Skip to content

Commit 53ca03a

Browse files
authored
Add files via upload
1 parent 0c11065 commit 53ca03a

3 files changed

+1755
-0
lines changed

Logistic Regression.ipynb

+287
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,287 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"# Definition"
8+
]
9+
},
10+
{
11+
"cell_type": "markdown",
12+
"metadata": {},
13+
"source": [
14+
"It is a sorting regression which uses the outputs between 0 to 1 for classification of the input data given"
15+
]
16+
},
17+
{
18+
"cell_type": "markdown",
19+
"metadata": {},
20+
"source": [
21+
"Sigmoid function:\n",
22+
"s(z) = 1 / (1+e**(-z))"
23+
]
24+
},
25+
{
26+
"cell_type": "markdown",
27+
"metadata": {},
28+
"source": [
29+
"As z->-(1/0):s(z)->0 ||\n",
30+
"As z->(1/0):s(z)->1 ||\n",
31+
"At z=0:s(z)=0.5"
32+
]
33+
},
34+
{
35+
"cell_type": "markdown",
36+
"metadata": {},
37+
"source": [
38+
"Generally,z is a function"
39+
]
40+
},
41+
{
42+
"cell_type": "code",
43+
"execution_count": 1,
44+
"metadata": {},
45+
"outputs": [],
46+
"source": [
47+
"import numpy as np\n",
48+
"import pandas as pd"
49+
]
50+
},
51+
{
52+
"cell_type": "code",
53+
"execution_count": 2,
54+
"metadata": {},
55+
"outputs": [],
56+
"source": [
57+
"from sklearn import datasets\n",
58+
"from sklearn.linear_model import LogisticRegression"
59+
]
60+
},
61+
{
62+
"cell_type": "code",
63+
"execution_count": 3,
64+
"metadata": {},
65+
"outputs": [
66+
{
67+
"data": {
68+
"text/plain": [
69+
"{'data': array([[1.799e+01, 1.038e+01, 1.228e+02, ..., 2.654e-01, 4.601e-01,\n",
70+
" 1.189e-01],\n",
71+
" [2.057e+01, 1.777e+01, 1.329e+02, ..., 1.860e-01, 2.750e-01,\n",
72+
" 8.902e-02],\n",
73+
" [1.969e+01, 2.125e+01, 1.300e+02, ..., 2.430e-01, 3.613e-01,\n",
74+
" 8.758e-02],\n",
75+
" ...,\n",
76+
" [1.660e+01, 2.808e+01, 1.083e+02, ..., 1.418e-01, 2.218e-01,\n",
77+
" 7.820e-02],\n",
78+
" [2.060e+01, 2.933e+01, 1.401e+02, ..., 2.650e-01, 4.087e-01,\n",
79+
" 1.240e-01],\n",
80+
" [7.760e+00, 2.454e+01, 4.792e+01, ..., 0.000e+00, 2.871e-01,\n",
81+
" 7.039e-02]]),\n",
82+
" 'target': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,\n",
83+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,\n",
84+
" 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,\n",
85+
" 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,\n",
86+
" 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,\n",
87+
" 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,\n",
88+
" 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,\n",
89+
" 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1,\n",
90+
" 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0,\n",
91+
" 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0,\n",
92+
" 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,\n",
93+
" 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
94+
" 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1,\n",
95+
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1,\n",
96+
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0,\n",
97+
" 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0,\n",
98+
" 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,\n",
99+
" 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1,\n",
100+
" 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0,\n",
101+
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1,\n",
102+
" 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,\n",
103+
" 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,\n",
104+
" 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1,\n",
105+
" 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,\n",
106+
" 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
107+
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1]),\n",
108+
" 'target_names': array(['malignant', 'benign'], dtype='<U9'),\n",
109+
" 'DESCR': '.. _breast_cancer_dataset:\\n\\nBreast cancer wisconsin (diagnostic) dataset\\n--------------------------------------------\\n\\n**Data Set Characteristics:**\\n\\n :Number of Instances: 569\\n\\n :Number of Attributes: 30 numeric, predictive attributes and the class\\n\\n :Attribute Information:\\n - radius (mean of distances from center to points on the perimeter)\\n - texture (standard deviation of gray-scale values)\\n - perimeter\\n - area\\n - smoothness (local variation in radius lengths)\\n - compactness (perimeter^2 / area - 1.0)\\n - concavity (severity of concave portions of the contour)\\n - concave points (number of concave portions of the contour)\\n - symmetry \\n - fractal dimension (\"coastline approximation\" - 1)\\n\\n The mean, standard error, and \"worst\" or largest (mean of the three\\n largest values) of these features were computed for each image,\\n resulting in 30 features. For instance, field 3 is Mean Radius, field\\n 13 is Radius SE, field 23 is Worst Radius.\\n\\n - class:\\n - WDBC-Malignant\\n - WDBC-Benign\\n\\n :Summary Statistics:\\n\\n ===================================== ====== ======\\n Min Max\\n ===================================== ====== ======\\n radius (mean): 6.981 28.11\\n texture (mean): 9.71 39.28\\n perimeter (mean): 43.79 188.5\\n area (mean): 143.5 2501.0\\n smoothness (mean): 0.053 0.163\\n compactness (mean): 0.019 0.345\\n concavity (mean): 0.0 0.427\\n concave points (mean): 0.0 0.201\\n symmetry (mean): 0.106 0.304\\n fractal dimension (mean): 0.05 0.097\\n radius (standard error): 0.112 2.873\\n texture (standard error): 0.36 4.885\\n perimeter (standard error): 0.757 21.98\\n area (standard error): 6.802 542.2\\n smoothness (standard error): 0.002 0.031\\n compactness (standard error): 0.002 0.135\\n concavity (standard error): 0.0 0.396\\n concave points (standard error): 0.0 0.053\\n symmetry (standard error): 0.008 0.079\\n fractal dimension (standard error): 0.001 0.03\\n radius (worst): 7.93 36.04\\n texture (worst): 12.02 49.54\\n perimeter (worst): 50.41 251.2\\n area (worst): 185.2 4254.0\\n smoothness (worst): 0.071 0.223\\n compactness (worst): 0.027 1.058\\n concavity (worst): 0.0 1.252\\n concave points (worst): 0.0 0.291\\n symmetry (worst): 0.156 0.664\\n fractal dimension (worst): 0.055 0.208\\n ===================================== ====== ======\\n\\n :Missing Attribute Values: None\\n\\n :Class Distribution: 212 - Malignant, 357 - Benign\\n\\n :Creator: Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian\\n\\n :Donor: Nick Street\\n\\n :Date: November, 1995\\n\\nThis is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets.\\nhttps://goo.gl/U2Uwz2\\n\\nFeatures are computed from a digitized image of a fine needle\\naspirate (FNA) of a breast mass. They describe\\ncharacteristics of the cell nuclei present in the image.\\n\\nSeparating plane described above was obtained using\\nMultisurface Method-Tree (MSM-T) [K. P. Bennett, \"Decision Tree\\nConstruction Via Linear Programming.\" Proceedings of the 4th\\nMidwest Artificial Intelligence and Cognitive Science Society,\\npp. 97-101, 1992], a classification method which uses linear\\nprogramming to construct a decision tree. Relevant features\\nwere selected using an exhaustive search in the space of 1-4\\nfeatures and 1-3 separating planes.\\n\\nThe actual linear program used to obtain the separating plane\\nin the 3-dimensional space is that described in:\\n[K. P. Bennett and O. L. Mangasarian: \"Robust Linear\\nProgramming Discrimination of Two Linearly Inseparable Sets\",\\nOptimization Methods and Software 1, 1992, 23-34].\\n\\nThis database is also available through the UW CS ftp server:\\n\\nftp ftp.cs.wisc.edu\\ncd math-prog/cpo-dataset/machine-learn/WDBC/\\n\\n.. topic:: References\\n\\n - W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction \\n for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on \\n Electronic Imaging: Science and Technology, volume 1905, pages 861-870,\\n San Jose, CA, 1993.\\n - O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and \\n prognosis via linear programming. Operations Research, 43(4), pages 570-577, \\n July-August 1995.\\n - W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques\\n to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994) \\n 163-171.',\n",
110+
" 'feature_names': array(['mean radius', 'mean texture', 'mean perimeter', 'mean area',\n",
111+
" 'mean smoothness', 'mean compactness', 'mean concavity',\n",
112+
" 'mean concave points', 'mean symmetry', 'mean fractal dimension',\n",
113+
" 'radius error', 'texture error', 'perimeter error', 'area error',\n",
114+
" 'smoothness error', 'compactness error', 'concavity error',\n",
115+
" 'concave points error', 'symmetry error',\n",
116+
" 'fractal dimension error', 'worst radius', 'worst texture',\n",
117+
" 'worst perimeter', 'worst area', 'worst smoothness',\n",
118+
" 'worst compactness', 'worst concavity', 'worst concave points',\n",
119+
" 'worst symmetry', 'worst fractal dimension'], dtype='<U23'),\n",
120+
" 'filename': 'C:\\\\Users\\\\Psyfer\\\\Anaconda3\\\\lib\\\\site-packages\\\\sklearn\\\\datasets\\\\data\\\\breast_cancer.csv'}"
121+
]
122+
},
123+
"execution_count": 3,
124+
"metadata": {},
125+
"output_type": "execute_result"
126+
}
127+
],
128+
"source": [
129+
"cancer_ds = datasets.load_breast_cancer()\n",
130+
"cancer_ds"
131+
]
132+
},
133+
{
134+
"cell_type": "code",
135+
"execution_count": 5,
136+
"metadata": {},
137+
"outputs": [
138+
{
139+
"name": "stderr",
140+
"output_type": "stream",
141+
"text": [
142+
"C:\\Users\\Psyfer\\Anaconda3\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
143+
" FutureWarning)\n"
144+
]
145+
},
146+
{
147+
"data": {
148+
"text/plain": [
149+
"LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,\n",
150+
" intercept_scaling=1, max_iter=100, multi_class='warn',\n",
151+
" n_jobs=None, penalty='l2', random_state=None, solver='warn',\n",
152+
" tol=0.0001, verbose=0, warm_start=False)"
153+
]
154+
},
155+
"execution_count": 5,
156+
"metadata": {},
157+
"output_type": "execute_result"
158+
}
159+
],
160+
"source": [
161+
"clf = LogisticRegression()\n",
162+
"clf.fit(cancer_ds.data,cancer_ds.target)"
163+
]
164+
},
165+
{
166+
"cell_type": "code",
167+
"execution_count": 6,
168+
"metadata": {},
169+
"outputs": [
170+
{
171+
"data": {
172+
"text/plain": [
173+
"0.9595782073813708"
174+
]
175+
},
176+
"execution_count": 6,
177+
"metadata": {},
178+
"output_type": "execute_result"
179+
}
180+
],
181+
"source": [
182+
"clf.score(cancer_ds.data,cancer_ds.target)"
183+
]
184+
},
185+
{
186+
"cell_type": "code",
187+
"execution_count": 10,
188+
"metadata": {},
189+
"outputs": [
190+
{
191+
"data": {
192+
"text/plain": [
193+
"array([0.27956832, 0.72043168])"
194+
]
195+
},
196+
"execution_count": 10,
197+
"metadata": {},
198+
"output_type": "execute_result"
199+
}
200+
],
201+
"source": [
202+
"clf.predict_proba(cancer_ds.data)[13]"
203+
]
204+
},
205+
{
206+
"cell_type": "code",
207+
"execution_count": 7,
208+
"metadata": {},
209+
"outputs": [
210+
{
211+
"data": {
212+
"text/plain": [
213+
"array([ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,\n",
214+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
215+
" 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,\n",
216+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
217+
" 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
218+
" 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
219+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
220+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,\n",
221+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,\n",
222+
" 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
223+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
224+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
225+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,\n",
226+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
227+
" -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
228+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
229+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
230+
" 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,\n",
231+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
232+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
233+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
234+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
235+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,\n",
236+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
237+
" 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
238+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
239+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0,\n",
240+
" 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
241+
" -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0,\n",
242+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
243+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
244+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0,\n",
245+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
246+
" 0, 0, 0, 0, 0, 0, 0, 0])"
247+
]
248+
},
249+
"execution_count": 7,
250+
"metadata": {},
251+
"output_type": "execute_result"
252+
}
253+
],
254+
"source": [
255+
"clf.predict(cancer_ds.data) - cancer_ds.target"
256+
]
257+
},
258+
{
259+
"cell_type": "code",
260+
"execution_count": null,
261+
"metadata": {},
262+
"outputs": [],
263+
"source": []
264+
}
265+
],
266+
"metadata": {
267+
"kernelspec": {
268+
"display_name": "Python 3",
269+
"language": "python",
270+
"name": "python3"
271+
},
272+
"language_info": {
273+
"codemirror_mode": {
274+
"name": "ipython",
275+
"version": 3
276+
},
277+
"file_extension": ".py",
278+
"mimetype": "text/x-python",
279+
"name": "python",
280+
"nbconvert_exporter": "python",
281+
"pygments_lexer": "ipython3",
282+
"version": "3.7.1"
283+
}
284+
},
285+
"nbformat": 4,
286+
"nbformat_minor": 2
287+
}

0 commit comments

Comments
 (0)