython", |
| 275 | + "version": 3 |
| 276 | + }, |
| 277 | + "file_extension": ".py", |
| 278 | + "mimetype": "text/x-python", |
| 279 | + "name": "python", |
| 280 | + "nbconvert_exporter": "python", |
| 281 | + "pygments_lexer": "ipython3", |
| 282 | + "version": "3.7.1" |
| 283 | + } |
| 284 | + }, |
| 285 | + "nbformat": 4, |
| 286 | + "nbformat_minor": 2 |
| 287 | +} |
0 commit comments