diff --git a/Tutorials/1. Geometry/Basic_domains.html b/Tutorials/1. Geometry/Basic_domains.html index b237721..ffafa48 100644 --- a/Tutorials/1. Geometry/Basic_domains.html +++ b/Tutorials/1. Geometry/Basic_domains.html @@ -214,7 +214,11 @@ +

2D heat conduction

+ diff --git a/Tutorials/1. Geometry/UKAEA SUT.html b/Tutorials/1. Geometry/UKAEA SUT.html index 5d593a7..5120395 100644 --- a/Tutorials/1. Geometry/UKAEA SUT.html +++ b/Tutorials/1. Geometry/UKAEA SUT.html @@ -214,7 +214,11 @@ +

2D heat conduction

+ @@ -462,7 +466,7 @@

UKAEA SUT -../../_images/32403780c9e54ac8e025643cb84ff86b1a61e80c7b12e57e6e2005dfc8df5616.png +../../_images/e4f0d751caa1199f8da7221078efc2e9554fcb8eeaf64d14f510b9940f6665c7.png
@@ -493,7 +497,7 @@

UKAEA SUT
(-0.1, 1.0)
 

-../../_images/5ba651f47cc0e1daf3e2be179d1b5be91cb40885c0a25b18d14e9b1fa5513098.png +../../_images/0cc15baf8ec960bc6f1fa767669c82aca0149ba35da22dece2f616afddc753ff.png

The last point of this tutorial is the possibility to transform a TrimeshPolyhedron to a ShapelyPolygon, by either projecting or slicing with a plane. This is also a functionality implemented in Trimesh.

@@ -511,7 +515,7 @@

UKAEA SUT -../../_images/7f934a02c8968aef054e3b04022a627b69b2b806668fcc0cbf3fd7592602623f.png +../../_images/1d8be8ed03de359eb50e5f89d3f57b0a2014f5d9cded4e66d40c869ad20beb0b.png diff --git a/Tutorials/1. Geometry/different sampling.html b/Tutorials/1. Geometry/different sampling.html index 1206de4..526c6d1 100644 --- a/Tutorials/1. Geometry/different sampling.html +++ b/Tutorials/1. Geometry/different sampling.html @@ -214,7 +214,11 @@ +

2D heat conduction

+ @@ -453,7 +457,7 @@

Basic sampling techniques -../../_images/c0c963096e7b293346cec67b067178ec3b3d03aa7c52c3efde6d383f83108e22.png +../../_images/4412b36c0dc39a4d6c65c9a6aad08baf8faca887dd58b21a17dd46efa1037249.png ../../_images/f6bd08357ce4e93b2b7f2147c0be430e9f2b5daae716d285580075283b2f422a.png @@ -492,9 +496,9 @@

Basic sampling techniques +../../_images/206b4796802fdd775aa1b3b9a1d4f364bd3ac3d218cd5e3a45de4d94a88230a8.png ../../_images/6fd2ace32477f771af6886a485c069316d1f5aa1d2c7b208781f2fec3da72a49.png -../../_images/7e5af8912d3d18a5d3946cab03f8b6d1d15f31934e8485c5c2257eebc3ccd8cf.png +../../_images/803c7c4e4fd945e1279b081367d874871218657940e31a56b970addb49aa8760.png diff --git a/Tutorials/1. Geometry/domain_creation.html b/Tutorials/1. Geometry/domain_creation.html index fb79c36..232a9e3 100644 --- a/Tutorials/1. Geometry/domain_creation.html +++ b/Tutorials/1. Geometry/domain_creation.html @@ -216,7 +216,11 @@ +

2D heat conduction

+ @@ -570,10 +574,6 @@

Domain Operations -../../_images/601ea68e24e42916aa6a7b94030fdf2a4b96fbbd2f71c4fd41fd65e22f15e63b.png -../../_images/c4b10e252b4a42b63b7f8ba3ffe9dcf0a37f09dfb9b5015ffea44f3b92154f09.png +../../_images/ae1d790f90877cf596b916473acbdce58b4c552893ed07782878212cc3a267a6.png +../../_images/0b65fb81935d9b536bac49b9ce552789a856696698c60790203554ddf2b235dc.png

For the product, we create the Cartesian product of an interval and circle to get a cylinder:

diff --git a/Tutorials/1. Geometry/polygons_external_objects.html b/Tutorials/1. Geometry/polygons_external_objects.html index 9368407..e4d7034 100644 --- a/Tutorials/1. Geometry/polygons_external_objects.html +++ b/Tutorials/1. Geometry/polygons_external_objects.html @@ -214,7 +214,11 @@
+

2D heat conduction

+ @@ -518,7 +522,7 @@

Polygons
-../../_images/9d910c59b979351580bad7b9326f56df23f0daf068ee071783c357b1d4e68195.png +../../_images/91f6b7848fce08ea52b2001f2a0cef281609e98f5ca01895fd8a98558480308d.png
@@ -547,7 +551,7 @@

External Objects -../../_images/92f74df55b4a0f1b62f1025f5f1fe8b6dcff79a2f3bd957874940b437dce8415.png +../../_images/47b4b341773de9f6d693a5307d953a244c698eb425b184360da2fea718480472.png

The last point of this tutorial is the possibility to transform a TrimeshPolyhedron to a ShapelyPolygon, by either projecting or slicing with a plane. This is also a functionality implemented in Trimesh.

@@ -571,7 +575,7 @@

External Objects -../../_images/44c5413b0f3a3c74d2a24014a43e6b1d8de981c8ba61240fdcfbe2c96aaf1160.png +../../_images/7ebbc278b003591cf284a4aa06811025a7863bf2774eded0b519e12e91dabae8.png diff --git a/Tutorials/2. BC/1. dirichlet.html b/Tutorials/2. BC/1. dirichlet.html index 4e7b3df..20995f5 100644 --- a/Tutorials/2. BC/1. dirichlet.html +++ b/Tutorials/2. BC/1. dirichlet.html @@ -214,7 +214,11 @@ +

2D heat conduction

+ @@ -457,7 +461,7 @@

Dirichlet BC -../../_images/0186444e05b9dbd7cd354de3bcf15027856b9cb5a4d15061b390427ee5d46537.png +../../_images/356c89c69072e030e0287e4c465db13fa52c43d32cb30d4f4149bf7bad9f3df0.png @@ -589,7 +593,7 @@

1D tensor with multiple values. -
tensor([1.4514], grad_fn=<AddBackward0>)
+
tensor([1.5027], grad_fn=<AddBackward0>)
 
@@ -604,7 +608,7 @@

1D tensor with multiple values. -
Gradient (dy/dx): tensor([0.3535, 0.6050])
+
Gradient (dy/dx): tensor([0.6726, 0.4256])
 
@@ -617,7 +621,7 @@

1D tensor with multiple values. -
tensor([0.3535, 0.6050], grad_fn=<SqueezeBackward1>)
+
tensor([0.6726, 0.4256], grad_fn=<SqueezeBackward1>)
 
@@ -641,8 +645,8 @@

1D tensor with multiple values. -
-
Gradient (dy/dx): 
-
-
-
@@ -810,10 +811,10 @@

Gradients with actual geometry -
<matplotlib.colorbar.Colorbar at 0x7f750007aa90>
+
<matplotlib.colorbar.Colorbar at 0x7b9c52997580>
 
-../../_images/17c4a27f795d2a51f4bbbbb0a659c37d531673549fd333f1332e89ff49588845.png +../../_images/ec6ca55da4612b122ba57444d7f5d1ef35817e47b7d983ce1ba4ba1c4a9dfca4.png
@@ -842,106 +843,106 @@

Gradients with actual geometry -
Gradient (dy/dx): tensor([[0.2930, 0.0000],
-        [1.0825, 0.0000],
-        [0.5305, 0.0000],
-        [1.9212, 0.0000],
-        [0.6438, 0.0000],
-        [1.9175, 0.0000],
-        [0.7091, 0.0000],
-        [1.9677, 0.0000],
-        [0.7350, 0.0000],
-        [0.6300, 0.0000],
-        [1.4992, 0.0000],
-        [0.9642, 0.0000],
-        [0.3607, 0.0000],
-        [0.9573, 0.0000],
-        [1.0166, 0.0000],
-        [0.8906, 0.0000],
-        [1.1743, 0.0000],
-        [0.9489, 0.0000],
-        [0.0287, 0.0000],
+
Gradient (dy/dx): tensor([[0.6733, 0.0000],
+        [0.6685, 0.0000],
+        [1.0176, 0.0000],
+        [1.6641, 0.0000],
+        [1.9967, 0.0000],
+        [0.6386, 0.0000],
+        [1.2306, 0.0000],
+        [1.7671, 0.0000],
+        [1.3454, 0.0000],
+        [1.8883, 0.0000],
+        [1.2225, 0.0000],
+        [0.8830, 0.0000],
+        [1.5180, 0.0000],
+        [1.6009, 0.0000],
+        [1.1501, 0.0000],
+        [1.4308, 0.0000],
+        [1.0261, 0.0000],
+        [1.5584, 0.0000],
+        [1.1730, 0.0000],
+        [0.7687, 0.0000],
+        [0.8867, 0.0000],
+        [1.4550, 0.0000],
+        [0.8041, 0.0000],
+        [1.5583, 0.0000],
+        [1.5580, 0.0000],
+        [1.7970, 0.0000],
+        [0.5377, 0.0000],
+        [0.6538, 0.0000],
+        [1.7832, 0.0000],
+        [0.4909, 0.0000],
+        [0.8772, 0.0000],
+        [0.5479, 0.0000],
+        [0.1592, 0.0000],
+        [0.0740, 0.0000],
         [0.3507, 0.0000],
-        [0.4230, 0.0000],
-        [1.9440, 0.0000],
-        [0.6972, 0.0000],
-        [0.5564, 0.0000],
-        [0.2747, 0.0000],
-        [1.8570, 0.0000],
-        [1.0975, 0.0000],
-        [0.6516, 0.0000],
-        [1.6687, 0.0000],
-        [0.3874, 0.0000],
-        [0.5045, 0.0000],
-        [1.9092, 0.0000],
-        [1.5228, 0.0000],
-        [0.5527, 0.0000],
-        [1.4221, 0.0000],
-        [1.9412, 0.0000],
-        [0.9828, 0.0000],
-        [1.9175, 0.0000],
-        [0.7495, 0.0000],
-        [1.3001, 0.0000],
-        [1.0497, 0.0000],
-        [1.0901, 0.0000],
-        [1.2823, 0.0000],
-        [0.9442, 0.0000],
-        [0.2218, 0.0000],
-        [1.9692, 0.0000],
-        [0.5136, 0.0000],
-        [0.5020, 0.0000],
-        [0.2023, 0.0000],
-        [0.3678, 0.0000],
-        [0.7819, 0.0000],
-        [1.7172, 0.0000],
-        [0.0191, 0.0000],
-        [0.3216, 0.0000],
-        [0.4669, 0.0000],
-        [0.5493, 0.0000],
-        [1.2346, 0.0000],
-        [1.3253, 0.0000],
-        [0.7525, 0.0000],
-        [1.6583, 0.0000],
-        [0.8198, 0.0000],
-        [1.6443, 0.0000],
-        [1.0415, 0.0000],
-        [0.1759, 0.0000],
-        [0.8441, 0.0000],
-        [1.4261, 0.0000],
-        [0.4104, 0.0000],
-        [1.6782, 0.0000],
-        [1.8920, 0.0000],
-        [0.1505, 0.0000],
-        [1.7075, 0.0000],
-        [0.7404, 0.0000],
-        [0.9070, 0.0000],
-        [0.1176, 0.0000],
-        [0.4098, 0.0000],
-        [1.0612, 0.0000],
-        [1.1286, 0.0000],
-        [0.0742, 0.0000],
-        [0.6482, 0.0000],
-        [0.9419, 0.0000],
-        [0.4051, 0.0000],
-        [0.8317, 0.0000],
-        [0.3231, 0.0000],
-        [1.0585, 0.0000],
-        [0.3959, 0.0000],
-        [1.1475, 0.0000],
-        [0.9752, 0.0000],
-        [1.3819, 0.0000],
-        [0.4927, 0.0000],
-        [0.0505, 0.0000],
-        [0.3465, 0.0000],
-        [1.9483, 0.0000],
-        [1.2960, 0.0000],
-        [1.3112, 0.0000],
-        [1.1125, 0.0000],
-        [0.8214, 0.0000],
-        [0.3367, 0.0000],
-        [1.5440, 0.0000],
-        [0.7444, 0.0000],
-        [1.2778, 0.0000]])
+        [0.9643, 0.0000],
+        [0.0257, 0.0000],
+        [0.5479, 0.0000],
+        [1.2799, 0.0000],
+        [1.7555, 0.0000],
+        [0.0478, 0.0000],
+        [1.9280, 0.0000],
+        [0.6001, 0.0000],
+        [0.9786, 0.0000],
+        [0.3538, 0.0000],
+        [1.6759, 0.0000],
+        [0.8473, 0.0000],
+        [1.0966, 0.0000],
+        [0.3954, 0.0000],
+        [0.9916, 0.0000],
+        [0.3232, 0.0000],
+        [1.4093, 0.0000],
+        [1.1539, 0.0000],
+        [1.3791, 0.0000],
+        [1.8612, 0.0000],
+        [1.5549, 0.0000],
+        [1.1919, 0.0000],
+        [0.9863, 0.0000],
+        [1.0187, 0.0000],
+        [0.9845, 0.0000],
+        [1.5591, 0.0000],
+        [0.8240, 0.0000],
+        [0.3481, 0.0000],
+        [1.8477, 0.0000],
+        [1.0604, 0.0000],
+        [1.3063, 0.0000],
+        [1.8167, 0.0000],
+        [0.5160, 0.0000],
+        [0.2010, 0.0000],
+        [0.6498, 0.0000],
+        [1.6442, 0.0000],
+        [0.4801, 0.0000],
+        [1.3056, 0.0000],
+        [0.1697, 0.0000],
+        [0.2895, 0.0000],
+        [0.9645, 0.0000],
+        [1.3555, 0.0000],
+        [0.8697, 0.0000],
+        [0.7806, 0.0000],
+        [1.7696, 0.0000],
+        [0.2021, 0.0000],
+        [0.8245, 0.0000],
+        [0.3633, 0.0000],
+        [1.2962, 0.0000],
+        [0.0385, 0.0000],
+        [1.0791, 0.0000],
+        [1.5716, 0.0000],
+        [0.1625, 0.0000],
+        [0.2896, 0.0000],
+        [1.5592, 0.0000],
+        [1.9910, 0.0000],
+        [0.7264, 0.0000],
+        [1.9206, 0.0000],
+        [0.6380, 0.0000],
+        [1.8515, 0.0000],
+        [1.3841, 0.0000],
+        [1.5092, 0.0000],
+        [0.7644, 0.0000],
+        [0.4880, 0.0000],
+        [0.4294, 0.0000]])
 
@@ -962,106 +963,106 @@

Gradients with actual geometry -
tensor([[0.2930],
-        [1.0825],
-        [0.5305],
-        [1.9212],
-        [0.6438],
-        [1.9175],
-        [0.7091],
-        [1.9677],
-        [0.7350],
-        [0.6300],
-        [1.4992],
-        [0.9642],
-        [0.3607],
-        [0.9573],
-        [1.0166],
-        [0.8906],
-        [1.1743],
-        [0.9489],
-        [0.0287],
+
tensor([[0.6733],
+        [0.6685],
+        [1.0176],
+        [1.6641],
+        [1.9967],
+        [0.6386],
+        [1.2306],
+        [1.7671],
+        [1.3454],
+        [1.8883],
+        [1.2225],
+        [0.8830],
+        [1.5180],
+        [1.6009],
+        [1.1501],
+        [1.4308],
+        [1.0261],
+        [1.5584],
+        [1.1730],
+        [0.7687],
+        [0.8867],
+        [1.4550],
+        [0.8041],
+        [1.5583],
+        [1.5580],
+        [1.7970],
+        [0.5377],
+        [0.6538],
+        [1.7832],
+        [0.4909],
+        [0.8772],
+        [0.5479],
+        [0.1592],
+        [0.0740],
         [0.3507],
-        [0.4230],
-        [1.9440],
-        [0.6972],
-        [0.5564],
-        [0.2747],
-        [1.8570],
-        [1.0975],
-        [0.6516],
-        [1.6687],
-        [0.3874],
-        [0.5045],
-        [1.9092],
-        [1.5228],
-        [0.5527],
-        [1.4221],
-        [1.9412],
-        [0.9828],
-        [1.9175],
-        [0.7495],
-        [1.3001],
-        [1.0497],
-        [1.0901],
-        [1.2823],
-        [0.9442],
-        [0.2218],
-        [1.9692],
-        [0.5136],
-        [0.5020],
-        [0.2023],
-        [0.3678],
-        [0.7819],
-        [1.7172],
-        [0.0191],
-        [0.3216],
-        [0.4669],
-        [0.5493],
-        [1.2346],
-        [1.3253],
-        [0.7525],
-        [1.6583],
-        [0.8198],
-        [1.6443],
-        [1.0415],
-        [0.1759],
-        [0.8441],
-        [1.4261],
-        [0.4104],
-        [1.6782],
-        [1.8920],
-        [0.1505],
-        [1.7075],
-        [0.7404],
-        [0.9070],
-        [0.1176],
-        [0.4098],
-        [1.0612],
-        [1.1286],
-        [0.0742],
-        [0.6482],
-        [0.9419],
-        [0.4051],
-        [0.8317],
-        [0.3231],
-        [1.0585],
-        [0.3959],
-        [1.1475],
-        [0.9752],
-        [1.3819],
-        [0.4927],
-        [0.0505],
-        [0.3465],
-        [1.9483],
-        [1.2960],
-        [1.3112],
-        [1.1125],
-        [0.8214],
-        [0.3367],
-        [1.5440],
-        [0.7444],
-        [1.2778]], grad_fn=<IndexBackward0>)
+        [0.9643],
+        [0.0257],
+        [0.5479],
+        [1.2799],
+        [1.7555],
+        [0.0478],
+        [1.9280],
+        [0.6001],
+        [0.9786],
+        [0.3538],
+        [1.6759],
+        [0.8473],
+        [1.0966],
+        [0.3954],
+        [0.9916],
+        [0.3232],
+        [1.4093],
+        [1.1539],
+        [1.3791],
+        [1.8612],
+        [1.5549],
+        [1.1919],
+        [0.9863],
+        [1.0187],
+        [0.9845],
+        [1.5591],
+        [0.8240],
+        [0.3481],
+        [1.8477],
+        [1.0604],
+        [1.3063],
+        [1.8167],
+        [0.5160],
+        [0.2010],
+        [0.6498],
+        [1.6442],
+        [0.4801],
+        [1.3056],
+        [0.1697],
+        [0.2895],
+        [0.9645],
+        [1.3555],
+        [0.8697],
+        [0.7806],
+        [1.7696],
+        [0.2021],
+        [0.8245],
+        [0.3633],
+        [1.2962],
+        [0.0385],
+        [1.0791],
+        [1.5716],
+        [0.1625],
+        [0.2896],
+        [1.5592],
+        [1.9910],
+        [0.7264],
+        [1.9206],
+        [0.6380],
+        [1.8515],
+        [1.3841],
+        [1.5092],
+        [0.7644],
+        [0.4880],
+        [0.4294]], grad_fn=<IndexBackward0>)
 
diff --git a/Tutorials/3. Gradients/2. higher derivative.html b/Tutorials/3. Gradients/2. higher derivative.html index 1386531..44be4ba 100644 --- a/Tutorials/3. Gradients/2. higher derivative.html +++ b/Tutorials/3. Gradients/2. higher derivative.html @@ -214,7 +214,11 @@
+

2D heat conduction

+
@@ -479,7 +483,7 @@

Gradients in DeepINN
True
-<IndexBackward0 object at 0x7f6b65325040>
+<IndexBackward0 object at 0x7581944093d0>
 
diff --git a/Tutorials/5. FCNN/2. test.html b/Tutorials/5. FCNN/2. test.html index d3faee8..f417865 100644 --- a/Tutorials/5. FCNN/2. test.html +++ b/Tutorials/5. FCNN/2. test.html @@ -60,7 +60,7 @@ - + @@ -214,7 +214,11 @@ +

2D heat conduction

+
@@ -481,9 +485,9 @@

Forward pass -
tensor([[-0.0735],
-        [ 0.2387],
-        [-0.4911]])
+
tensor([[-1.0178],
+        [-1.9623],
+        [-0.3584]])
 
@@ -496,9 +500,9 @@

Forward pass -
tensor([[-0.1239],
-        [-0.1970],
-        [ 0.0000]], grad_fn=<AddmmBackward0>)
+
tensor([[0.0563],
+        [0.0000],
+        [0.0799]], grad_fn=<AddmmBackward0>)
 
@@ -510,9 +514,9 @@

Forward pass -
tensor([[-0.0734],
-        [ 0.2342],
-        [-0.4551]])
+
tensor([[-0.7690],
+        [-0.9613],
+        [-0.3438]])
 
@@ -537,7 +541,7 @@

Forward pass -
tensor(0.1445, grad_fn=<MseLossBackward0>)
+
tensor(1.7321, grad_fn=<MseLossBackward0>)
 
@@ -588,7 +592,7 @@

Forward pass

next

-

FCNN training

+

1D Laplace Equation

diff --git a/Tutorials/5. FCNN/3. model.html b/Tutorials/5. FCNN/3. model.html index 1ab3520..077cd4c 100644 --- a/Tutorials/5. FCNN/3. model.html +++ b/Tutorials/5. FCNN/3. model.html @@ -8,7 +8,7 @@ - FCNN training — DeepINN + 1D Laplace Equation — DeepINN @@ -60,6 +60,7 @@ + @@ -213,7 +214,11 @@ +

2D heat conduction

+

@@ -399,7 +404,7 @@
-

FCNN training

+

1D Laplace Equation

@@ -423,8 +428,8 @@

Contents

-
-

FCNN training#

+
+

1D Laplace Equation#

# This is only valid when the package is not installed
@@ -573,29 +578,29 @@ 

Network#<

-
Iteration: 1 	 BC Loss: 0.1876	 PDE Loss: 0.0000 	 Loss: 0.1876
-Iteration: 51 	 BC Loss: 0.0990	 PDE Loss: 0.0000 	 Loss: 0.0990
+
Iteration: 1 	 BC Loss: 0.0286	 PDE Loss: 0.0000 	 Loss: 0.0286
+Iteration: 51 	 BC Loss: 0.0061	 PDE Loss: 0.0000 	 Loss: 0.0061
 
-
@@ -719,6 +724,15 @@

Network#<

Forward pass

+ +
+

next

+

2D Laplace Equation

+
+ +
diff --git a/Tutorials/6. 2D heat conduction/1. model.html b/Tutorials/6. 2D heat conduction/1. model.html index cf811d2..23f42e9 100644 --- a/Tutorials/6. 2D heat conduction/1. model.html +++ b/Tutorials/6. 2D heat conduction/1. model.html @@ -8,7 +8,7 @@ - FCNN training — DeepINN + 2D Laplace Equation — DeepINN @@ -60,7 +60,7 @@ - + @@ -213,7 +213,11 @@ +

2D heat conduction

+
@@ -399,7 +403,7 @@
-

FCNN training

+

2D Laplace Equation

@@ -423,8 +427,8 @@

Contents

-
Iteration: 1 	 BC Loss: 0.8491	 PDE Loss: 14.7276 	 Loss: 15.5767
+
Iteration: 1 	 BC Loss: 2.1201	 PDE Loss: 130.2115 	 Loss: 132.3316
 
-
Iteration: 501 	 BC Loss: 0.3197	 PDE Loss: 0.0032 	 Loss: 0.3229
+
Iteration: 501 	 BC Loss: 1.4108	 PDE Loss: 5.5380 	 Loss: 6.9488
 
-
Iteration: 1001 	 BC Loss: 0.2541	 PDE Loss: 0.0012 	 Loss: 0.2553
+
Iteration: 1001 	 BC Loss: 0.7701	 PDE Loss: 0.2101 	 Loss: 0.9802
 
-
Iteration: 1501 	 BC Loss: 0.2520	 PDE Loss: 0.0010 	 Loss: 0.2530
+
Iteration: 1501 	 BC Loss: 0.5292	 PDE Loss: 0.0038 	 Loss: 0.5330
 
-
Iteration: 2001 	 BC Loss: 0.2514	 PDE Loss: 0.0008 	 Loss: 0.2522
+
Iteration: 2001 	 BC Loss: 0.4286	 PDE Loss: 0.0025 	 Loss: 0.4310
 
-
Iteration: 2501 	 BC Loss: 0.2508	 PDE Loss: 0.0006 	 Loss: 0.2514
+
Iteration: 2501 	 BC Loss: 0.3487	 PDE Loss: 0.0019 	 Loss: 0.3506
 
-
Iteration: 3001 	 BC Loss: 0.2501	 PDE Loss: 0.0005 	 Loss: 0.2507
+
Iteration: 3001 	 BC Loss: 0.2640	 PDE Loss: 0.0014 	 Loss: 0.2654
 
-
Iteration: 3501 	 BC Loss: 0.2495	 PDE Loss: 0.0005 	 Loss: 0.2500
+
Iteration: 3501 	 BC Loss: 0.1792	 PDE Loss: 0.0009 	 Loss: 0.1801
 
-
Iteration: 4001 	 BC Loss: 0.2489	 PDE Loss: 0.0004 	 Loss: 0.2494
+
Iteration: 4001 	 BC Loss: 0.1062	 PDE Loss: 0.0006 	 Loss: 0.1068
 
-
diff --git a/_images/01c7ea8fba80e93900f5e93042807d8cae258228d4154897a050561b4b878d92.png b/_images/01c7ea8fba80e93900f5e93042807d8cae258228d4154897a050561b4b878d92.png new file mode 100644 index 0000000..bf8e0bb Binary files /dev/null and b/_images/01c7ea8fba80e93900f5e93042807d8cae258228d4154897a050561b4b878d92.png differ diff --git a/_images/06ce77362aa6e30f2c6810bce977b3832f9996c3fe17bc4ccef9937db30aac1a.png b/_images/06ce77362aa6e30f2c6810bce977b3832f9996c3fe17bc4ccef9937db30aac1a.png new file mode 100644 index 0000000..d80dd33 Binary files /dev/null and b/_images/06ce77362aa6e30f2c6810bce977b3832f9996c3fe17bc4ccef9937db30aac1a.png differ diff --git a/_images/08c45b821567ebca213d0ead72aa3a382d7007763f4a7c0f0fa1a14d194e7ef4.png b/_images/08c45b821567ebca213d0ead72aa3a382d7007763f4a7c0f0fa1a14d194e7ef4.png new file mode 100644 index 0000000..91b6073 Binary files /dev/null and b/_images/08c45b821567ebca213d0ead72aa3a382d7007763f4a7c0f0fa1a14d194e7ef4.png differ diff --git a/_images/09dbd964c3969ff5ebdae9a86d14bef9f9583fc796b332ad32b649b5e2038188.png b/_images/09dbd964c3969ff5ebdae9a86d14bef9f9583fc796b332ad32b649b5e2038188.png new file mode 100644 index 0000000..ccd6d8e Binary files /dev/null and b/_images/09dbd964c3969ff5ebdae9a86d14bef9f9583fc796b332ad32b649b5e2038188.png differ diff --git a/_images/0b65fb81935d9b536bac49b9ce552789a856696698c60790203554ddf2b235dc.png b/_images/0b65fb81935d9b536bac49b9ce552789a856696698c60790203554ddf2b235dc.png new file mode 100644 index 0000000..98a198d Binary files /dev/null and b/_images/0b65fb81935d9b536bac49b9ce552789a856696698c60790203554ddf2b235dc.png differ diff --git a/_images/0cc15baf8ec960bc6f1fa767669c82aca0149ba35da22dece2f616afddc753ff.png b/_images/0cc15baf8ec960bc6f1fa767669c82aca0149ba35da22dece2f616afddc753ff.png new file mode 100644 index 0000000..c5ca98d Binary files /dev/null and b/_images/0cc15baf8ec960bc6f1fa767669c82aca0149ba35da22dece2f616afddc753ff.png differ diff --git a/_images/114c22f33a8c32629c52d339b8b52a92164500c928cb69e169571007f8255f72.png b/_images/114c22f33a8c32629c52d339b8b52a92164500c928cb69e169571007f8255f72.png new file mode 100644 index 0000000..21e3ae5 Binary files /dev/null and b/_images/114c22f33a8c32629c52d339b8b52a92164500c928cb69e169571007f8255f72.png differ diff --git a/_images/148e52340e86d09c22942aa4d96d53570b5767051b883431a9de8f4c09a551bc.png b/_images/148e52340e86d09c22942aa4d96d53570b5767051b883431a9de8f4c09a551bc.png new file mode 100644 index 0000000..9bdd78c Binary files /dev/null and b/_images/148e52340e86d09c22942aa4d96d53570b5767051b883431a9de8f4c09a551bc.png differ diff --git a/_images/165efed4b1bcb9412050a5b94f17834ba9dd3a33b094089c6cad4e0095d879aa.png b/_images/165efed4b1bcb9412050a5b94f17834ba9dd3a33b094089c6cad4e0095d879aa.png new file mode 100644 index 0000000..2551e1f Binary files /dev/null and b/_images/165efed4b1bcb9412050a5b94f17834ba9dd3a33b094089c6cad4e0095d879aa.png differ diff --git a/_images/178b4bac8575357ffbdd7b06aacb3669004afcf052c199ced4701ab162658d5f.png b/_images/178b4bac8575357ffbdd7b06aacb3669004afcf052c199ced4701ab162658d5f.png new file mode 100644 index 0000000..b0696be Binary files /dev/null and b/_images/178b4bac8575357ffbdd7b06aacb3669004afcf052c199ced4701ab162658d5f.png differ diff --git a/_images/19050569b3df551f5f93dd00977ad379ba45e8bd50c1a9168a71cb6e542bca6e.png b/_images/19050569b3df551f5f93dd00977ad379ba45e8bd50c1a9168a71cb6e542bca6e.png new file mode 100644 index 0000000..fbed5ec Binary files /dev/null and b/_images/19050569b3df551f5f93dd00977ad379ba45e8bd50c1a9168a71cb6e542bca6e.png differ diff --git a/_images/1b31489280286ba4f390ea930061491a3f0b5a09f3a789e9c2b1382cadf83e17.png b/_images/1b31489280286ba4f390ea930061491a3f0b5a09f3a789e9c2b1382cadf83e17.png new file mode 100644 index 0000000..672b2d3 Binary files /dev/null and b/_images/1b31489280286ba4f390ea930061491a3f0b5a09f3a789e9c2b1382cadf83e17.png differ diff --git a/_images/1d8be8ed03de359eb50e5f89d3f57b0a2014f5d9cded4e66d40c869ad20beb0b.png b/_images/1d8be8ed03de359eb50e5f89d3f57b0a2014f5d9cded4e66d40c869ad20beb0b.png new file mode 100644 index 0000000..1fa22c2 Binary files /dev/null and b/_images/1d8be8ed03de359eb50e5f89d3f57b0a2014f5d9cded4e66d40c869ad20beb0b.png differ diff --git a/_images/206b4796802fdd775aa1b3b9a1d4f364bd3ac3d218cd5e3a45de4d94a88230a8.png b/_images/206b4796802fdd775aa1b3b9a1d4f364bd3ac3d218cd5e3a45de4d94a88230a8.png new file mode 100644 index 0000000..c672dbd Binary files /dev/null and b/_images/206b4796802fdd775aa1b3b9a1d4f364bd3ac3d218cd5e3a45de4d94a88230a8.png differ diff --git a/_images/224adac619896afc757ac9ba789ab6bb5e748e272c3a6c38a506ce2d0615d491.png b/_images/224adac619896afc757ac9ba789ab6bb5e748e272c3a6c38a506ce2d0615d491.png new file mode 100644 index 0000000..a71b0af Binary files /dev/null and b/_images/224adac619896afc757ac9ba789ab6bb5e748e272c3a6c38a506ce2d0615d491.png differ diff --git a/_images/25fddf1fad6af54746955fa162f7f9b0e9c64c6968e53759096fe85fcdc4ccbb.png b/_images/25fddf1fad6af54746955fa162f7f9b0e9c64c6968e53759096fe85fcdc4ccbb.png new file mode 100644 index 0000000..631c580 Binary files /dev/null and b/_images/25fddf1fad6af54746955fa162f7f9b0e9c64c6968e53759096fe85fcdc4ccbb.png differ diff --git a/_images/2b2975a67f098fbd2e874e98da37f9601dc527a6ea98a9cf1f5b7d43eec27e09.png b/_images/2b2975a67f098fbd2e874e98da37f9601dc527a6ea98a9cf1f5b7d43eec27e09.png new file mode 100644 index 0000000..29777de Binary files /dev/null and b/_images/2b2975a67f098fbd2e874e98da37f9601dc527a6ea98a9cf1f5b7d43eec27e09.png differ diff --git a/_images/2d1f5ea337879b06b699b47c506005ee7bda8ec804903bab98d9fd46b0fd8f5c.png b/_images/2d1f5ea337879b06b699b47c506005ee7bda8ec804903bab98d9fd46b0fd8f5c.png new file mode 100644 index 0000000..4aa04f6 Binary files /dev/null and b/_images/2d1f5ea337879b06b699b47c506005ee7bda8ec804903bab98d9fd46b0fd8f5c.png differ diff --git a/_images/304ff0d87a2f324f82f915a2c1a2aec5b0046ef7a9a9619e710df1558af8b333.png b/_images/304ff0d87a2f324f82f915a2c1a2aec5b0046ef7a9a9619e710df1558af8b333.png new file mode 100644 index 0000000..ed852b3 Binary files /dev/null and b/_images/304ff0d87a2f324f82f915a2c1a2aec5b0046ef7a9a9619e710df1558af8b333.png differ diff --git a/_images/32dda1e8c4aae545b23b74d77a2f827926ca05df49b2c6f39b2414de2ae372a8.png b/_images/32dda1e8c4aae545b23b74d77a2f827926ca05df49b2c6f39b2414de2ae372a8.png new file mode 100644 index 0000000..d5aff99 Binary files /dev/null and b/_images/32dda1e8c4aae545b23b74d77a2f827926ca05df49b2c6f39b2414de2ae372a8.png differ diff --git a/_images/356c89c69072e030e0287e4c465db13fa52c43d32cb30d4f4149bf7bad9f3df0.png b/_images/356c89c69072e030e0287e4c465db13fa52c43d32cb30d4f4149bf7bad9f3df0.png new file mode 100644 index 0000000..9290ae3 Binary files /dev/null and b/_images/356c89c69072e030e0287e4c465db13fa52c43d32cb30d4f4149bf7bad9f3df0.png differ diff --git a/_images/372cf229b765c1da2acc1afbbf48ed4a535a358010b375b9dbb0f550bf2d33db.png b/_images/372cf229b765c1da2acc1afbbf48ed4a535a358010b375b9dbb0f550bf2d33db.png new file mode 100644 index 0000000..852ff56 Binary files /dev/null and b/_images/372cf229b765c1da2acc1afbbf48ed4a535a358010b375b9dbb0f550bf2d33db.png differ diff --git a/_images/380b5612c9ae19a210e9e66ac17b6116a5d9d14c97da620b8e37a2ff662c82e6.png b/_images/380b5612c9ae19a210e9e66ac17b6116a5d9d14c97da620b8e37a2ff662c82e6.png new file mode 100644 index 0000000..766d4fd Binary files /dev/null and b/_images/380b5612c9ae19a210e9e66ac17b6116a5d9d14c97da620b8e37a2ff662c82e6.png differ diff --git a/_images/39d80410820569dc0331ba86f5c8d2193001d3836020e4748def8b4bb12eff42.png b/_images/39d80410820569dc0331ba86f5c8d2193001d3836020e4748def8b4bb12eff42.png new file mode 100644 index 0000000..124c953 Binary files /dev/null and b/_images/39d80410820569dc0331ba86f5c8d2193001d3836020e4748def8b4bb12eff42.png differ diff --git a/_images/417bfcc91124f189b5c6ab2851cd38fc969939bd8203a9c0eeee7fc8dea10ac0.png b/_images/417bfcc91124f189b5c6ab2851cd38fc969939bd8203a9c0eeee7fc8dea10ac0.png new file mode 100644 index 0000000..55ba9b2 Binary files /dev/null and b/_images/417bfcc91124f189b5c6ab2851cd38fc969939bd8203a9c0eeee7fc8dea10ac0.png differ diff --git a/_images/429ab750de57b8836456dbb453e667680081d267f10197b45cd281c1c94bb3f6.png b/_images/429ab750de57b8836456dbb453e667680081d267f10197b45cd281c1c94bb3f6.png new file mode 100644 index 0000000..0b353c0 Binary files /dev/null and b/_images/429ab750de57b8836456dbb453e667680081d267f10197b45cd281c1c94bb3f6.png differ diff --git a/_images/4325d5ebda78f8b4c9ad0056a8435f6abd09749ebbee6487f91c08698403c931.png b/_images/4325d5ebda78f8b4c9ad0056a8435f6abd09749ebbee6487f91c08698403c931.png new file mode 100644 index 0000000..74df233 Binary files /dev/null and b/_images/4325d5ebda78f8b4c9ad0056a8435f6abd09749ebbee6487f91c08698403c931.png differ diff --git a/_images/43ccff2a5b0f4ca65b4dcfa0a2bbf45148a6e0f00ed77a76f78b47c3b7c176e8.png b/_images/43ccff2a5b0f4ca65b4dcfa0a2bbf45148a6e0f00ed77a76f78b47c3b7c176e8.png new file mode 100644 index 0000000..f4308f0 Binary files /dev/null and b/_images/43ccff2a5b0f4ca65b4dcfa0a2bbf45148a6e0f00ed77a76f78b47c3b7c176e8.png differ diff --git a/_images/4412b36c0dc39a4d6c65c9a6aad08baf8faca887dd58b21a17dd46efa1037249.png b/_images/4412b36c0dc39a4d6c65c9a6aad08baf8faca887dd58b21a17dd46efa1037249.png new file mode 100644 index 0000000..eca0650 Binary files /dev/null and b/_images/4412b36c0dc39a4d6c65c9a6aad08baf8faca887dd58b21a17dd46efa1037249.png differ diff --git a/_images/44a6d5216d95a0a1040d54f42ae30a9608e432548ee79a0bf41ba5b7add3a282.png b/_images/44a6d5216d95a0a1040d54f42ae30a9608e432548ee79a0bf41ba5b7add3a282.png new file mode 100644 index 0000000..79f6c0b Binary files /dev/null and b/_images/44a6d5216d95a0a1040d54f42ae30a9608e432548ee79a0bf41ba5b7add3a282.png differ diff --git a/_images/46bbd0c161e3d6f2c2a5e0a19cfef59b6e50ee4e0ad9ae898265574bf6f451a7.png b/_images/46bbd0c161e3d6f2c2a5e0a19cfef59b6e50ee4e0ad9ae898265574bf6f451a7.png new file mode 100644 index 0000000..69f4e9f Binary files /dev/null and b/_images/46bbd0c161e3d6f2c2a5e0a19cfef59b6e50ee4e0ad9ae898265574bf6f451a7.png differ diff --git a/_images/47b4b341773de9f6d693a5307d953a244c698eb425b184360da2fea718480472.png b/_images/47b4b341773de9f6d693a5307d953a244c698eb425b184360da2fea718480472.png new file mode 100644 index 0000000..32739c3 Binary files /dev/null and b/_images/47b4b341773de9f6d693a5307d953a244c698eb425b184360da2fea718480472.png differ diff --git a/_images/4ccaffa81252f2cb9f80fdacc5a17c689c188a2784950240aac8456a044dd2a7.png b/_images/4ccaffa81252f2cb9f80fdacc5a17c689c188a2784950240aac8456a044dd2a7.png new file mode 100644 index 0000000..dd0c57e Binary files /dev/null and b/_images/4ccaffa81252f2cb9f80fdacc5a17c689c188a2784950240aac8456a044dd2a7.png differ diff --git a/_images/530b7522c1a10091415613c8843e942fdd4013dd3e299b5a81b6923d62581570.png b/_images/530b7522c1a10091415613c8843e942fdd4013dd3e299b5a81b6923d62581570.png new file mode 100644 index 0000000..4b38e76 Binary files /dev/null and b/_images/530b7522c1a10091415613c8843e942fdd4013dd3e299b5a81b6923d62581570.png differ diff --git a/_images/53f5bd531ea550572bbb5ff3ee0583bc0d43c5cf7ccb4b1aea3967628a77b79f.png b/_images/53f5bd531ea550572bbb5ff3ee0583bc0d43c5cf7ccb4b1aea3967628a77b79f.png new file mode 100644 index 0000000..ee5f18b Binary files /dev/null and b/_images/53f5bd531ea550572bbb5ff3ee0583bc0d43c5cf7ccb4b1aea3967628a77b79f.png differ diff --git a/_images/5615958cdda29271ce957c0c02bb5f95e9767b81b311a77fe187cb358696ea9e.png b/_images/5615958cdda29271ce957c0c02bb5f95e9767b81b311a77fe187cb358696ea9e.png new file mode 100644 index 0000000..487643a Binary files /dev/null and b/_images/5615958cdda29271ce957c0c02bb5f95e9767b81b311a77fe187cb358696ea9e.png differ diff --git a/_images/5659958e03884b03c22f8b5a577afbbc67bb28ee79ba3c1dc3c451285afcb6e0.png b/_images/5659958e03884b03c22f8b5a577afbbc67bb28ee79ba3c1dc3c451285afcb6e0.png new file mode 100644 index 0000000..a7860ec Binary files /dev/null and b/_images/5659958e03884b03c22f8b5a577afbbc67bb28ee79ba3c1dc3c451285afcb6e0.png differ diff --git a/_images/57afd07a333b3e2537ca895e5b98cb5138a97e554526a83fefe57a80472d7f57.png b/_images/57afd07a333b3e2537ca895e5b98cb5138a97e554526a83fefe57a80472d7f57.png new file mode 100644 index 0000000..fb690a2 Binary files /dev/null and b/_images/57afd07a333b3e2537ca895e5b98cb5138a97e554526a83fefe57a80472d7f57.png differ diff --git a/_images/591c05b540ebcfa52b22638c0eb8767f621b3ddeb85a2c5a66f6f5d5fbb2e302.png b/_images/591c05b540ebcfa52b22638c0eb8767f621b3ddeb85a2c5a66f6f5d5fbb2e302.png new file mode 100644 index 0000000..96d4796 Binary files /dev/null and b/_images/591c05b540ebcfa52b22638c0eb8767f621b3ddeb85a2c5a66f6f5d5fbb2e302.png differ diff --git a/_images/5da93feb720db9fc027cd8c11fd7b2a27d2928694dcaf9972b09ca1cdc21fda4.png b/_images/5da93feb720db9fc027cd8c11fd7b2a27d2928694dcaf9972b09ca1cdc21fda4.png new file mode 100644 index 0000000..e302a0b Binary files /dev/null and b/_images/5da93feb720db9fc027cd8c11fd7b2a27d2928694dcaf9972b09ca1cdc21fda4.png differ diff --git a/_images/5e3cb04b902f5983d1da76a6099f3de6fe9c4d5a5118e5d7c586c009aa7c623d.png b/_images/5e3cb04b902f5983d1da76a6099f3de6fe9c4d5a5118e5d7c586c009aa7c623d.png new file mode 100644 index 0000000..1fa26e2 Binary files /dev/null and b/_images/5e3cb04b902f5983d1da76a6099f3de6fe9c4d5a5118e5d7c586c009aa7c623d.png differ diff --git a/_images/5f42fc13c74763055d00e2646da46b6fd0395ff0e60c046dfd8cc54a371067a3.png b/_images/5f42fc13c74763055d00e2646da46b6fd0395ff0e60c046dfd8cc54a371067a3.png new file mode 100644 index 0000000..936a71d Binary files /dev/null and b/_images/5f42fc13c74763055d00e2646da46b6fd0395ff0e60c046dfd8cc54a371067a3.png differ diff --git a/_images/6546db0d2f71c7e05a42c671c53ce8669cd380d8f9db33f2883a3502786dc089.png b/_images/6546db0d2f71c7e05a42c671c53ce8669cd380d8f9db33f2883a3502786dc089.png new file mode 100644 index 0000000..06079c5 Binary files /dev/null and b/_images/6546db0d2f71c7e05a42c671c53ce8669cd380d8f9db33f2883a3502786dc089.png differ diff --git a/_images/6b62d3512589461300084f9fc0dcd43b24785ddb82c60bbea66fd173664982b1.png b/_images/6b62d3512589461300084f9fc0dcd43b24785ddb82c60bbea66fd173664982b1.png new file mode 100644 index 0000000..ef4a9a1 Binary files /dev/null and b/_images/6b62d3512589461300084f9fc0dcd43b24785ddb82c60bbea66fd173664982b1.png differ diff --git a/_images/713c24ea632107d081b2fdd07a0a69902922bbee4d083ee2653c3712f13c2f9e.png b/_images/713c24ea632107d081b2fdd07a0a69902922bbee4d083ee2653c3712f13c2f9e.png new file mode 100644 index 0000000..24b81ec Binary files /dev/null and b/_images/713c24ea632107d081b2fdd07a0a69902922bbee4d083ee2653c3712f13c2f9e.png differ diff --git a/_images/73850d0f3d3f5d0e01b406a7b7a1ff4b63522f03bce2527337da5671dfdaf945.png b/_images/73850d0f3d3f5d0e01b406a7b7a1ff4b63522f03bce2527337da5671dfdaf945.png new file mode 100644 index 0000000..795a0a9 Binary files /dev/null and b/_images/73850d0f3d3f5d0e01b406a7b7a1ff4b63522f03bce2527337da5671dfdaf945.png differ diff --git a/_images/761132904adead86171cd58c29891432e263103369fbcf8db16b9b7b29e60e98.png b/_images/761132904adead86171cd58c29891432e263103369fbcf8db16b9b7b29e60e98.png new file mode 100644 index 0000000..a86f508 Binary files /dev/null and b/_images/761132904adead86171cd58c29891432e263103369fbcf8db16b9b7b29e60e98.png differ diff --git a/_images/7685ec0e379ed9d852c573082f2324cd32baae7b155693f258e2336abfeecae7.png b/_images/7685ec0e379ed9d852c573082f2324cd32baae7b155693f258e2336abfeecae7.png new file mode 100644 index 0000000..7c5f95d Binary files /dev/null and b/_images/7685ec0e379ed9d852c573082f2324cd32baae7b155693f258e2336abfeecae7.png differ diff --git a/_images/7826212017d0f6190b5042fdcf8d7e0399e583273adb3e62b80ed66c8aca07f5.png b/_images/7826212017d0f6190b5042fdcf8d7e0399e583273adb3e62b80ed66c8aca07f5.png new file mode 100644 index 0000000..35096ab Binary files /dev/null and b/_images/7826212017d0f6190b5042fdcf8d7e0399e583273adb3e62b80ed66c8aca07f5.png differ diff --git a/_images/79098fb3d95eb3a693c250300e788996617ea5944827a31394ac14756eeb7244.png b/_images/79098fb3d95eb3a693c250300e788996617ea5944827a31394ac14756eeb7244.png new file mode 100644 index 0000000..8d530f9 Binary files /dev/null and b/_images/79098fb3d95eb3a693c250300e788996617ea5944827a31394ac14756eeb7244.png differ diff --git a/_images/79b25e82b6cf79d7480e2fc596a85724ac0aa0135e4e86ebaa80e534d40d24d6.png b/_images/79b25e82b6cf79d7480e2fc596a85724ac0aa0135e4e86ebaa80e534d40d24d6.png new file mode 100644 index 0000000..399893e Binary files /dev/null and b/_images/79b25e82b6cf79d7480e2fc596a85724ac0aa0135e4e86ebaa80e534d40d24d6.png differ diff --git a/_images/7b925b4780b37c5915ff6a643ad26743650ee5d1558c241be3b9e92b60f704b3.png b/_images/7b925b4780b37c5915ff6a643ad26743650ee5d1558c241be3b9e92b60f704b3.png new file mode 100644 index 0000000..b159c88 Binary files /dev/null and b/_images/7b925b4780b37c5915ff6a643ad26743650ee5d1558c241be3b9e92b60f704b3.png differ diff --git a/_images/7ebbc278b003591cf284a4aa06811025a7863bf2774eded0b519e12e91dabae8.png b/_images/7ebbc278b003591cf284a4aa06811025a7863bf2774eded0b519e12e91dabae8.png new file mode 100644 index 0000000..d02cf0f Binary files /dev/null and b/_images/7ebbc278b003591cf284a4aa06811025a7863bf2774eded0b519e12e91dabae8.png differ diff --git a/_images/7ef1afc812dfd64adc5c1716e5c32da02014c668e6bea67d57edeb995b724df0.png b/_images/7ef1afc812dfd64adc5c1716e5c32da02014c668e6bea67d57edeb995b724df0.png new file mode 100644 index 0000000..39b8b27 Binary files /dev/null and b/_images/7ef1afc812dfd64adc5c1716e5c32da02014c668e6bea67d57edeb995b724df0.png differ diff --git a/_images/803c7c4e4fd945e1279b081367d874871218657940e31a56b970addb49aa8760.png b/_images/803c7c4e4fd945e1279b081367d874871218657940e31a56b970addb49aa8760.png new file mode 100644 index 0000000..db1ea09 Binary files /dev/null and b/_images/803c7c4e4fd945e1279b081367d874871218657940e31a56b970addb49aa8760.png differ diff --git a/_images/839a69eaf26308291b53592f0b0d9327e280be616163644c64c5fa69326408ee.png b/_images/839a69eaf26308291b53592f0b0d9327e280be616163644c64c5fa69326408ee.png new file mode 100644 index 0000000..cd69a53 Binary files /dev/null and b/_images/839a69eaf26308291b53592f0b0d9327e280be616163644c64c5fa69326408ee.png differ diff --git a/_images/84ae33e8b02ff510bc2d03ff33d33dfcefbd219ff714f3c1c291e5ef2c9e975b.png b/_images/84ae33e8b02ff510bc2d03ff33d33dfcefbd219ff714f3c1c291e5ef2c9e975b.png new file mode 100644 index 0000000..065361a Binary files /dev/null and b/_images/84ae33e8b02ff510bc2d03ff33d33dfcefbd219ff714f3c1c291e5ef2c9e975b.png differ diff --git a/_images/85af9435312243832dd7cc31a43852066d4f03fea68ff06510b6d9e04635c065.png b/_images/85af9435312243832dd7cc31a43852066d4f03fea68ff06510b6d9e04635c065.png new file mode 100644 index 0000000..2559a95 Binary files /dev/null and b/_images/85af9435312243832dd7cc31a43852066d4f03fea68ff06510b6d9e04635c065.png differ diff --git a/_images/868197cde40e9ffedfd2dea2d6900540946b515bae0c1bcdbb9ce7ceed7995e9.png b/_images/868197cde40e9ffedfd2dea2d6900540946b515bae0c1bcdbb9ce7ceed7995e9.png new file mode 100644 index 0000000..c1229b0 Binary files /dev/null and b/_images/868197cde40e9ffedfd2dea2d6900540946b515bae0c1bcdbb9ce7ceed7995e9.png differ diff --git a/_images/89dd6fa700a7bff4943121b8fe9527fa42e112d6f2b79cb914eda766608febeb.png b/_images/89dd6fa700a7bff4943121b8fe9527fa42e112d6f2b79cb914eda766608febeb.png new file mode 100644 index 0000000..53a6847 Binary files /dev/null and b/_images/89dd6fa700a7bff4943121b8fe9527fa42e112d6f2b79cb914eda766608febeb.png differ diff --git a/_images/8bf94e787844313751c1c9070495fe1d4bf45b904dfe209eeed8de312dc6dc60.png b/_images/8bf94e787844313751c1c9070495fe1d4bf45b904dfe209eeed8de312dc6dc60.png new file mode 100644 index 0000000..9da1de4 Binary files /dev/null and b/_images/8bf94e787844313751c1c9070495fe1d4bf45b904dfe209eeed8de312dc6dc60.png differ diff --git a/_images/8cba6c6b93c1c5fdac7ffe6199ea9b6a5c9096ff8506ae248ab1662c152ac482.png b/_images/8cba6c6b93c1c5fdac7ffe6199ea9b6a5c9096ff8506ae248ab1662c152ac482.png new file mode 100644 index 0000000..409eec9 Binary files /dev/null and b/_images/8cba6c6b93c1c5fdac7ffe6199ea9b6a5c9096ff8506ae248ab1662c152ac482.png differ diff --git a/_images/91f6b7848fce08ea52b2001f2a0cef281609e98f5ca01895fd8a98558480308d.png b/_images/91f6b7848fce08ea52b2001f2a0cef281609e98f5ca01895fd8a98558480308d.png new file mode 100644 index 0000000..49808e0 Binary files /dev/null and b/_images/91f6b7848fce08ea52b2001f2a0cef281609e98f5ca01895fd8a98558480308d.png differ diff --git a/_images/92476c2d7c0c27824ffa1e24d4386b5475e1c140c6afe888c1f3b02465844873.png b/_images/92476c2d7c0c27824ffa1e24d4386b5475e1c140c6afe888c1f3b02465844873.png new file mode 100644 index 0000000..c883738 Binary files /dev/null and b/_images/92476c2d7c0c27824ffa1e24d4386b5475e1c140c6afe888c1f3b02465844873.png differ diff --git a/_images/9256aaca0ce628ceec0b2f2bf2726a7531ce274357faaf979e8e1e81afb97622.png b/_images/9256aaca0ce628ceec0b2f2bf2726a7531ce274357faaf979e8e1e81afb97622.png new file mode 100644 index 0000000..07e7a52 Binary files /dev/null and b/_images/9256aaca0ce628ceec0b2f2bf2726a7531ce274357faaf979e8e1e81afb97622.png differ diff --git a/_images/96430ec0f6f71b45aee44a527faf89e202a3b915666556814e270c64f373b79f.png b/_images/96430ec0f6f71b45aee44a527faf89e202a3b915666556814e270c64f373b79f.png new file mode 100644 index 0000000..45b4bc0 Binary files /dev/null and b/_images/96430ec0f6f71b45aee44a527faf89e202a3b915666556814e270c64f373b79f.png differ diff --git a/_images/a08ffa7cb6c67ae0f28115dfb5cc53a6bacc970e166af7d9ec3ab9b037c8739a.png b/_images/a08ffa7cb6c67ae0f28115dfb5cc53a6bacc970e166af7d9ec3ab9b037c8739a.png new file mode 100644 index 0000000..bebc7f8 Binary files /dev/null and b/_images/a08ffa7cb6c67ae0f28115dfb5cc53a6bacc970e166af7d9ec3ab9b037c8739a.png differ diff --git a/_images/a1c563eb24faa517d645da32bf41ac70b08097847d62456c816b0ec0397dcae8.png b/_images/a1c563eb24faa517d645da32bf41ac70b08097847d62456c816b0ec0397dcae8.png new file mode 100644 index 0000000..e7ccf31 Binary files /dev/null and b/_images/a1c563eb24faa517d645da32bf41ac70b08097847d62456c816b0ec0397dcae8.png differ diff --git a/_images/a2ce40e493783c11e6168040fea5342b000543f872bcd6ae99395b17883b78aa.png b/_images/a2ce40e493783c11e6168040fea5342b000543f872bcd6ae99395b17883b78aa.png new file mode 100644 index 0000000..7255482 Binary files /dev/null and b/_images/a2ce40e493783c11e6168040fea5342b000543f872bcd6ae99395b17883b78aa.png differ diff --git a/_images/a80cc4dc63d7ec300e9df23de81d8c670e7fc774b9763419c4980fa4cee80f9b.png b/_images/a80cc4dc63d7ec300e9df23de81d8c670e7fc774b9763419c4980fa4cee80f9b.png new file mode 100644 index 0000000..f0add13 Binary files /dev/null and b/_images/a80cc4dc63d7ec300e9df23de81d8c670e7fc774b9763419c4980fa4cee80f9b.png differ diff --git a/_images/aaace90a3280a9989398c1e51cdeb19103bd735d992a00f32f482114eb8fbba6.png b/_images/aaace90a3280a9989398c1e51cdeb19103bd735d992a00f32f482114eb8fbba6.png new file mode 100644 index 0000000..56d56f2 Binary files /dev/null and b/_images/aaace90a3280a9989398c1e51cdeb19103bd735d992a00f32f482114eb8fbba6.png differ diff --git a/_images/ac00e093427958f9720baef89f35b35d51e90dce13152aaca3cf803dc8ceb16e.png b/_images/ac00e093427958f9720baef89f35b35d51e90dce13152aaca3cf803dc8ceb16e.png new file mode 100644 index 0000000..7f17ea8 Binary files /dev/null and b/_images/ac00e093427958f9720baef89f35b35d51e90dce13152aaca3cf803dc8ceb16e.png differ diff --git a/_images/ae0f01ddbc87aa591fdc9f1ca19968c43304e05d83b2a168722e78997a976f8b.png b/_images/ae0f01ddbc87aa591fdc9f1ca19968c43304e05d83b2a168722e78997a976f8b.png new file mode 100644 index 0000000..cb8eb9d Binary files /dev/null and b/_images/ae0f01ddbc87aa591fdc9f1ca19968c43304e05d83b2a168722e78997a976f8b.png differ diff --git a/_images/ae1d790f90877cf596b916473acbdce58b4c552893ed07782878212cc3a267a6.png b/_images/ae1d790f90877cf596b916473acbdce58b4c552893ed07782878212cc3a267a6.png new file mode 100644 index 0000000..581f73f Binary files /dev/null and b/_images/ae1d790f90877cf596b916473acbdce58b4c552893ed07782878212cc3a267a6.png differ diff --git a/_images/b0fbd1d51ed0b1cdc9d7b5a5681453b4cbf982b47add6d0dc9d3fec73bd0ca4e.png b/_images/b0fbd1d51ed0b1cdc9d7b5a5681453b4cbf982b47add6d0dc9d3fec73bd0ca4e.png new file mode 100644 index 0000000..ab54b5f Binary files /dev/null and b/_images/b0fbd1d51ed0b1cdc9d7b5a5681453b4cbf982b47add6d0dc9d3fec73bd0ca4e.png differ diff --git a/_images/b11449e527f18f8acc4fa049fa98fd25ed6b7853ce5b9fa14ba785b33057a8fe.png b/_images/b11449e527f18f8acc4fa049fa98fd25ed6b7853ce5b9fa14ba785b33057a8fe.png new file mode 100644 index 0000000..553e50b Binary files /dev/null and b/_images/b11449e527f18f8acc4fa049fa98fd25ed6b7853ce5b9fa14ba785b33057a8fe.png differ diff --git a/_images/b4fcf2a300101a5f62d767ffff73ead73c5cb2bc87a01a9978095a7339a9bcb1.png b/_images/b4fcf2a300101a5f62d767ffff73ead73c5cb2bc87a01a9978095a7339a9bcb1.png new file mode 100644 index 0000000..904d654 Binary files /dev/null and b/_images/b4fcf2a300101a5f62d767ffff73ead73c5cb2bc87a01a9978095a7339a9bcb1.png differ diff --git a/_images/b6e5e3a1d4471ad7dffbe7cdecd946a1941d266e9c26b4033b22e0d0423d7aae.png b/_images/b6e5e3a1d4471ad7dffbe7cdecd946a1941d266e9c26b4033b22e0d0423d7aae.png new file mode 100644 index 0000000..38d65ec Binary files /dev/null and b/_images/b6e5e3a1d4471ad7dffbe7cdecd946a1941d266e9c26b4033b22e0d0423d7aae.png differ diff --git a/_images/bb100d854afbcbe383c6b1ae00beb3d786783a552d9bc6c59a79979649b8b9ed.png b/_images/bb100d854afbcbe383c6b1ae00beb3d786783a552d9bc6c59a79979649b8b9ed.png new file mode 100644 index 0000000..d36c353 Binary files /dev/null and b/_images/bb100d854afbcbe383c6b1ae00beb3d786783a552d9bc6c59a79979649b8b9ed.png differ diff --git a/_images/c07b835172869788e07467f333d4db96b538e6043a51f2a5a69f832c9d487052.png b/_images/c07b835172869788e07467f333d4db96b538e6043a51f2a5a69f832c9d487052.png new file mode 100644 index 0000000..e4a2d05 Binary files /dev/null and b/_images/c07b835172869788e07467f333d4db96b538e6043a51f2a5a69f832c9d487052.png differ diff --git a/_images/c3588856391146d79080cd03844f792d4a5ec54fd09c27c2546bf8f9eedf859c.png b/_images/c3588856391146d79080cd03844f792d4a5ec54fd09c27c2546bf8f9eedf859c.png new file mode 100644 index 0000000..301e498 Binary files /dev/null and b/_images/c3588856391146d79080cd03844f792d4a5ec54fd09c27c2546bf8f9eedf859c.png differ diff --git a/_images/d04356d3a4a78f769ea98284e90c9831e54684e1f574dcaba74c514b86f3ea79.png b/_images/d04356d3a4a78f769ea98284e90c9831e54684e1f574dcaba74c514b86f3ea79.png new file mode 100644 index 0000000..b354af7 Binary files /dev/null and b/_images/d04356d3a4a78f769ea98284e90c9831e54684e1f574dcaba74c514b86f3ea79.png differ diff --git a/_images/d1275a39f2f5341d08d4b7fe552a0827170392a069a4094fd5602ed73b3e435b.png b/_images/d1275a39f2f5341d08d4b7fe552a0827170392a069a4094fd5602ed73b3e435b.png new file mode 100644 index 0000000..672977c Binary files /dev/null and b/_images/d1275a39f2f5341d08d4b7fe552a0827170392a069a4094fd5602ed73b3e435b.png differ diff --git a/_images/d13d0fc2a670ac1b3e691dfa2c5a340bc13e8a5a15b52e75a6e606c7dd334b46.png b/_images/d13d0fc2a670ac1b3e691dfa2c5a340bc13e8a5a15b52e75a6e606c7dd334b46.png new file mode 100644 index 0000000..e720ba1 Binary files /dev/null and b/_images/d13d0fc2a670ac1b3e691dfa2c5a340bc13e8a5a15b52e75a6e606c7dd334b46.png differ diff --git a/_images/e180e1ed38a4822a6dc32cc96ecd7c16345d56becfa5b569ab0c15a79699fd13.png b/_images/e180e1ed38a4822a6dc32cc96ecd7c16345d56becfa5b569ab0c15a79699fd13.png new file mode 100644 index 0000000..03fd639 Binary files /dev/null and b/_images/e180e1ed38a4822a6dc32cc96ecd7c16345d56becfa5b569ab0c15a79699fd13.png differ diff --git a/_images/e1e4697d1e463917916edc38eeaba833af3edb84ab63c4bf62b3669f6dd5d0a9.png b/_images/e1e4697d1e463917916edc38eeaba833af3edb84ab63c4bf62b3669f6dd5d0a9.png new file mode 100644 index 0000000..58b902d Binary files /dev/null and b/_images/e1e4697d1e463917916edc38eeaba833af3edb84ab63c4bf62b3669f6dd5d0a9.png differ diff --git a/_images/e3bbeef33861e4628cf4ea54dbe8445ae124688031f653bc79025de1dfbfcb82.png b/_images/e3bbeef33861e4628cf4ea54dbe8445ae124688031f653bc79025de1dfbfcb82.png new file mode 100644 index 0000000..65a1fc9 Binary files /dev/null and b/_images/e3bbeef33861e4628cf4ea54dbe8445ae124688031f653bc79025de1dfbfcb82.png differ diff --git a/_images/e4f0d751caa1199f8da7221078efc2e9554fcb8eeaf64d14f510b9940f6665c7.png b/_images/e4f0d751caa1199f8da7221078efc2e9554fcb8eeaf64d14f510b9940f6665c7.png new file mode 100644 index 0000000..e3b5f2c Binary files /dev/null and b/_images/e4f0d751caa1199f8da7221078efc2e9554fcb8eeaf64d14f510b9940f6665c7.png differ diff --git a/_images/e6372ca633e2c798876615caa1800695e3082cdb45a7c656fa717cad72a3ecd0.png b/_images/e6372ca633e2c798876615caa1800695e3082cdb45a7c656fa717cad72a3ecd0.png new file mode 100644 index 0000000..71a14dd Binary files /dev/null and b/_images/e6372ca633e2c798876615caa1800695e3082cdb45a7c656fa717cad72a3ecd0.png differ diff --git a/_images/e7867f3f0beaf747ab48f4a2395990c0dbc9822e7844446cb43511d59d0003c8.png b/_images/e7867f3f0beaf747ab48f4a2395990c0dbc9822e7844446cb43511d59d0003c8.png new file mode 100644 index 0000000..2dade6a Binary files /dev/null and b/_images/e7867f3f0beaf747ab48f4a2395990c0dbc9822e7844446cb43511d59d0003c8.png differ diff --git a/_images/e8fe9f6b6748853c04f4148782669cc66f56e76d7b51c9f08d3b0c255ffd39d2.png b/_images/e8fe9f6b6748853c04f4148782669cc66f56e76d7b51c9f08d3b0c255ffd39d2.png new file mode 100644 index 0000000..7ad1d80 Binary files /dev/null and b/_images/e8fe9f6b6748853c04f4148782669cc66f56e76d7b51c9f08d3b0c255ffd39d2.png differ diff --git a/_images/ebcb411f7cd2414471707d1bb9b061c88a5f6aad9371c2e263ba608b9d7146ca.png b/_images/ebcb411f7cd2414471707d1bb9b061c88a5f6aad9371c2e263ba608b9d7146ca.png new file mode 100644 index 0000000..1c9728c Binary files /dev/null and b/_images/ebcb411f7cd2414471707d1bb9b061c88a5f6aad9371c2e263ba608b9d7146ca.png differ diff --git a/_images/ec6ca55da4612b122ba57444d7f5d1ef35817e47b7d983ce1ba4ba1c4a9dfca4.png b/_images/ec6ca55da4612b122ba57444d7f5d1ef35817e47b7d983ce1ba4ba1c4a9dfca4.png new file mode 100644 index 0000000..0aeb7ea Binary files /dev/null and b/_images/ec6ca55da4612b122ba57444d7f5d1ef35817e47b7d983ce1ba4ba1c4a9dfca4.png differ diff --git a/_images/ed3800379d8bdcaa088be47f1349ce50f2936c9e5e4be40be2ba232eaca36f11.png b/_images/ed3800379d8bdcaa088be47f1349ce50f2936c9e5e4be40be2ba232eaca36f11.png new file mode 100644 index 0000000..ed0ab43 Binary files /dev/null and b/_images/ed3800379d8bdcaa088be47f1349ce50f2936c9e5e4be40be2ba232eaca36f11.png differ diff --git a/_images/f3154b9d6fa20e9f871e5b99434545ceea5c83645e93913d3afd6ef02c065ad6.png b/_images/f3154b9d6fa20e9f871e5b99434545ceea5c83645e93913d3afd6ef02c065ad6.png new file mode 100644 index 0000000..f8348a3 Binary files /dev/null and b/_images/f3154b9d6fa20e9f871e5b99434545ceea5c83645e93913d3afd6ef02c065ad6.png differ diff --git a/_images/f43fd397329119ac04d988e9cc8234ef260c1308bcb8b20889a035eafe9b4070.png b/_images/f43fd397329119ac04d988e9cc8234ef260c1308bcb8b20889a035eafe9b4070.png new file mode 100644 index 0000000..734320f Binary files /dev/null and b/_images/f43fd397329119ac04d988e9cc8234ef260c1308bcb8b20889a035eafe9b4070.png differ diff --git a/_images/f7f238a7e2d1daebfd8cfd22835b7a4297e0e1e40a4cd7ef0615cdddc2202deb.png b/_images/f7f238a7e2d1daebfd8cfd22835b7a4297e0e1e40a4cd7ef0615cdddc2202deb.png new file mode 100644 index 0000000..8436027 Binary files /dev/null and b/_images/f7f238a7e2d1daebfd8cfd22835b7a4297e0e1e40a4cd7ef0615cdddc2202deb.png differ diff --git a/_images/fc8a74646a87e7f6266954db1ed38264dfb8bf05e1bf1520807c5029b88c9d3b.png b/_images/fc8a74646a87e7f6266954db1ed38264dfb8bf05e1bf1520807c5029b88c9d3b.png new file mode 100644 index 0000000..f028ea6 Binary files /dev/null and b/_images/fc8a74646a87e7f6266954db1ed38264dfb8bf05e1bf1520807c5029b88c9d3b.png differ diff --git a/_sources/Tutorials/5. FCNN/3. model.ipynb b/_sources/Tutorials/5. FCNN/3. model.ipynb index 6ceb093..2e4134b 100644 --- a/_sources/Tutorials/5. FCNN/3. model.ipynb +++ b/_sources/Tutorials/5. FCNN/3. model.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# FCNN training" + "# 1D Laplace Equation " ] }, { diff --git a/_sources/Tutorials/6. 2D heat conduction/1. model.ipynb b/_sources/Tutorials/6. 2D heat conduction/1. model.ipynb index 4802121..b109ad2 100644 --- a/_sources/Tutorials/6. 2D heat conduction/1. model.ipynb +++ b/_sources/Tutorials/6. 2D heat conduction/1. model.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# FCNN training" + "# 2D Laplace Equation" ] }, { @@ -77,7 +77,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAARsAAADXCAYAAAAqcPVaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAexAAAHsQEGxWGGAAAZpklEQVR4nO2da0wcZdvH/xReSoGFVg3t025bYh4TMZDyqo2Jp6cxxLUfNla6AnYDbSxVQUp1VerhNWliDIQ0JqRqq/UJFbTRRjFaS7qemmrsh2pjmy7VaKI87b5tQawcFkopMO8H3t3CsrvMzuk+zPX7xMwe5mJ25n//r+u+ZiZFURQFBEEQJjOPdQAEQdgDEhuCICyBxIYgCEsgsSEIwhLSWG68tLQU+fn5qt7b39+PhQsXmhqP0VDM1iFi3CLGDKiPu7u7Gx0dHZFlpmKTn5+P1157TdV7A4EACgsLTY7IWChm6xAxbhFjBtTH7fP5ZixTGkUQhCWQ2BAEYQkkNgRBWIIusfn999+xefNmeDyeGesDgQC8Xi+8Xi8CgYCuAAmCkANdYnPjjTfi3//+96z1LS0teOONN/Dmm29i165dejZBENLz59AVeHYfw73N38Cz+xj6QldYh2QKpsxGDQwMRKbGhoaGZr3u9/vh9/vR1dWl2vn09fUJ55IoZusQMe5wzAdPnYcTo3A6ACCEvZ8ehXvVUtbhxUXrvjZFbHJzczEwMICUlBQ4HI5Zr7tcLrhcLvh8PtVTfyJOE9op5j+HrqDmvRPoHRpFniMDeypvww3Z802IMDYi7+vazl6cvZQaWb/iujS84OX3f9G6r3WlUX/99ReeeOIJ/PTTT2hsbERlZSUAYNu2bdi6dSvq6uqwdetWPZsgBKHmvRP48T9/4+yly/jxP3/jifYTrEMShjxHRsJlWdDlbK6//nrs2bNn1vrCwkK0tbXp+WpCMHqHRhMu2wUtDm9P5W14on3mZ2SEaQcxIQ95jgycvXR5xrIdCTs8ADh76TKeaD+Bj2ruTPiZG7Lnz/kelkQL6PY7MjV9D/XZEIawp/I23L5yEVZctwC3r1wk7eg8FzI6vOgU+aufezV9DzkbwhB4H521kmxaJKPDixbMkbFxTd9DzobgGtY9KMkWvmV0eNGCmZmuzaOQsyG4RksNxEiSTYtkdHjRBeySAm01GxIbA2DdYyIzrGsgMqZFyRItoFqbJymNMgDqMTEP1j0oMqZFrCBnYwCsR1+ZCVv4CwOXMXD5Ki4MXIZn9zHL3KOMaREryNkYAOvRV2bCJ/s/chcgdGUC/9s/Su5RUMjZGIBdOkBZYrR7pDqb9ZDYGABZbfMxulDLepbLjpDYEEKQjHtU41qozmY9JDaEECTjHtW4FpmmtEVJCalATEiHGtcSb0qbdceyFkRpvSBnQ0iHGtcSzymJWMsRJSUksSGYYZb91zM7KMqJOx1RUkISG4IZZrkIPbODPJy4yYqwKK0XJDYEM3h0ETycuMmKsCitFyQ2BDN4cBHR8HDi8ijCRkBiIyiiTHcmggcXwSM8irARkNgIioizJtHw4CJ4xAgR5nEwIrERFN6tNo8HuygYIcI8DkbU1CcovF9pLkqjmazwOBiRsxGUWFabJzfB48FuJ3is+5DYCEosq+3ZfYwb68zjwW4neCy+k9hIBE9ugseD3U4YVXyP5Za1QmIjETy5CZppkoNYheYd9+Ro+i4SG4OZPhKsXTaOJfk3WVY3ITdBGE1st8xAbIaHh1FbW4v09HSsWbMGXq8XANDZ2Yl9+/YBAKqrq3H//ffr2YxQTB8JehwTltZNyE0QRmOkW9Y19d3R0QGPx4O9e/fis88+i6w/cuQIXnvtNbS0tKCzs1PPJnTB4t4kPNVNCEIvRj7KRpezCQaDKCoqAgCkpqZG1ldUVODhhx+Goih4++23Z33O7/fD7/ejq6tL9QOv+vr6kn441sFT5+HEKJwOAAhh76dH4V61NKnvSJa1y8bR45gAAPwzR8HinHHND/VigZb9zAMixi1KzFM1mqnU6WL3b5rj1iU2TqcTwWAQxcXFmJycjKxvbGzE0aNHAQCbNm3C/v37Z3zO5XLB5XLB5/OhsLBQ1bYCgYDq94ap7ezF2UvXRHDFdWl4wZvcdyTLkvybInWTxTnj2PLgv4TqnNWyn3lAxLh5iFlLb5bWuHWJTWlpKerq6nDo0CG43W5UVlaivb0dpaWlqK6uBgA88MADejahCyPzTbU/yvS6SSAQEEpoCPth5WUNusQmKysLra2tkeVwgXjDhg3YsGGDvsgMwMjZGR6vNSEIvVhZY5R66tvI2Rkq/PJFtNPcfkcm65CExMreLKnFxkh4aphLFp6umTKKaKf5VU4Iq29lHJSAWNmbRWKjEpEb5mRMAaOd5cjYOKNIxMbK3iwSG5WI1DAX7WQuDFye8boMKWC008xMp0OZd+gXkpBoJ5M9P3XG6yKlgPGIdpolBVSz4R0SGwmJdi65C/4LNy/JETIFjEe00xShOc7ukNjMgYjF1egU4x+5C4RJAQl5oduCzgHvt7eMdf2XkdezEIRRkLOZA977a+LNNJGTIXhDCrExM9Xhvb+GdzEkiDBSpFFmpjq8pyS8P2WBIMJI4WzMHN15768RudnQroSdeEFGP3Z8NyjEpIMRCCM2I2Pj8Ow+FjNV4j3VMRPexZCYTdiJO1dORJy4HX5DYdKor3/ujZsq8Z7qEMR07FpnE8rZTGf6D0SjOyESdnXiwojN1LUvVyPLdvmB1CBi46FoGLmPw3U2R0Y/bl+50DZOXJg0qqQgj1KlOPDeeCgDRu7jsBMvX70CH9XcaZuBQRhnsyA9jVKlOPBUA5DVZfG0j0VFGGdDxIenXhtZXRZP+1hUhHE2RHzM6LXR6lBkdQDUz6QfEhsJMGM2Tuvd/WSdaaEZT/2Q2JhIokZE3tHqUMgBEPEgsTGRqUbEqen6eO6A14KqVodCDoCIBxWITSRRI2IYXguq1JVNGA05GxNR04jIa0FVBofCq2u0KyQ2JlJSkIcTgyMJ6xeyFlR5QMZH2GiBF9ElsTERNY2IVFA1D15do9XwIrokNoyRIV3hFXKNU/AiurrEZnh4GLW1tUhPT8eaNWvg9XoBABcuXEBjYyMURUFFRQXuuusuQ4K1E7xYX5Eh1zgFL6KrS2w6Ojrg8XjgdrtRXl4eEZudO3fC4XAgFArB6XQaEqiV8HCi82J9RYZc4xS8iK4usQkGgygqKgIApKZee+piV1cXWlpakJeXh+eeew7vvPPOjM/5/X74/X50dXWpfrhYX1+fZQ8iO3jqPJwYhdMBACHs/fQo3KuWJv09emIuyOiHc+VEZNmR0W/J/2/2fh4ZG8fXP/diZGwcmelpKCnIwwIDHp1r5fFhFFbGvOOeHAA5AICL3b/hoo7v0hq3rl/Z6XQiGAyiuLgYk5OTM9YvWrQI2dnZGB2dnR+6XC64XC74fD4UFhaq2lYgEFD9Xr3Udvbi7KVr4rniujS84E1+23pi3vHdYMTZAMDtKxda8v+bvZ89u49FGh2BqzgxOGKI+7Dy+DAKEWMGtMetq6mvtLQUH3/8MWpqauB2u1FZWQkA8Pl8aGhowGOPPYaamho9m2ACD1f4ytpUx0uxkrAeXc4mKysLra2tkeVwzeaWW27Bvn37dAWmFjPqKzzkuLLWG1gUK3mowRESTH2bUUiV9UTnARZCTsV2PhBebMiWiwULIadjhA+EFxteeggIfjH6GKG0TBvCX/UtayGVMA6jjxFer9TnHeGdDdVXiLkw+hgxIi37c+gKDp46j9rOXtu4I+GdjR34c+gKPLuP4d7mb+DZfQx9oSusQ7I1RrRG1Lx3Aj2Do7ZyRyQ2AkC2nS+MSMvsWLQWPo2yA3Y8MHkmVlqWbNF4yg2FopblRipnI2u6wUNHM5GYZN3nnsrbsDgnw1YTGzHFZnh4GN9//z0URQEAnD592tKgtCJrukEzbvyTrPu8IXs+3KuW4tuG+2zzCN6YYlNdXY0ffvgBVVVVGBwcxO7du62OSxNGpxu8OKWwbbfTgSka5D7nJmbNJjc3F0899RR6enpQV1eHiYmJWG/jDqObt6jNnVALD9fT8U5MscnJmbrvxeLFi9HY2IgHH3zQ0qC0YvQPToVZQi16e3ns0JUcU2yam5sjfy9btgw//vgjAODAgQMoKyuzJjINGN28RZdCEFZhBxed1GzUL7/8YlYcXEKFWcIq7OCiqc8mAXa4FCLavm+/I5N1SLaENxdtRloX19k0NTVBURSMjY3h+eefBwDMny9XDknMbhf46ude1iHZEt5ctBltJHGdzerVq1FRUYF58+ahoaEBALB9+3bdG2SFHQpwWoi269HPJyesgTcXbUZaF9fZnDlzBnl5eUhLS8PFi3ruxc4Hsjb86SXarmca8KQDQnzM6BuKKzbLly/Hrl270N7ejl9//VX3hlhjhwKcFqLte0lBnqrP8dLwSJiDGWld3GFs3bp1kb+3bdume0Os4a0AxwvR9n3684ASpZ52mKq1M2akdVJdiJkI3gpwIpAo9SSnSCSLbRJ03gpwIpBIUMxyilTIlxfbOBsieRIVCc1yilTIlxfbOBsieRJda2aWU5wrPSPnIy4kNkRcWKSec6VnVJgWFxIbwZB9ZJ/ryn0qTIsLiY1gmDGyTxewtcvGsST/JmYCNpebohYGcdFVIB4eHsbGjRuxZcsWvP/++zNeO336NPLy8hAKheJ8mtCCGSP79KJsz+Ao10VZamEQF13OpqOjAx6PB263G+Xl5fB6vQCAq1ev4p133sHatWsNCVIWjEiBzBjZRUpNqIVBXHSJTTAYRFFREQAgNTU1sn7nzp2or6/HK6+8EvNzfr8ffr8fXV1dMzpWE9HX16f6vbwQHfPBU+fhxCicDgAIYe+nR+FetTSp79x+Rya+yglhZGwcmelpKCnI1L1f1i4bR49j6tav/8xRsDhnXPh9LQIixgxoj1uX2DidTgSDQRQXF2NycjKy/uTJk+jp6cHx48fx1ltv4ZlnnpnxOZfLBZfLBZ/Ph8LCQlXbCgQCqt/LC9Ex13b24uyla6KcOm8cJwYHk3Y4q281NEwsyb8pUpRdnDOOLQ/+S7iiswzHhyhojVuX2JSWlqKurg6HDh2C2+1GZWUl2tvb8eGHHwIANm3ahMcff1zPJqQiOgWamFQijWssU4PpqUkgEBBOaAhjMHumU5fYZGVlobW1NbIcrtmE2bdvn56vl47wtO5P5/oxMalE1vNcIyHsg9k9THS5goWEHcR/L184Yz1N3xI8YPZEAfXZMCBR45rsTXsEv5jdw0Riw4BE07fUjk9owYhByuwH7ZHYcIZIPS8EPxgxSJndw2RbseE1XaF2fEILIgxSti0Q83rfFGrHNw+Z75tsxg3Kjca2zobXkYDa8c1D5nqY2fUWI7Ct2FC6Yj94HWC0EKsMwLtw2jaNonTFfrBINcxK3XgtAyTCts6G0hX7wSLVMCt1E9Gl2VZsCH6wamaQxQBjliiIWAawbRpF8IOIKYFazErdRCwDkLMhmCNiShBmLldmVuomYhmAxIZgjogpQZi5ajIiioJZkNgQzBGhRyQeZrsyXjvdtUBiQzDHqNGfxYlptiuTqRGRCsSENLAoNJtdqBW5nhUNORtCGlicmGbXZESuZ0VjK7GRKf+1A8n+XjKdmGFErmdFYyuxkSn/tQPJ/l4ynZhhZJrNspXYyJT/2oFkfy+rT0xyyslhqwKxCPf8IK7B++8lc+ezGdjK2cSy2TQ68QvvaRE55eSwldjEstme3ceojsMpvNcrZCxIm4mQYmOkG6HRidAK786LN4QUGyNnlWh00o7dU1DenRdvCFkgNtKNiHipPi9QgZRIBiGdjZFuhEYn7VAKSiSDLrEZHh5GbW0t0tPTsWbNGni9XgBAU1MT/vjjD/T19aGlpQVOp9OQYMNQrswHyYq+3dMuu6NLbDo6OuDxeOB2u1FeXh4Rm+effx4A8Mknn+DIkSOorKzUH+k0RHQjMp5oyYo+dXDbG11iEwwGUVRUBABITU2d8VooFMKBAwfw9ttvz/qc3++H3+9HV1cXAoGAqm319fWpfi8vTI/54KnzcGIUTgcAhLD306Nwr1pqWSwjY+P4+udejIyNIzM9DSUFeViQPvvnT3Y/77gnB0AOAOBi92+4mOC9BRn9cK6ciCw7MvoN+01FPz5EQmvcusTG6XQiGAyiuLgYk5OTkfWDg4N48skn0dzcDIfDMetzLpcLLpcLPp8PhYWFqrYVCARUv5cXpsdc29mLs5euCfKK69Lwgte6/2eqn+jq/y9dxYnBkZiuwsz9vOO7wYizAYDbVy40bFuiHx8ioTVuXbNRpaWl+Pjjj1FTUwO32x1JlzZt2oT+/n68+uqr+Oabb/RsQhpYt97zUMylmT97o8vZZGVlobW1NbIcrtl0dHToi0pCWBe1eegnErHWJjNW1xGFnPoWkblONLN/eNZiR/CH1QV7EhtOMPuHJ1dBRGN1ak1iwwk81FQIeVDjlK1Orbm/XCH8YPYPfzhr6IPZeYN1AZmQCzWXklhdsOfe2YR3mnPlRGSnyZgOUE2FMBI1Ttnq1Jp7sbFLekE1FSIeWiYPeJh9jIb7NIrSC8LuaLm6nseeJu6dTTi9cGT04/aVC7nYaYR6ZLwmzGq0uHsenTL3zia808pXr8BHNXfSgSoYdM8b/cji7rl3NlZAo6952KXmZiayTB6Q2IBufWAmVhQq/xy6goOnzqO2s1fKwYLHlEgL3KdRVkCjr3lYUaisee8EegZHKVXjHHI24HOaUBasGJV7h8L3Cbq2LCsip/zkbMDnNCGhHlkKqGoQueBOzgbJjb4ijyyysqfyNuz99ChWXJcmdAFVDSKn/CQ2SULFZP64IXs+3KuWGnrnQ14HFZFTfkqjkkTkkYVQD6/pisgpPzmbJBF5ZCHUY8agEu2Wtt+RmfR3iDwNTs4mSUQeWQj1mFF0jnZLX/3cq/s7RYKcTZKIPLIQ6jGjazfaHY2Mjev+TpEgsbEZiQqfsnfiJoMZg0p0Cp4Z47ldMkNplM1IVPikTlxziU7BSwryWIdkKfaSVgPhdWp0LhIVPu3UicuCaLck4tMw9UDORiO8To3ORaLCp506cQnrIbHRiKj9Nolm0/ZU3obFORk00yY54YcI3Nv8jaUPEaA0SiOi9tskKnya0YlL8AerLngSG43IckMjNYhanyJiw8qVk9hoxE79NrJfD2Y3MWXlynXVbIaHh7Fx40Zs2bIF77//fmR9IBCA1+uF1+u1XcVdRkStT6lF1GK/Vlh1wetyNh0dHfB4PHC73SgvL4fX6wUAtLS04I033kBKSgoaGhrw1ltvGRIswQZR61NqkV1Mo2HlynWJTTAYRFFREQAgNTU1sn5gYAALFy4EAAwNDc36nN/vh9/vR1dXl2rn09fXJ5xLkiXm7Xdk4qucEEbGxpGZnoaSgkzu/i89+3rtsnH0OCYiy4tzxi35/0Q8PgDtcesSG6fTiWAwiOLiYkxOTkbW5+bmYmBgACkpKXA4HLM+53K54HK54PP5UFiobuYjEAiofi8vyBTz6lsZBJMEevb1kvybZhT7/+dBa2o2Ih4fgPa4dYlNaWkp6urqcOjQIbjdblRWVqK9vR3btm3D1q1bAQANDQ16NkEQpmOnYj9LdIlNVlYWWltbI8vhmk1hYSHa2tr0RUYQhFRQBzFBEJZAYkMQhCWQ2BAEYQkkNgRBWALTyxW6u7vh8/lUvzc/P9/cgAyGYrYOEeMWMWZAfdzd3d0zVyiC8PTTT7MOIWkoZusQMW4RY1YU7XELk0a5XC7WISQNxWwdIsYtYsyA9rhTFEVRDI6FIAhiFsI4G4IgxIY7sRH1thXx4m5qasLjjz+O9evXIxgMMoxwNvFiBoDTp08jLy8PoVCIUXTxiRf3hQsXUF9fj61bt+L7779nGOFs4sXc2dmJsrIylJWV4YsvvmAYYWx+//13bN68GR6PZ8Z6TeejoZUjA2hra1M+++wzRVEUpaysLLK+urpa+fvvv5X+/n7lscceYxVeXOLFHaajo0Npa2uzOqyExIt5bGxMqa+vV6qqqpShoSFW4cUlXtw+n0958cUXlfr6eqW7u5tVeDGJF/Ozzz6rnDt3Tjl//ryybds2RtHNzfr162csazkfuXM2wWAQy5cvBxD7thW5ubkxb1vBmnhxA0AoFMKBAwewbt06BpHFJ17MO3fuRH19PVJSUliFlpB4cXd1daGqqgo7duzAK6+8wiq8mMSLuaKiAg8//DAeeughPProo6zCSxot5yN3YhO+bQWAmLetGBwcjHnbCtbEi3twcBA1NTVobm7mLu54MZ88eRK7du3C8ePHubzxWby4nU4nFi1ahOzsbIyO8nUDrHgxNzY24ujRo/j222/R1NTEKryk0XI+cjcbNTw8jLq6OmRkZODuu+/G4cOH0d7ejkAggObmZgBTt63g7T4g8eIuLS3F1atXsWzZMpSVleG+++5jHWqEeDGH2bRpE15//XVkZ2czjHI28eI+c+YMmpubkZKSgurqatx1112sQ40QL+b9+/fj8OHDAICSkhJUVVUxjnQmf/31F1566SV8+eWXqK6uxpkzZzSfj9yJDUEQcsJdGkUQhJyQ2BAEYQkkNgRBWAKJDWEpbW1tuPfee/H555+zDoWwGHoiJmE4n3zyCc6dO4dbbrkFx48fx4svvhh5raqqasbUL2EfSGwIw3nooYdQV1eH7777Dh988AHrcAhOoDSKMBxFUdDf34958+ZhfHycdTgEJ5CzIQynpaUFjzzyCJYsWYKXX3450vwFAJ9//jneffddLFiwANnZ2VizZg27QAlLoaY+giAsgZwNYSpNTU2R65RuvvlmVFRUMI6IYAU5G4IgLIEKxARBWAKJDUEQlkBiQxCEJfwf6lYxB7KcHVIAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAARsAAADXCAYAAAAqcPVaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAexAAAHsQEGxWGGAAAZoElEQVR4nO3df2xUVdoH8G9b3qG0nRbUFF47SGNiIqYN3RVj3vXH2yhxlj8myjiWrpPWRuuPdkvR2d2iqAmJcdvtS0wa1wVFU2zV7JLdMaIQZ9eVIJE/EKKkt7gbE7bCBCiOOP1pKaXz/oEzdKYznR/n3nPPOff5/OWMLfMwQ5/zPM859zYvEolEQAghBss3OwBCiDVQsiGEcEHJhhDCBSUbQggXi8x8cbfbjcrKyrRfFw6HsXTpUsPj0ZuMcVPM/MgYdzYxDw0Nwe/3xx6bmmwqKyvxyiuvpP06TdNQVVXFISJ9yRg3xcyPjHFnE7PP54t7TG0UIYQLSjaEEC6Yks3Jkyfx2GOPwePxxD2vaRq8Xi+8Xi80TWMKkBCiBqZkc+ONN+Ktt96a93xPTw9ee+01/OlPf8Krr77K8hKEEEUYMiAeGRmJTazHxsaMeAlL+m7sIlreOYbzY1MotxdiZ8OtuK5ksdlhEZIRQ5JNWVkZRkZGkJeXB7vdPu//BwIBBAIBDA4OZtRmhUIhKdsxveP+8PgZODAFhx0AxrHrg4Nwrbletz8f4PdeT07P4J9fn8fk9AyKbIuwbnU5lthy++dI/z74YYmZKdl8//33eP755/Hll1+is7MTJ06cQH9/PzZv3oxNmzYBADo6OuZ9n9PphNPphM/ny2gbTcYtQkD/uFv3n8epCwWxxzdcswjPefV9X3i9154dh3H020s/PbqEY6OT+GvLL3L6s+jfBz8sMTMlm2uvvRY7d+6c93xVVRX6+vpY/miSRLm9EKcu/Bj3WFbnx6YWfEzUY+qhPrKwxBnN793V2OofiJvZyEqlxEkyQ8lGJ8mGt6xa3jmGo9/+AAA4deFHbPUP5NxqiGZnw614ql/f94uIjZKNThITw1P9x7DtrlKmP1PlVuO6ksXKJE6SGUo2OkmeGNiSjSythkhb8iLFQuLR5Qo6SUwEeiSGnQ23Yu2qZbjhmiVYu2qZsK1GtKo7deFHHP32BzzVf4xiIfNQZaOTZDOIc0PfMP2ZsrQaIrV7IsWSzNzKa33FDFZU3mSZyouSjU6SJYZzJsXCm0jtnkixJDN3tjdsv4yn+o9JsaDogdoowkykdk+kWJIRvfIyElU2hJlI7Z5IsSQjeuWVjF6tH1U2hHA0t/JaXirH+aK5Q/fh0amch+5U2aRBW6nWwOtznlt5aZomxb8lvVo/qmzSoK1Ua6DPOTW9jnVQZZOGlQd6C1Gt4qPPObW5xzqWl87ghftza/0o2aQh40CPh2SXZ4g8mE2HPufU9Gr9qI1KQ/StVLOoVgnQ52w8qmzSEH0r1SyqVQL0Occzok2myobkRIVK4Luxi/DsOIy7uz+FZ8dhhMYvmh2SMIwYmFNlQ3KiQiWg2txJT0a0yZRsiPCM2vlSbe6kJyPaZGqjiPCMOgNjxG1BVGFEm0yVDRFeYsXx5ekwPDsOM1c4dGvS1IxokynZEOEllvSXZyOxCoflB0KFuZNMpG6jaDfBGqIlfUF+XtzzNGORi9TJxqrXs1gtyUYrkJ+tXBr3PM1Y5CJ1srHqboJVk6wKZ3vSUXkhkXpmo9op1kxZNclaYcai8tkfqZNNNrsJKl2lbNUkawUqLyRSJ5tsVjqVVgzaslWXygsJU7KZmJhAa2srbDYbamtr4fV6AQD79+/H7t27AQDNzc247777mANlpdKKYYV2wiiiV7gqLyRMycbv98Pj8cDlcmHjxo2xZHPgwAG88sorKCgowB/+8Achko3KKwbJnOgVrsoLCVOyCQaDqK6uBgAUFBTEnq+vr8dDDz2ESCSCN954gy1CnVh1vkPiqVThyoYp2TgcDgSDQdTU1GB2djb2fGdnJw4ePAgAaGpqwnvvvRf3fYFAAIFAAIODg9A0Le3rhEKhjL4unW13lSL6+7fPDX2T8pfIfXj8DByYgsMOAOPY9cFBuNZcn/Xr6RU3T6rHvL5iBsP2y7HHy0tnTPv7qv5eJ2JKNm63G21tbdi3bx9cLhcaGhrQ398Pt9uN5uZmAMAvf/nLed/ndDrhdDrh8/lQVVWV9nU0Tcvo6/SqSFr3n8epC1crtRuuWYTnvOlfP1GmcYtE9ZhXVN4UV+G+cL95Vavq73UipmRTXFyM3t7e2OPozObhhx/Gww8/zPJH50SvfpzmO+pinYlQi507qU8QJ9KrH7fCSVWSG6ue3taD1OdsEulVkaRa/WhVIzRgzp1SlY3RFQmtaoRuuJU7pSobo88o0KpmPYnV7O/d1djqH1Dy0J3RlEo2RqPBsfUkbjps9Q8oe+jOaJRssqDyUXKZTU7PwLPjsCGzNKpm9UPJJgsqHyWX2T+/Po+j314CoP8lCOmqWdo0yJxUA2KVbyxEcjc5PRP3WM/qI92mA20aZE6qykb0i+iIOYpsiwBcij3Wc5aWrpqlNitzUiUb+mDTs2JZv251OY6NTpoyS6NNg8xJlWzog03PitXfEtsi0/6OtGmQOamSDX2w6Vm1+jOroqNNg8xJlWzog03PqtWfFSs62UiVbEh6PKo/EedCVq3oZELJRjE8qj8Rqwg9KzoRk6kKpDpnQ8QgYhWh50W4dHbGGFTZkKyJOBfSs6ITMZmqgJINyVi0vTg78iNKFhegbMl/4b/Llii3KyhiMlUBJRuSsbmzGgC4eUWp6bMaI9ARC2MomWxowGcMq7QXyVoy+jfFTskBMQ34jGHlu9TRvyl2SiabxBX3y9NhukpcB1a+EbxVqjojKdlGJQ74Ls9GYquRijMGXqx8gpuGxuyUrGyiK3BBfl7c87QakVxZuarTi5KVTXQF9uw4HLd7QqsRXyoNVa1c1elFycomilYjc1l9qEp3loynZGUTRauRuaw+VBXxGjIzKZ1siLmsPlQVMdma2doq3UYRc1m9jRXxXJKZrS1TZTMxMYHW1lbYbDbU1tbC6/UCAM6ePYvOzk5EIhHU19fjjjvu0CVYkpyog1irt7GZXPbA+7Mzs9piqmz8fj88Hg927dqFvXv3xp7fvn077HY78vPz4XA4mIMkC7P6IFZU0WT7Wcc9+GvLL5ImEd6fnZnVFlNlEwwGUV1dDQAoKCiIPT84OIienh6Ul5fjd7/7Hd5888247wsEAggEAhgcHISmaWlfJxQKxX3d5PQM/vn1eUxOz6DItgjrVpdjiU288VNi3EZZXRiGY9Xl2GN7YTjn1+UVs55kjBm4EvfqwkndPrtMbLm9CJ+Ujs/52SnK6vVY3mumn1CHw4FgMIiamhrMzs7GPb9s2TKUlJRgamp+meZ0OuF0OuHz+VBVVZX2dTRNi/u6K+dnor8n6BKOjU4KWa4nxm2UbYdG484TrV21NOfX5RWznmSMGbgS99df6/fZZeq2n+f+vSzvNVOycbvdaGtrw759++ByudDQ0ID+/n74fD50dHQgLy8PLS0tLC+RlIhT/mzp2avTLRHkZaXPjinZFBcXo7e3N/Y4OiC+5ZZbsHv3bqbAFqLClqqeZzCsPoiVmZU+O/EGHRlQYTVQoTojxhN1pzEXUiYbI1YD3h+qCtUZMZ5Kp5DpUN9PeG9BWv3AG8mMShWwlJWNEXh/qFbq1UUgazuiUgVMlc1PRDxaTvQj68FHlSpgqmx+osLQOZGsq7kRZG1HVKqAKdn8RKUPNUqk4aLZiU+ldkRW1EYpTKTV3Ow2RqV2RFZU2ZiA1yov0mpuduJTsXKVTdLKZmJiAp9//jkikQgAYGBggGtQMmC55SOvVV6k1ZwG8CRpsmlubsYXX3yBxsZGjI6OYseOHbzjEh5LwuC1ymdyiwNeREp8xBxJ26iysjI8/fTTGB4eRltbGy5fvpzsyyyNJWGI1N7wQm0MSVrZlJaWAgCWL1+Ozs5O/Pvf/+YalAxY2gJa5dVEv01hYUkrm+7u7th/V1RU4OjRowCAPXv2oK6ujk9kgmM5l0OrvJpEOmogoqx2o/71r38ZFYd0KGEYz+yzOdkye8dNdHTOhgjL7LM52ZJtx41325cy2XR1dSESiWB6ehrPPvssAGDxYnFXFaIe2SoF2WZxvJN5yjbqtttuQ319PfLz89HR0QEA2LJli6HBEDKXbLt2srXWvJN5ymRz4sQJlJeXIxwO49y5c4YGQawjmzmMihfHZorHvIp3Mk+ZbFauXIlNmzYBAHp6erB+/XpDAyHWkM2OjWyVgp547GzxTuYpk80DDzwQ++/NmzcbGgSxDr1K97kr//qKGayovEnonaps8WhxeCdz2o0iXOm1YzN3uDk8OiX8TlW2ZNvZyoTwyea7sYv48PgZOpWpCL12bGTbqcqWbDtbmRD+FhMt7xyDA1M4daGATmUqQK/S3cydKh7DWxXnVcJXNqqvYCQ3c1f+5aV8d6pkO2woCuErmysr1njCY2J1c1d+TdO4DodpAcyN8JXNzoZbsby0UNjela70tR4Vh7c8CF/ZXFeyGK411+M5b5XZoSSl4pW+sl0AyZuVDxuyYEo2ExMTaG1thc1mQ21tLbxeb+z/DQwM4N5778XJkydRUlLCHKioVCypVUygelJxeMsDUxvl9/vh8Xiwa9cu7N27N/b8pUuX8Oabb1ri1LGKJbWKCdRs1G4zVjbBYBDV1dUAgIKCgtjz27dvR3t7O1566aWk3xcIBBAIBDA4OAhN09K+TigUyujrzLDl9iJ8UjqOyekZFNkWYd3qolisIsedSigUwvqKGQzbr94KdnnpjNB/Dxne5w+Pn4EDU3DYAWAcuz44iP+psAkfdyKW95op2TgcDgSDQdTU1GB2djb2/FdffYXh4WEcOXIEr7/+On7zm9/EfZ/T6YTT6YTP50NVVfpZjKZpGX0dL/NnGv+bdKYhWtyZ0DQNj6+9KW4m8cL9Ys9sZHifW/efx6kLVxfkG65ZBNea64SPOxHLe82UbNxuN9ra2rBv3z64XC40NDSgv78ff/nLXwAATU1NePLJJ1leQkiqzzRoJqE/2W6XYQSmZFNcXIze3t7Y47kDYgDYvXs3yx8vLFlnGt+NXUTz21/g63NjAIDVK+x4q+k2oasWVSTbwTo39I3ZYXEl/Na3iGRdpVreOYbjwZHY4+PBEeWqMlElqxatdpco4Q/1iUjWi+SSVWCyVGVEflTZ5EDWmUZiRRZ9LhU63Ef0ZMnKxqpnHnY23Io1jjLYFuXDtigfaxxlC1ZldMEh0ZMlKxvVd5NSua5kMT5ouzPjr5d1EE7EZMlkQz9EmcllEE6tF0nFkm2UipcYGCGXQTi1XiQVS1Y2Rl+1G13dVxeGse3QqLSrey6DcKoaSSqWTDZG7yZFV3fHqsux1T3d66nSfsh6BokYz5JtlNFyWd1VaT9kPYNEjGfJysZouazuqrQfsp5BIsajZGOA6EzIXhjG2lVLM1rdzWo/Etu3LbcXcXldEk+VNnohlGwMEF3ds7kc36xbTSaeOfqkdBy3/ZzLS5M5rHD2i5KNIMxqPxLbtcnpGe4xmE2EqkKVNnohNCC2uMR2rchmvfVHhOG8Fc5+UbKxuMTdo3Wry80OiTsRqgor7OJZbxkjcRLbN9nuiasHEc4GGdFGi9AezkXJhlieqr8HKnHoXPt/B3BNsc20xEPJhlieqmeDEtvB8YuXMX7xR9N2uyjZKEi08pmYI9nN0qLMmEtRslGQFc5skPkSF5nfu6ux1T+A82NTuDAxjfGLV38XmBlzKUo2ChJhd4Xwl7jIbPUPxBaZ0PhF0+dSlGwUJMLuCuFvoUVGhLkUnbNRUK5nNr4bu4gPj5+x3L2ZVSH6wUCqbBSU6yrW8s4xODCFUxcKuM56aKCtD9G38CnZkJjzY9FffH/1MQ800NaHCK3SQijZSMqIauBK2T2e8Nh4NNC2BprZSIr14sFkvztrZ8OtWF5ayP36HNFnDUQfTJXNxMQEWltbYbPZUFtbC6/XCwDo6urCf/7zH4RCIfT09MDhcOgSrJFkmxuwVgOpWhfXmuvxnDeze/DoRfRZA9EHU7Lx+/3weDxwuVzYuHFjLNk8++yzAID3338fBw4cQENDA3ukBpNtbsC6vS1S6yL6rIHogynZBINBVFdXAwAKCgri/t/4+Dj27NmDN954Y973BQIBBAIBDA4OZnSVcSgUMvxq5NWFYThWXT1haS8MM7+mkXFvub0In5SOY3J6BkW2RVi3uiir11pfMYNh+9W/7/LSGWiaxuW91puMMQNyxs0SM1OycTgcCAaDqKmpwezsbOz50dFR/PrXv0Z3dzfsdvu873M6nXA6nfD5fBndNjOb22vmatuh0VhlAwBrVy1lfk2j42a5feeKypviWpcX7r/SNvJ4r/UmY8yAcXEbORJgiZlpQOx2u/G3v/0NLS0tcLlcsXapqakJ4XAYL7/8Mj799FOWl+DGCjcvmivaunzWcQ/+2vILoedTJDssmwfJNg70wlTZFBcXo7e3N/Y4OrPx+/1sUZnAzLmBbMNpIjaWeZyRs0va+haACPfAJepgOUpg5MYBJRsBiLQzROTHMhIw8swTnSAWAF2lTTKVScvNMhIw8swTJRsB0KE2a4kmjNWFYWw7NJrVjM7o82BGzi4p2QiADrVZSzRhOFZdjs3oMv38ZW65KdkQorN0rQ5LwpC55aYBMSE6S7e7yDKETRz+vryhyrBzMXqjyoYQnaWrXKIzOnthGGtXLc1qRpfYcnt2HJbmmj5KNoToLF2rE00YelyuoMcMh9ehUmqjCNEZz0tf9DgXw+tQKVU2RFd06QXf3UU9jk3w2uGiZEN0Jdt9gWSnR2LjtcNFyUZQslYIMp8DsSpeh0op2QhK1gpB5nMgVsWr7aNkIyhZKwTWVVLWio6kR8lGULJWCKyrpKwVHUnPsslG9BXUqhdn6lnRif4ZW41lk43oK6hVL87Us6IT/TO2Gsse6pN1JqI6PQ/E0WcsFstWNjxnIlTOZ07Pik7WuZeqLFvZ8DxSTvcYNofVfmOG6Cxb2fCciVA5bw6V514yVsuWrWx4MvIm0qow8vcVqUjGapmSDQdUzqcn4w+PmWSsli3bRvGkcjmvFxl/eMyk1/CbZzumRGVDJbj8qNXMjl7VMs+KUonKhg5vyc+qJ6ZzpVe1zLOiVCLZiFyCy7hrYAZqNc3B8ywSUxs1MTGBRx55BI8//jjefffd2POapsHr9cLr9ULTNOYg0xG5BKfBJxEZz80LpsrG7/fD4/HA5XJh48aN8Hq9AICenh689tpryMvLQ0dHB15//XVdgk1F5BJc5KqLEJ4VJVOyCQaDqK6uBgAUFBTEnh8ZGcHSpUsBAGNjY/O+LxAIIBAIYHBwMKPKJxQKpf26bXeVAigFAJwb+gbnMvw7GCkUCmF9xQyG7Zdjzy0vneFS7eUqk/daNDLGDMgZN0vMTMnG4XAgGAyipqYGs7OzsefLysowMjKCvLw82O32ed/ndDrhdDrh8/ky+lUWevzKCzNomobH194UV3W9cL/YMxsZ32sZYwbkjJslZqZk43a70dbWhn379sHlcqGhoQH9/f3YvHkzNm3aBADo6OhgeQnp0eCTkCuYkk1xcTF6e3tjj6Mzm6qqKvT19bFFRghRihKH+ggh4qNkQwjhgpINIYQLSjaEEC5MvVxhaGgIPp8vo6+rrKw0PiCdyRg3xcyPjHFnE/PQ0FD8ExEJPPPMM2aHkBMZ46aY+ZExbpaYpWijnE6n2SHkRMa4KWZ+ZIybJea8SCQS0TEWQghJSorKhhAiP+GSjSi3rchGqpi7urrw5JNP4sEHH0QwGDQxwuRSxQ0AAwMDKC8vx/j4uEnRJZcq5rNnz6K9vR2bNm3C559/bmKEyaWKe//+/airq0NdXR3+/ve/mxjhfCdPnsRjjz0Gj8cT93zOP4u6TY500tfXF9m7d28kEolE6urqYs83NzdHfvjhh0g4HI488cQTZoWXVKqYo/x+f6Svr493WGmlint6ejrS3t4eaWxsjIyNjZkVXlKpYvb5fJGtW7dG2tvbI0NDQ2aFl1KquH/7299GTp8+HTlz5kxk8+bNJkW3sAcffDDuca4/i8JVNsFgECtXrgSQ/LYVZWVlSW9bYaZUMQPA+Pg49uzZgwceeMCEyBaWKu7t27ejvb0deXl5ZoWWUqqYBwcH0djYiG3btuGll14yK7yUUsVdX1+Phx56CBs2bMCjjz5qVnhZyfVnUbhkE71tBYCkt60YHR1NetsKM6WKeXR0FC0tLeju7hYuZiB13F999RVeffVVHDlyxPAbn2UrVcwOhwPLli1DSUkJpqbEu0FZqrg7Oztx8OBBfPbZZ+jq6jIrvKzk+rMo3G7UxMQE2traUFhYiDvvvBMff/wx+vv7oWkauru7AVy5bYVI9wFJFbPb7calS5dQUVGBuro63HPPPWaHGidV3FFNTU344x//iJKSEhOjjJcq5hMnTqC7uxt5eXlobm7GHXfcYXaocVLF/d577+Hjjz8GAKxbtw6NjY0mR3rV999/j+effx7/+Mc/0NzcjBMnTjD9LAqXbAghahKujSKEqImSDSGEC0o2hBAuKNkQrvr6+nD33Xfjo48+MjsUwpkSvxGTiOX999/H6dOnccstt+DIkSPYunVr7P81NjbGbf0S66BkQ3S3YcMGtLW14dChQ/jzn/9sdjhEENRGEd1FIhGEw2Hk5+djZmbG7HCIIKiyIbrr6enBr371K6xYsQIvvvhi7AAYAHz00Ud4++23sWTJEpSUlKC2tta8QAlXdKiPEMIFVTbEUF1dXbFrlW6++WbU19ebHBExC1U2hBAuaEBMCOGCkg0hhAtKNoQQLv4fwx7vjRnqIH0AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -87,7 +87,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAARsAAADXCAYAAAAqcPVaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAexAAAHsQEGxWGGAAAPsElEQVR4nO3df0yV9d/H8RfgkkL8scxcHsK1793KQWOz+uM715x/dGrJbjwjbvSIZIOKOmgdDTG/bU3XUHMshj/DhnGkmSV9x9R5Wouc2R9ms+IcS7cK9WRZOEE8m4Zw3X/c49zxRZtyyec65/B8/OX1OV3wGpuvPud8uN6mWJZlCQBGWKrTAQCMDpQNACMoGwBGUDYAjBjj5Df3eDyaPn26kxHU1dWliRMnOpphOBIxN5nNiJfMHR0damlpiV3bKpuffvpJb775prq7u/XRRx/F1kOhkGpqaiRJK1euVE5OzjXvnz59umpra+1EsC0UCl03XzxLxNxkNiNeMvv9/kHXtt5G3XfffXr33XeHrNfV1WnTpk3avHmz6uvr7XwLAEliRN5GdXd3x7ZxPT09Q14PBoMKBoMKh8MKhUIjEeGGdXZ2Op5hOBIxN5nNiNfMI1I2EyZMUHd3t1JSUpSZmTnkdbfbLbfbLb/f7/h2L162nDcrEXOT2Yx4zWyrbM6fP69Vq1bp2LFjqqmp0fHjxxUIBLR06VJVVlZKkqqqqm5JUACJzVbZ3Hnnndq6deuQ9ZycHDU1Ndn50kgif/RcUcXOr/VgepfeOHRRW0tmavK4sU7HgmH8ng1GXMXOr3X01AX1XL6qo6cu6IXA105HggMoG4y433su/+01RgfKBiNuSmb6315jdKBsMOK2lszUw9mTlJk+Rg9nT9LWkplOR4IDHH1cAaPD5HFj9VHFP+P2SBZmsLMBYARlgxH3R88VFW75Uh98dVqFW75U56UrTkeCAygbjDiOviFRNjCAo29IlA0M4OgbEmUDAzj6hsTRNwzg6BsSOxsAhlA2AIygbAAYQdkAMIKyAWAEZQPACMoGgBGUDQAjKBuMOJ76hkTZwACe+oZE2cAAnvqGRNnAAJ76hkTZwACe+obEU98wgKe+IbGzAWAIZQPACFtlE41GVVpaqvLycjU3N8fW9+/fr6KiIhUVFemTTz6xHRJA4rNVNi0tLSosLFRDQ4NaW1tj621tbaqtrVVdXZ32799vOySAxGfrA+JIJKLc3FxJUlpaWmy9uLhYTz/9tCzL0jvvvGMvIYCkYKtsXC6XIpGI8vLy1N/fH1uvqanRwYMHJUnPPPOM3n///UH3BYNBBYNBhcNhhUIhOxFs6+zsdDzDcCRibjKbEa+ZbZWNx+ORz+fTvn37lJ+fr5KSEgUCAXk8HpWVlUmSnnjiiSH3ud1uud1u+f1+x49CE/U4NhFzk9mMeM1sq2wyMjLU2NgYu/Z6vZKkBQsWaMGCBfaSAUgqHH0DMIKyAWAEZQPACMoGgBGUDQAjKBsARlA2AIygbDDiGHgOibKBAQw8h0TZwAAGnkOibGAAA88hUTYwgIHnkBh4DgMYeA6JnQ0AQygbAEZQNgCMoGwAGEHZADCCsgFgBGUDwAjKBoARlA0AIygbAEZQNgCMoGwAGEHZADCCsgFgBGUDwAjKBiOOgeeQbJZNNBpVaWmpysvL1dzcHFv/9ddftWTJElVWVurw4cO2QyKxMfAcks2yaWlpUWFhoRoaGtTa2hpb37BhgzIzM5WamiqXy2U7JBIbA88h2RwLGolElJubK0lKS0uLrYfDYdXV1WnKlCl69dVXtX379kH3BYNBBYNBhcNhhUIhOxFs6+zsdDzDcCRS7ienXdW5zD79Y7ylguw+3T3+asJkT6Sf84B4zWyrbFwulyKRiPLy8tTf3z9ofdKkSRo3bpwuXx76fzG32y232y2/3+/4TNpEnYubSLmnTv8vvRD4Wpl/dimiifrXf8/U5HFjnY51QxLp5zwgXjPbKhuPxyOfz6d9+/YpPz9fJSUlCgQC8vv9qqqqUkpKiioqKm5VViQoBp5Dslk2GRkZamxsjF17vV5J0owZM7Rjxw5bwQAkF46+ARhB2QAwgrIBYARlA8AIygaAEZQNACMoGwBGUDYAjKBsABhB2QAwgrIBYARlA8CIa5ZNNBrV4cOHZVmWJKm9vd1oKADJ55plU1ZWpq+++kqLFi3SxYsXtWXLFtO5ACSZa46YmDBhgl5++WWdO3dOPp9PfX19pnMhifzRc0UVO7/Wg+ldeuPQRW0tSZzhWbh1rrmzGT9+vCTp7rvvVk1NjU6cOGE0FJILA88hXads1q9fH/vztGnTdPToUUnS7t27zaRCUmHgOaSbPI364YcfRioHktiUzPS/vcbowNE3RtzWkpl6OHuSMtPH6OHsSdpaMtPpSHDAdctm7dq1sixLf/75p6qrqyVJY8fyoR5u3sDA8/955F59VPFPPhwepa478PyRRx5RcXGxUlNTVVVVJUlasWKFsWAAkst1dzbHjx/XlClTNGbMGP32228mMwFIQtctm6ysLNXX1ysQCOjkyZMmMwFIQtctm4KCgtifly5daiILgCTGaRQAIygbAEZQNgCMoGwAGEHZADDCVtlEo1GVlpaqvLxczc3Ng15rb2/XlClTdOnSJVsBASQHW2XT0tKiwsJCNTQ0qLW1Nbbe29ur7du368knn7QdEEByuO7jCjciEokoNzdXkpSWlhZb37Bhg5YsWaI1a9Zc875gMKhgMKhwOKxQKGQngm2dnZ2OZxiORMxNZjPiNbOtsnG5XIpEIsrLy1N/f39s/ZtvvtG5c+d05MgRbdu2TcuWLRt0n9vtltvtlt/vV05Ojp0ItoVCIcczDEci5iazGfGa2dbbKI/Hoz179qiiokL5+fkqKSmRJH3wwQd6++239eijj+r555+/JUEBJDZbO5uMjAw1NjbGrr1e76DXd+zYYefLA0giHH1jxP3Rc0WFW77UB1+dVuGWL9V56YrTkeAAygYjjoHnkCgbGMDAc0iUDQxg4DkkygYGMPAcks3TKOBGDAw8j9ff/4AZ7GwAGEHZADCCsgFgBGUDwAjKBoARlA0AIygbAEZQNgCMoGwAGEHZADCCsgFgBGUDwAjKBoARlA0AIygbAEZQNhhxDDyHRNnAAAaeQ6JsYAADzyFRNjCAgeeQKBsYwMBzSAw8hwEMPIfEzgaAIbZ2NtFoVC+++KJuu+02zZ49W16vV5K0du1a/fzzz+rs7FRdXZ1cLtctCQsgcdna2bS0tKiwsFANDQ1qbW2NrVdXV2vbtm1auHCh2trabIcEkPhslU0kElFWVpYkKS0tbdBrly5d0u7du1VQUGDnWwBIErbeRrlcLkUiEeXl5am/vz+2fvHiRb300ktav369MjMzh9wXDAYVDAYVDocVCoXsRLCts7PT8QzDkYi5yWxGvGZOsSzLGu7N0WhUPp9P6enpmjVrlg4cOKBAICCPx6Pe3l5NmzZNRUVFmjNnzjXv9/v9qq2tHXb4WyFRT0gSMTeZzYiXzP/599vWziYjI0ONjY2x64EPiFtaWux8WQBJiKNvAEZQNgCMoGwAGEHZADCCsgFgBGUDwAjKBoARlA0AIygbjDgGnkOibGAAA88hUTYwgIHnkCgbGMDAc0iUDQxg4DkkBp7DAAaeQ2JnA8AQygaAEZQNACMoGwBGUDYAjKBsABhB2QAwgrIBYARlA8AIygaAEZQNACMoGwBGUDYAjKBsABhB2QAwwlbZRKNRlZaWqry8XM3NzbH1UCgkr9crr9erUChkOyQSGwPPIdksm5aWFhUWFqqhoUGtra2x9bq6Om3atEmbN29WfX297ZBIbAw8h2RzUl8kElFubq4kKS0tLbbe3d2tiRMnSpJ6enqG3BcMBhUMBhUOhx3f+XR2djqeYTgSKfeD6V1yZffpH+MtFWT3KTO9K2GyJ9LPeUC8ZrZVNi6XS5FIRHl5eerv74+tT5gwQd3d3UpJSVFmZuaQ+9xut9xut/x+v+NjIhN1VGUi5X7j0EUdPXVBBdl9+vepND2cPTFhsifSz3lAvGa29TbK4/Foz549qqioUH5+vkpKSiRJS5cuVWVlpXw+nyorK29JUCQuBp5DsrmzycjIUGNjY+za6/VKknJyctTU1GQvGZIGA88hcfQNwBDKBoARlA0AIygbAEZQNgCMcPSf3+3o6JDf73cygjo6OjR9+nRHMwxHIuYmsxnxkrmjo2PwgjXKvfLKK05HGJZEzE1mM+I186h/G+V2u52OMCyJmJvMZsRr5hTLsiynQwBIfqN+ZwPAjFFVNmfPnpXX69WiRYvU1tY26LW2tjaVlpbK6/Xq7NmzkqT+/n499dRT2rhxoxNxY24m9xdffKGysjItXLjQ+CMjNzPfqLq6WkuWLFF1dbXRjP/pRjOfOHFCzz77rBYvXqx169Y5mPj/3OwsqRdeeEHLly93Iur/c/pDI5NWr15tfffdd1ZfX581f/78Qa8VFRVZfX19Vnt7u7V69WrLsiyrrq7O2rRpk1VfX+9E3JibzT3A4/GYjGk1NTVZra2tsVwDysrKrAsXLlhdXV3Wc889Z506dcry+/2WZVnW8uXLrdOnTxvN+Vc3mvmv5s2bZzTjtdxM7g8//NDavn27tWzZMkeyDnD06Hsktbe3a+XKlYPW7rrrLmVlZSk1deiGzrIspaamKjs7W5FIROFwWH19fXrooYeMzgaxm3vAW2+9pcWLF4943r+60flGv/zyi7KysiRJ9957ryKRSOzatJudybRr1y49/vjjRjNey43mPnfunI4dO6by8nJ9//33TkSNSdqyyc3N1d69ewetrVmzRpFIROPHjx/y36empqq/v1+nT5+Wy+XSp59+qh9//FGHDx/W+fPnVVxcrMmTJ8d9bkmqra3V1KlTNXfu3BHP+1c3Ot9o2rRpsWI8c+aMCgoKjOb8q5uZybRr1y6dOnVKK1ascCpuzI3mPnjwoH7//XetXr1a3377rU6ePKn777/fkcyj6jTq7Nmzqq6u1pgxY7Rw4ULNmTNHJSUlCgQC+uyzz7Rz50719vZq3bp1uueeeyRJn3/+uUKhkHw+X0LkPnr0qJYvX645c+YoKytLq1atMpYzGo3K5/MpPT1ds2bN0oEDBxQIBBQKhbR+/XpJUlVVlXJycrRy5UpduXJFY8eOVU1NjbGMw83c29ur/Px8zZ07V3fccYdqa2sdy3wzuQdGenR0dGjjxo3asGGDY5lHVdkAcM6oOo0C4BzKBoARlA0AIygbGNXU1KTHHntsyIkbkl/SHn3DOR9//LHOnDmjGTNm6MiRI3rttddiry1atGjQUS1GD8oGt9y8efPk8/l06NAh7dq1y+k4iBO8jcItZ1mWurq6lJqaqqtXrzodB3GCnQ1uubq6Os2fP19Tp07V66+/HvslM0nau3ev3nvvPd1+++0aN26cZs+e7VxQGMUv9QEwgp0NRtTatWt1+fJlSdIDDzyg4uJihxPBKexsABjBB8QAjKBsABhB2QAw4n8B4o0b+St0GwwAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAARsAAADXCAYAAAAqcPVaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAexAAAHsQEGxWGGAAAPtElEQVR4nO3db2yTdb/H8c82AtMx/kREIp0j5j5GyWaWoD64QwzhAdXIckYzuQdlTMymDjvQgmPIMTEQM0CyuIy/DjPcwCDKPFmA0MQ4CeIDxKCuRSFRB1QUHWFj9AQc23UenKzH3QMzdtHf1Xbv1yOuX7m2T5bw4df+um9TLMuyBAAxlup0AAAjA2UDwAjKBoARlA0AI0Y5+c09Ho+mTZvmZAR1dnZqwoQJjmYYjkTMTWYz4iVze3u7mpubo9e2yuann37SW2+9pa6uLn388cfR9WAwqOrqaknS6tWrlZOTc9P7p02bppqaGjsRbAsGg7fMF88SMTeZzYiXzH6/f8C1radRDz74oN57771B67W1tdqyZYu2bt2quro6O98CQJKIydOorq6u6Dauu7t70OOBQECBQEChUEjBYDAWEYaso6PD8QzDkYi5yWxGvGaOSdmMHz9eXV1dSklJUWZm5qDH3W633G63/H6/49u9eNly3q5EzE1mM+I1s62yuXTpktasWaOTJ0+qurpap06dUlNTk5YvX66KigpJUmVl5R0JCiCx2Sqbe+65R9u3bx+0npOTo8bGRjtfGknkj+7rKt/9tR5J79SbR69oe/EMTRo7xulYMIz32SDmynd/rRNnL6v72g2dOHtZLzV97XQkOICyQcz93n3tb68xMlA2iLnJmel/e42RgbJBzG0vnqHHsicqM32UHsueqO3FM5yOBAc4+usKGBkmjR2jj8v/GbdHsjCDnQ0AIygbAEZQNgCMoGwAGEHZADCCsgFgBGUDwAjKBoARlA0AIygbAEZQNgCMoGwAGEHZADCCsgFgBGUDwAjKBjH3R/d1FW77Uh9+dU6F275Ux9XrTkeCAygbxBwDzyFRNjCAgeeQKBsYMPHu0X97jZGBsgFgBGWDmLv8P3/+7TVGBsoGMcfnRkGibGAAnxsFyebnRkUiES1dulSjR4/WrFmz5PV6JUmHDh3Srl27JEmlpaWaM2eO7aBIXHxuFCSbO5vm5mYVFhaqvr5eLS0t0fXW1lbV1NSotrZWhw4dsh0SQOKztbMJh8PKzc2VJKWlpUXXi4qK9Oyzz8qyLL377rv2EgJICrbKxuVyKRwOKy8vT319fdH16upqHTlyRJL03HPP6YMPPhhwXyAQUCAQUCgUUjAYtBPBto6ODsczDEci5iazGfGa2VbZeDwe+Xw+HTx4UPn5+SouLlZTU5M8Ho9KS0slSU899dSg+9xut9xut/x+v+PP4RP1dYREzE1mM+I1s62yycjIUENDQ/S6/wXihQsXauHChfaSAUgqHH0DMIKyAWAEZQPACMoGgBGUDQAjKBsARlA2AIygbBBzDDyHRNnAAAaeQ6JsYAADzyFRNjCASX2QKBsYwKQ+SDZ/ERMYCib1QWJnA8AQygaAEZQNACMoGwBGUDYAjKBsABhB2QAwgrIBYARlA8AIygaAEZQNACMoGwBGUDYAjKBsABhB2QAwgrJBzDHwHJLNsolEIiopKVFZWZn27NkTXf/111+1bNkyVVRU6NixY7ZDIrEx8BySzbJpbm5WYWGh6uvr1dLSEl3ftGmTMjMzlZqaKpfLZTskEhsDzyHZHAsaDoeVm5srSUpLS4uuh0Ih1dbWavLkyXrttde0c+fOAfcFAgEFAgGFQiEFg0E7EWzr6OhwPMNwJFLup6fe0MXMXv1jnKWC7F7dN+5GwmRPpJ9zv3jNbKtsXC6XwuGw8vLy1NfXN2B94sSJGjt2rK5dG/y/mNvtltvtlt/vd3wmbaLOxU2k3FOm/YdeavpamX92KqwJ+q//nKFJY8c4HWtIEunn3C9eM9sqG4/HI5/Pp4MHDyo/P1/FxcVqamqS3+9XZWWlUlJSVF5efqeyIkEx8BySzbLJyMhQQ0ND9Nrr9UqSpk+frl27dtkKBiC5cPQNwAjKBoARlA0AIygbAEZQNgCMoGwAGEHZADCCsgFgBGUDwAjKBoARlA0AIygbAEbctGwikYiOHTsmy7IkSW1tbUZDAUg+Ny2b0tJSffXVV1q8eLGuXLmibdu2mc4FIMncdMTE+PHj9corr+jixYvy+Xzq7e01nQtJ5I/u6yrf/bUeSe/Um0evaHtx4gzPwp1z053NuHHjJEn33Xefqqurdfr0aaOhkFwYeA7pFmWzcePG6J+nTp2qEydOSJL27dtnJhWSCgPPId3madQPP/wQqxxIYpMz0//2GiMDR9+Iue3FM/RY9kRlpo/SY9kTtb14htOR4IBbls369etlWZb+/PNPVVVVSZLGjOFFPdy+/oHn/3r8AX1c/k9eHB6hbjnw/PHHH1dRUZFSU1NVWVkpSVq1apWxYACSyy13NqdOndLkyZM1atQo/fbbbyYzAUhCtyybrKws1dXVqampSWfOnDGZCUASumXZFBQURP+8fPlyE1kAJDFOowAYQdkAMIKyAWAEZQPACMoGgBG2yiYSiaikpERlZWXas2fPgMfa2to0efJkXb161VZAAMnBVtk0NzersLBQ9fX1amlpia739PRo586devrpp20HBJAcbvnrCkMRDoeVm5srSUpLS4uub9q0ScuWLdO6detuel8gEFAgEFAoFFIwGLQTwbaOjg7HMwxHIuYmsxnxmtlW2bhcLoXDYeXl5amvry+6/s033+jixYs6fvy4duzYoRUrVgy4z+12y+12y+/3Kycnx04E24LBoOMZhiMRc5PZjHjNbOtplMfj0f79+1VeXq78/HwVFxdLkj788EO98847euKJJ/Tiiy/ekaAAEputnU1GRoYaGhqi116vd8Dju3btsvPlASQRjr4Rc390X1fhti/14VfnVLjtS3Vcve50JDiAskHMMfAcEmUDAxh4DomygQEMPIdE2cAABp5DsnkaBQxF/8DzeH3/B8xgZwPACMoGgBGUDQAjKBsARlA2AIygbAAYQdkAMIKyAWAEZQPACMoGgBGUDQAjKBsARlA2AIygbAAYQdkAMIKyQcwx8BwSZQMDGHgOibKBAQw8h0TZwAAGnkOibGAAA88hMfAcBjDwHBI7GwCG2NrZRCIRLV26VKNHj9asWbPk9XolSevXr9fPP/+sjo4O1dbWyuVy3ZGwABKXrZ1Nc3OzCgsLVV9fr5aWluh6VVWVduzYoUWLFqm1tdV2SACJz1bZhMNhZWVlSZLS0tIGPHb16lXt27dPBQUFdr4FgCRh62mUy+VSOBxWXl6e+vr6outXrlzRyy+/rI0bNyozM3PQfYFAQIFAQKFQSMFg0E4E2zo6OhzPMByJmJvMZsRr5hTLsqzh3hyJROTz+ZSenq6ZM2fq8OHDampqksfjUU9Pj6ZOnar58+dr9uzZN73f7/erpqZm2OHvhEQ9IUnE3GQ2I14y//u/b1s7m4yMDDU0NESv+18gbm5utvNlASQhjr4BGEHZADCCsgFgBGUDwAjKBoARlA0AIygbAEZQNgCMoGwQcww8h0TZwAAGnkOibGAAA88hUTYwgIHnkCgbGMDAc0gMPIcBDDyHxM4GgCGUDQAjKBsARlA2AIygbAAYQdkAMIKyAWAEZQPACMoGgBGUDQAjKBsARlA2AIygbAAYQdkAMIKyAWCErbKJRCIqKSlRWVmZ9uzZE10PBoPyer3yer0KBoO2QyKxMfAcks2yaW5uVmFhoerr69XS0hJdr62t1ZYtW7R161bV1dXZDonExsBzSDYn9YXDYeXm5kqS0tLSoutdXV2aMGGCJKm7u3vQfYFAQIFAQKFQyPGdT0dHh+MZhiORcj+S3ilXdq/+Mc5SQXavMtM7EyZ7Iv2c+8VrZltl43K5FA6HlZeXp76+vuj6+PHj1dXVpZSUFGVmZg66z+12y+12y+/3Oz4mMlFHVSZS7jePXtGJs5dVkN2r/z6bpseyJyRM9kT6OfeL18y2nkZ5PB7t379f5eXlys/PV3FxsSRp+fLlqqiokM/nU0VFxR0JisTFwHNINnc2GRkZamhoiF57vV5JUk5OjhobG+0lQ9Jg4Dkkjr4BGELZADCCsgFgBGUDwAjKBoARjn78bnt7u/x+v5MR1N7ermnTpjmaYTgSMTeZzYiXzO3t7QMXrBHu1VdfdTrCsCRibjKbEa+ZR/zTKLfb7XSEYUnE3GQ2I14zp1iWZTkdAkDyG/E7GwBmjKiyuXDhgrxerxYvXqzW1tYBj7W2tqqkpERer1cXLlyQJPX19emZZ57R5s2bnYgbdTu5v/jiC5WWlmrRokXGf2XkduYbVVVVadmyZaqqqjKa8d8NNfPp06f1/PPPa8mSJdqwYYODif/P7c6Seumll7Ry5Uonov4/p180Mmnt2rXWd999Z/X29loLFiwY8Nj8+fOt3t5eq62tzVq7dq1lWZZVW1trbdmyxaqrq3MibtTt5u7n8XhMxrQaGxutlpaWaK5+paWl1uXLl63Ozk7rhRdesM6ePWv5/X7Lsixr5cqV1rlz54zm/KuhZv6refPmGc14M7eT+6OPPrJ27txprVixwpGs/Rw9+o6ltrY2rV69esDavffeq6ysLKWmDt7QWZal1NRUZWdnKxwOKxQKqbe3V48++qjR2SB2c/d7++23tWTJkpjn/auhzjf65ZdflJWVJUl64IEHFA6Ho9em3e5Mpr1792rOnDlGM97MUHNfvHhRJ0+eVFlZmb7//nsnokYlbdnk5ubqwIEDA9bWrVuncDiscePGDfr7qamp6uvr07lz5+RyufTpp5/qxx9/1LFjx3Tp0iUVFRVp0qRJcZ9bkmpqajRlyhTNnTs35nn/aqjzjaZOnRotxvPnz6ugoMBozr+6nZlMe/fu1dmzZ7Vq1Sqn4kYNNfeRI0f0+++/a+3atfr222915swZPfTQQ45kHlGnURcuXFBVVZVGjRqlRYsWafbs2SouLlZTU5M+++wz7d69Wz09PdqwYYPuv/9+SdLnn3+uYDAon8+XELlPnDihlStXavbs2crKytKaNWuM5YxEIvL5fEpPT9fMmTN1+PBhNTU1KRgMauPGjZKkyspK5eTkaPXq1bp+/brGjBmj6upqYxmHm7mnp0f5+fmaO3eu7r77btXU1DiW+XZy94/0aG9v1+bNm7Vp0ybHMo+osgHgnBF1GgXAOZQNACMoGwBGUDYwqrGxUU8++eSgEzckv6Q9+oZzPvnkE50/f17Tp0/X8ePH9frrr0cfW7x48YCjWowclA3uuHnz5snn8+no0aPau3ev03EQJ3gahTvOsix1dnYqNTVVN27ccDoO4gQ7G9xxtbW1WrBggaZMmaI33ngj+iYzSTpw4IDef/993XXXXRo7dqxmzZrlXFAYxZv6ABjBzgYxtX79el27dk2S9PDDD6uoqMjhRHAKOxsARvACMQAjKBsARlA2AIz4X0sJ+5qwcLSAAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -97,7 +97,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAARsAAADXCAYAAAAqcPVaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAexAAAHsQEGxWGGAAAOCklEQVR4nO3dW2xU9d7G8YeWQ6FHCEGTTrXeGCCQNEG5UF7TaMJotBFq6a6UgglFW6ynATloTHY8pBVJYwMRsMQiFQOINamUMHpBiNELDkLClG14I7YwRqpDWkrH0Fa79sUOk7dgfdld9Ldm2u/nivVvhj408LBm1n+t3zjHcRwBwAhL8joAgLGBsgFggrIBYIKyAWBivJffvLCwULm5uV5GUFdXl7KysjzNMByJmJvMNuIlc1tbm5qammLHnpZNbm6uamtrvYygUCikOXPmeJphOBIxN5ltxEvmQCAw6Ji3UQBMUDYATFA2AExQNgBMUDYYcb9d7VXRtu+07/gFFW37TpGeXq8jwQOUDUZc5ScndaK9U1ev/aET7Z2qaDzpdSR4gLLBiPv16rW/PcbYQNlgxM1IT/nbY4wNlA1G3Payebrv7qlKTxmv++6equ1l87yOBA94uoMYY8P0tEk6UPlA3OxshTc4swFggrIBYIKyAWCCsgFggrIBYIKyAWCCsgFggrIBYIKyAWCCsgFggrIBYIKyAWCCsgFggrIBYIKyAWCCsgFggrIBYIKyAWCCssGIY24UJMoGBpgbBYmygQHmRkGibGCAuVGQXJZNNBrVihUrtGrVKu3Zsye2fujQIRUXF6u4uFhfffWV65BIbMyNguSybJqamlRUVKT6+no1NzfH1o8cOaLa2lrV1dXp0KFDrkMisV2fG/WP++/SgcoHND1tkteR4AFXQ+rC4bDmzp0rSUpOTo6tl5SUaMmSJXIcRx9++OFNrwsGgwoGg2ptbVUoFHITwbVIJOJ5huFIxNxkthGvmV2Vjc/nUzgcVl5engYGBmLr1dXVOnr0qCTpmWee0aeffjrodX6/X36/X4FAwPMJiYk6pTERc5PZRrxmdlU2hYWFqqqqUktLiwoKClRWVqbGxkYVFhaqvLxckvToo4/elqAAEpursklNTVVDQ0PsuLS0VJK0dOlSLV261F0yAKMKl74BmKBsAJigbACYoGwAmKBsAJigbACYoGwAmKBsAJigbACYoGwAmKBsAJigbACYoGwAmKBsAJigbDDimBsFibKBAeZGQaJsYIC5UZAoGxhgbhQkygYGmBsFyeUziIFbcX1uVLw+9R82OLMBYIKyAWCCsgFggrIBYIKyAWCCsgFggrIBYIKyAWCCsgFggrIBYIKyAWCCsgFggrIBYMLVXd/RaFSrV6/WxIkTlZ+fr9LSUknSL7/8ourqajmOo5KSEj344IO3JSyAxOXqzKapqUlFRUWqr69Xc3NzbH3z5s1KT09XUlKSfD6f65AAEp+rM5twOKy5c+dKkpKTk2Prra2tqqur04wZM/Tqq69q586dg14XDAYVDAbV2tqqUCjkJoJrkUjE8wzDkYi5yWwjXjO7Khufz6dwOKy8vDwNDAwMWp86darS0tJ07drNz5v1+/3y+/0KBAKeP0wpUR/olIi5yWwjXjO7KpvCwkJVVVWppaVFBQUFKisrU2NjowKBgNatW6dx48apsrLydmUFkMBclU1qaqoaGhpix9c/IJ49e7Z27drlKhhGj9+u9qryk5OaldKlf37Tre1l8zQ9bZLXsWCMS98YccyNgkTZwABzoyBRNjDA3ChIlA0MMDcKEnOjYIC5UZA4swFghLIBYIKywYj77WqvirZ9p33HL6ho23eK9PR6HQkeoGww4thnA2mIsolGo/r222/lOI4k6cyZM6ahMLqwzwbSEGVTXl6u48ePa/ny5eru7ta2bdusc2EUYZ8NpCEufWdmZurll19WR0eHqqqq9Oeff1rnwiiyvWyeKhpPKj2lS/fdncU+mzHqL8smIyNDknTHHXeourpaTz75pGkojC7ss4E0xNuoTZs2xX6dnZ2tEydOSJL2799vkwrAqPNfXY364YcfRioHgFGOS98ATAxZNjU1NXIcR319fdqwYYMkadIkHngEYHiGvBHz/vvvV0lJiZKSkrRu3TpJ0vr1682CARhdhjyzOXv2rGbMmKHx48fr0qVLlpkAjEJDlk1OTo62bNmixsZGnTt3zjITgFFoyLJZtGhR7NcvvfSSRRYAoxhXowCYoGwAmKBsMOJ4ng0kygYGeJ4NJMoGBnieDSTKBgZ4ng0kygYGmBsFiblRMMDzbCBxZgPACGUDwARlA8AEZQPABGUDwISrsolGo1qxYoVWrVqlPXv2DPramTNnNGPGDPX09LgKCGB0cFU2TU1NKioqUn19vZqbm2Pr/f392rlzpx577DHXAQGMDq722YTDYc2dO1eSlJycHFvfvHmzXnzxRb311lt/+bpgMKhgMKjW1laFQiE3EVyLRCKeZxiORMxNZhvxmtlV2fh8PoXDYeXl5WlgYCC2fvr0aXV0dOjYsWPasWOH1qxZM+h1fr9ffr9fgUDA801eibrRLJFy/3a1V5WfnNSslN/1r391a3vZPE1PS4yH5yfSz/m6eM3s6m1UYWGhPv/8c1VWVqqgoEBlZWWSpH379un999/X/Pnz9dxzz92WoEhc3PUNyeWZTWpqqhoaGmLHpaWlg76+a9cuN789Rgnu+obEpW8Y4K5vSJQNDHDXNyTu+oYB7vqGxJkNACOUDQATlA0AE5QNABOUDUYcc6MgUTYwwA5iSJQNDLCDGBJlAwPsIIZE2cAAO4ghsYMYBthBDIkzGwBGKBsAJigbACYoGwAmKBsAJigbACYoGwAmKBsAJigbACYoGwAmKBsAJigbACYoGwAmKBsAJigbACYoGwAmKBsAJigbACYoG4w45kZBomxggLlRkFw+8DwajWr16tWaOHGi8vPzVVpaKkmqqanRTz/9pEgkorq6Ovl8vtsSFomJuVGQXJ7ZNDU1qaioSPX19Wpubo6tb9iwQTt27NCyZct05MgR1yGR2JgbBcll2YTDYeXk5EiSkpOTB32tp6dH+/fv16JFi9x8C4wCzI2C5PJtlM/nUzgcVl5engYGBmLr3d3dev7557Vp0yalp6ff9LpgMKhgMKjW1laFQiE3EVyLRCKeZxiORMv9z//JUCTSp39Mz9Cltv/VJa8D3aJE+zlL8Zt5nOM4znBfHI1GVVVVpZSUFC1YsECHDx9WY2OjCgsL1d/fr+zsbBUXF+vhhx/+y9cHAgHV1tYOO/ztkKiD0xIxN5ltxEvmG/99uzqzSU1NVUNDQ+z4+gfETU1Nbn5bAKMQl74BmKBsAJigbACYoGwAmKBsAJigbACYoGwAmKBsAJigbACYoGwAmKBsAJigbACYoGwAmKBsAJigbACYoGwAmKBsMOKYGwWJsoEB5kZBomxggLlRkCgbGGBuFCTKBgaYGwXJ5XQF4FZMT5ukA5UPxM2IEXiDMxsAJigbACYoGwAmKBsAJigbACY8vRrV1tamQCDgZQS1tbUpNzfX0wzDkYi5yWwjXjK3tbUNXnDGuFdeecXrCMOSiLnJbCNeM4/5t1F+v9/rCMOSiLnJbCNeM49zHMfxOgSA0W/Mn9kAsDEmbleIRqNavXq1Jk6cqPz8fJWWlkqS9u3bp5aWFk2YMEFr167VrFmz9NFHH+nUqVPKzMzU22+/HfeZ7733Xq1YsUKTJ09WX1+fGhoalJTk3f8h58+f1zvvvKMrV67owIEDsfVQKKTq6mpJ0saNGzVnzhxt2LBBv//+u6ZMmaKamhqvIt9y5gkTJujdd9+V4ziaOXOm1q9f71Xk/+rnLEkVFRVKS0vT5s2bPckraWx8QLx7926nubnZcRzHKS4ujq0vWbLE6evrczo6OpyVK1c6HR0dzsKFC53169c7W7du9Squ4zi3nrmzs9OpqKhwHMdxKioqnMuXL3uS90ZPPfXUoOPy8nKns7PT6erqcp599lmnvb3dCQQCjuM4ztq1a50LFy54EXOQ/y/z/7V48WLLaEO6lcyfffaZs3PnTmfNmjVeRIwZE2+jwuGwcnJyJEnJycmx9bVr1+qFF17QBx98oM7OTp0/f17Tpk1TTU2N2tvb9eOPP3oV+ZYzZ2RkqLe3V48//rj6+/s1bdo0ryL/rStXrigrK0uZmZm6evWqfv7559if76677lI4HPY44c1uzHzd3r17tXDhQg+TDe3GzB0dHTp16pQeeeQRr6ONjc9sfD5f7C/zwMBAbH3+/Pnavn27li1bppycHGVnZ8f+sWZlZamnp8eTvNKtZ/7++++Vm5urlpYW3XPPPTp9+rRHif9eZmamrly5ou7ubqWnpys7Ozv257t48aJ8Pp/HCW92Y2bpP0XT3t6uiooKj9P9tRszHz16VL/++qvefPNNHTlyROfOnfMs25i4GhWNRlVVVaWUlBQtWLBAhw8fVmNjow4dOqQvv/xSPT09eu+993TnnXfqjTfeUDQaVX9/v7Zs2RL3mTMyMrRy5UpNnTpVkUhEDQ0NSk1N9Sz35cuX9frrr+vrr79WeXm5zp49q8bGRoVCIW3atEmStG7dOs2ZM0cbN25Ub2+vJk2aFPucIZ4z9/f3q6CgQE888YSmTJmi2trauM98/TObtrY2bd261dPPbMZE2QDw3ph4GwXAe5QNABOUDQATlA1M7d69Ww899JAOHjzodRQYGxM7iGHriy++0MWLFzV79mwdO3ZMr732Wuxry5cvH3QpH2MHZYPbbvHixaqqqtI333yjvXv3eh0HcYK3UbjtHMdRV1eXkpKS9Mcff3gdB3GCMxvcdnV1dXr66adjmySvbzKTpIMHD+rjjz/W5MmTlZaWpvz8fO+CwhSb+gCY4MwGI6qmpkbXrl2TJM2cOVMlJSUeJ4JXOLMBYIIPiAGYoGwAmKBsAJj4N6KmIBpQeZU6AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAARsAAADXCAYAAAAqcPVaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAexAAAHsQEGxWGGAAAOp0lEQVR4nO3dW2xU9frG8YdWjj0BIWjSqbveGCSQNHHLhbJNownVaBMYS3dlKCWhaIv1NCAHjYnxkFYkjQ3IwRKLVAwgjkmlhNELQoxe4AGSTomyI7YyRqpDyqFjaKtd++If5r/LabO76Ltm2u/nilnNog9N+vCbtX6z3jGO4zgCgGGW5nUAAKMDZQPABGUDwARlA8DELV5+c7/fr/z8fC8j6OzZs5o8ebKnGYYiFXOT2UayZO7o6FAoFEq89rRs8vPzVV9f72UERSIRzZo1y9MMQ5GKuclsI1kyB4PBQa95GwXABGUDwARlA8AEZQPABGWDYff7hV6VbPlKe77+WSVbvlKsp9frSPAAZYNhV/3Bt/qms1sXLv6pbzq7VdX8rdeR4AHKBsPutwsXr/saowNlg2E3PWvCdV9jdKBsMOy2lt+tv/9tirIm3KK//22Ktpbf7XUkeMDTHcQYHaZljte+6nuTZmcrvMHKBoAJygaACcoGgAnKBoAJygaACcoGgAnKBoAJygaACcoGgAnKBoAJygaACcoGgAnKBoAJygaACcoGgAnKBoAJygaACcoGw45RLpAoGxhglAskygYGGOUCyWXZxONxVVRUaPny5dq1a1fi+IEDB1RaWqrS0lJ99tlnrkMitTHKBZLLsgmFQiopKVFjY6NaWloSxw8dOqT6+no1NDTowIEDrkMitTHKBZLLUS7RaFSzZ8+WJKWnpyeOl5WVaeHChXIcR+++++4V54XDYYXDYbW3tysSibiJ4FosFvM8w1CkWu5X/pGtWKxP/5yWrdMd/9JprwPdoFT7OUvJm9lV2fh8PkWjURUUFGhgYCBxvLa2VocPH5YkLV26VB9++OGg84qKilRUVKRgMOj5HKFUnWWUirnJbCNZM7sqG7/fr5qaGrW2tqq4uFjl5eVqbm6W3+9XZWWlJOmhhx66KUEBpDZXZZORkaGmpqbE60AgIElatGiRFi1a5C4ZgBGFW98ATFA2AExQNgBMUDYATFA2AExQNgBMUDYATFA2AExQNgBMUDYATFA2AExQNgBMUDYATFA2GHZMV4BE2cAA0xUgUTYwwHQFSJQNDDBdARJlAwNMV4Dk8rGgwI2Yljle+6rvTdoHccMGKxsAJigbACYoGwAmKBsAJigbACYoGwAmKBsAJigbACYoGwAmKBsAJigbACYoGwAmXH0QMx6Pa8WKFRo3bpwKCwsVCAQkSb/++qtqa2vlOI7Kysp033333ZSwAFKXq5VNKBRSSUmJGhsb1dLSkji+YcMGZWVlKS0tTT6fz3VIAKnP1comGo1q9uzZkqT09PTE8fb2djU0NGj69Ol64YUXtH379kHnhcNhhcNhtbe3KxKJuIngWiwW8zzDUKRibjLbSNbMrsrG5/MpGo2qoKBAAwMDg45PmTJFmZmZunjxykdAFhUVqaioSMFg0PPnm6TqM1ZSMTeZbSRrZldl4/f7VVNTo9bWVhUXF6u8vFzNzc0KBoNavXq1xowZo+rq6puVFUAKc1U2GRkZampqSry+dIF45syZ2rFjh6tgGDl+v9Cr6g++1V0TzuqVL85ra/ndmpY53utYMMatbww7RrlAomxggFEukCgbGGCUCyTKBgYY5QKJUS4wwCgXSKxsABihbACYoGwAmKBsAJigbACYoGwAmKBsAJigbACYuGrZxONxffnll3IcR5LU1tZmGgrAyHPVsqmsrNTXX3+tJUuW6Pz589qyZYt1LgAjzFU/rpCTk6PnnntOXV1dqqmp0V9//WWdC8AIc9WVTXZ2tiTp1ltvVW1trX744QfTUABGnquWzfr16xN/zs3N1TfffCNJ2rt3r00qACPO/3Q36vvvvx+uHABGOG59AzBxzbKpq6uT4zjq6+vT2rVrJUnjx/OQagBDc82HZ91zzz0qKytTWlqaVq9eLUlas2aNWTCMHExXgHSdlc3x48c1ffp03XLLLTp9+rRlJowwTFeAdJ2yycvL08aNG9Xc3KwTJ05YZsIIw3QFSNcpm/nz5yf+/Oyzz1pkwQjFdAVI3I2CAaYrQGK6AgwwXQESKxsARigbACYoGwAmKBsAJlyVTTweV0VFhZYvX65du3YN+lpbW5umT5+unp4eVwEBjAyuyiYUCqmkpESNjY1qaWlJHO/v79f27dv18MMPuw4IYGRwdes7Go1q9uzZkqT09PTE8Q0bNuiZZ57Ra6+9dtXzwuGwwuGw2tvbFYlE3ERwLRaLeZ5hKFIxN5ltJGtmV2Xj8/kUjUZVUFCggYGBxPFjx46pq6tLR44c0bZt27Ry5cpB5xUVFamoqEjBYNDzfRepuvcjFXOT2UayZnb1Nsrv9+vjjz9WdXW1iouLVV5eLknas2eP3n77bc2ZM0dPPvnkTQkKILW5WtlkZGSoqakp8ToQCAz6+o4dO9z89QBGEG59AzBB2QAwQdkAMEHZADBB2QAwQdkAMEHZADBB2WDY/X6hVyVbvtKer39WyZavFOvp9ToSPEDZYNgxygUSZQMDjHKBRNnAAKNcIFE2MMAoF0iMcoEBRrlAYmUDA9yNgkTZwAB3oyBRNjDA3ShIlA0McDcKEmUDA9yNgsTdKBjgbhQkVjYAjFA2AExQNgBMUDYATFA2AExQNgBMUDYATFA2AExQNgBMUDYATFA2GHY8zwYSZQMDPM8GkssPYsbjca1YsULjxo1TYWGhAoGAJKmurk4//fSTYrGYGhoa5PP5bkpYpCaeZwPJ5comFAqppKREjY2NamlpSRxfu3attm3bpsWLF+vQoUOuQyK18TwbSC7LJhqNKi8vT5KUnp4+6Gs9PT3au3ev5s+f7+ZbYATgeTaQXL6N8vl8ikajKigo0MDAQOL4+fPn9dRTT2n9+vXKysq64rxwOKxwOKz29nZFIhE3EVyLxWKeZxiKVMv9yj+yFYv16Z/TsnW641867XWgG5RqP2cpeTOPcRzHGerJ8XhcNTU1mjBhgubOnauDBw+qublZfr9f/f39ys3NVWlpqR544IGrnh8MBlVfXz/k8DdDqj7QKRVzk9lGsmS+/Pfb1comIyNDTU1NideXLhCHQiE3fy2AEYhb3wBMUDYATFA2AExQNgBMUDYATFA2AExQNgBMUDYATFA2AExQNgBMUDYATFA2AExQNgBMUDYATFA2AExQNhh2jHKBRNnAAKNcIFE2MMAoF0iUDQwwygUSZQMDjHKB5PKB58CNmJY5Xvuq702ap/7DG6xsAJigbACYoGwAmKBsAJigbDDs2EEMibKBAXYQQ6JsYIAdxJAoGxhgBzEkygYG2EEMiR3EMMAOYkguVzbxeFwVFRVavny5du3alTgeiUQUCAQUCAQUiURchwSQ+lyVTSgUUklJiRobG9XS0pI43tDQoHfeeUebN2/Wxo0bXYcEkPpclU00GlVeXp4kKT09PXH83Llzmjx5snJycnThwgV3CQGMCK6u2fh8PkWjURUUFGhgYCBxPCcnR+fOndOYMWOUlZV1xXnhcFjhcFjt7e2ev82KxWKeZxiKVMxNZhtJm9lxoaenx1m6dKlTVVXlfPDBB87ixYsdx3GctrY2p7y83CkvL3fa2tquef7zzz/v5tvfFNfLl8xSMTeZbSRL5st/v8c4juN4VXR+v1/5+flefXtJUkdHh+cZhiIVc5PZRrJk7ujoUCgU+v8DnlReEkmG1dVQpGJuMttI1syjflNfUVGR1xGGJBVzk9lGsmb29G0UgNFj1K9sANgYFR9XiMfjWrFihcaNG6fCwkIFAgFJ0p49e9Ta2qqxY8dq1apVuuuuu/Tee+/p6NGjysnJ0euvv570me+8805VVFRo4sSJ6uvrU1NTk9LSvPs/5OTJk3rjjTd07tw57du3L3E8EomotrZWkrRu3TrNmjVLa9eu1R9//KFJkyaprq7Oq8g3nHns2LF688035TiOZsyYoTVr1ngV+X/6OUtSVVWVMjMztWHDBk/yShodF4h37tzptLS0OI7jOKWlpYnjCxcudPr6+pyuri5n2bJlTldXlzNv3jxnzZo1zqZNm7yK6zjOjWfu7u52qqqqHMdxnKqqKufMmTOe5L3cY489Nuh1ZWWl093d7Zw9e9Z54oknnM7OTicYDDqO4zirVq1yfv75Zy9iDvLfMv+nBQsWWEa7phvJ/NFHHznbt293Vq5c6UXEhFHxNupaO51XrVqlp59+Wps3b1Z3d7dOnjypqVOnqq6uTp2dnfrxxx+9inzDmbOzs9Xb26tHHnlE/f39mjp1qleRr+vyXeW//PJL4t93++23KxqNepzwStfaCb97927NmzfPw2TXdnnmrq4uHT16VA8++KDX0UbHNZtLO50lDdrpPGfOHG3dulWLFy9WXl6ecnNzE7+skydPVk9Pjyd5pRvP/N133yk/P1+tra264447dOzYMY8SX9+lXeXnz59XVlaWcnNzE/++U6dOyefzeZzwSpdnlv6vaDo7O1VVVeVxuqu7PPPhw4f122+/6dVXX9WhQ4d04sQJz7KNirtR8XhcNTU1mjBhgubOnauDBw+qublZBw4c0Keffqqenh699dZbuu222/Tyyy8rHo+rv7/f0w+R3mjm7OxsLVu2TFOmTFEsFlNTU5MyMjI8y33mzBm99NJL+vzzz1VZWanjx4+rublZkUhE69evlyStXr1as2bN0rp169Tb26vx48cnrjMkc+b+/n4VFxfr0Ucf1aRJk1RfX5/0mS9ds+no6NCmTZs8vWYzKsoGgPdGxdsoAN6jbACYoGwAmKBsYGrnzp26//77tX//fq+jwNio2EEMW5988olOnTqlmTNn6siRI3rxxRcTX1uyZMmgW/kYPSgb3HQLFixQTU2NvvjiC+3evdvrOEgSvI3CTec4js6ePau0tDT9+eefXsdBkmBlg5uuoaFBjz/+eGKT5KVNZpK0f/9+vf/++5o4caIyMzNVWFjoXVCYYlMfABOsbDCs6urqdPHiRUnSjBkzVFZW5nEieIWVDQATXCAGYIKyAWCCsgFg4t8Z2MzVTag6UwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -230,19 +230,19 @@ "name": "stdout", "output_type": "stream", "text": [ - "Iteration: 1 \t BC Loss: 0.4289\t PDE Loss: 0.1653 \t Loss: 0.5942\n", - "Iteration: 501 \t BC Loss: 0.0210\t PDE Loss: 0.0000 \t Loss: 0.0210\n", - "Iteration: 1001 \t BC Loss: 0.0000\t PDE Loss: 0.0000 \t Loss: 0.0000\n", - "Iteration: 1501 \t BC Loss: 0.0000\t PDE Loss: 0.0000 \t Loss: 0.0000\n", - "Iteration: 2001 \t BC Loss: 0.0000\t PDE Loss: 0.0000 \t Loss: 0.0000\n", - "Iteration: 2501 \t BC Loss: 0.0000\t PDE Loss: 0.0000 \t Loss: 0.0000\n", - "Iteration: 3001 \t BC Loss: 0.0000\t PDE Loss: 0.0000 \t Loss: 0.0000\n", - "Iteration: 3501 \t BC Loss: 0.0000\t PDE Loss: 0.0000 \t Loss: 0.0000\n", - "Iteration: 4001 \t BC Loss: 0.0000\t PDE Loss: 0.0000 \t Loss: 0.0000\n", - "Iteration: 4501 \t BC Loss: 0.0000\t PDE Loss: 0.0000 \t Loss: 0.0000\n", - "Iteration: 5001 \t BC Loss: 0.0000\t PDE Loss: 0.0000 \t Loss: 0.0000\n", + "Iteration: 1 \t BC Loss: 0.6485\t PDE Loss: 56.3284 \t Loss: 56.9768\n", + "Iteration: 501 \t BC Loss: 0.4976\t PDE Loss: 0.9739 \t Loss: 1.4716\n", + "Iteration: 1001 \t BC Loss: 0.3631\t PDE Loss: 0.0074 \t Loss: 0.3705\n", + "Iteration: 1501 \t BC Loss: 0.3169\t PDE Loss: 0.0015 \t Loss: 0.3184\n", + "Iteration: 2001 \t BC Loss: 0.2724\t PDE Loss: 0.0013 \t Loss: 0.2738\n", + "Iteration: 2501 \t BC Loss: 0.2183\t PDE Loss: 0.0008 \t Loss: 0.2191\n", + "Iteration: 3001 \t BC Loss: 0.1593\t PDE Loss: 0.0002 \t Loss: 0.1595\n", + "Iteration: 3501 \t BC Loss: 0.1047\t PDE Loss: 0.0000 \t Loss: 0.1048\n", + "Iteration: 4001 \t BC Loss: 0.0621\t PDE Loss: 0.0002 \t Loss: 0.0623\n", + "Iteration: 4501 \t BC Loss: 0.0330\t PDE Loss: 0.0003 \t Loss: 0.0333\n", + "Iteration: 5001 \t BC Loss: 0.0152\t PDE Loss: 0.0002 \t Loss: 0.0154\n", "Training finished\n", - "Time taken: 'trainer' in 29.4198 secs\n" + "Time taken: 'trainer' in 29.1206 secs\n" ] } ], @@ -321,7 +321,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAAGiCAYAAABppIV1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACWTklEQVR4nOzdd5hU1fnA8e+5d9pWeu8gHelFwC7FrlFjF3vHRvypJFEwidEYNRijEgvRxIK9ggKiqAiISpHee9mlb59y7/n9MbvLLrszW6fs7Pt5Hh5275y59+WyO/POKe9RWmuNEEIIIUQIRqwDEEIIIUR8k2RBCCGEEGFJsiCEEEKIsCRZEEIIIURYkiwIIYQQIixJFoQQQggRliQLQgghhAhLkgUhhBBChCXJghBCCCHCkmRBCCGEEGFJsiCEEELUEd999x3nnXcerVu3RinFxx9/XOFz5s2bx8CBA3G73Rx33HG89tprVb6uJAtCCCFEHZGbm0u/fv14/vnnK9V+y5YtnHPOOZx22mksW7aMe++9l5tuuolZs2ZV6bpKNpISQggh6h6lFB999BEXXnhhyDYPPvggM2bMYOXKlcXHLr/8cg4fPsyXX35Z6Ws5ahJotNi2ze7du0lLS0MpFetwhBBCxDGtNdnZ2bRu3RrDiEwHekFBAT6fr1bOpbUu897mdrtxu901PvfChQsZNWpUqWNjx47l3nvvrdJ56kSysHv3btq1axfrMIQQQtQhO3bsoG3btrV+3oKCAjp2SiVjr1Ur50tNTSUnJ6fUsUmTJjF58uQan3vv3r20aNGi1LEWLVqQlZVFfn4+SUlJlTpPnUgW0tLSgOB/fHp6erXP4/f7mT17NmPGjMHpdNZWeAlD7k94cn/Ck/sTntyf8Grz/mRlZdGuXbvi947a5vP5yNhrsWpTO9LSa9ZzkZ1l07vLjjLvb7XRq1Cb6kSyUNQ9k56eXuNkITk5mfT0dPllLYfcn/Dk/oQn9yc8uT/hReL+RHrYOi3dIL2GyUKRmr6/hdKyZUsyMjJKHcvIyCA9Pb3SvQogqyGEEEKIhDV8+HDmzp1b6ticOXMYPnx4lc4jyYIQQghRR+Tk5LBs2TKWLVsGBJdGLlu2jO3btwMwceJExo0bV9z+tttuY/PmzTzwwAOsXbuWF154gXfffZf77ruvSteVZEEIIYSoI37++WcGDBjAgAEDAJgwYQIDBgzgkUceAWDPnj3FiQNAp06dmDFjBnPmzKFfv348/fTTvPLKK4wdO7ZK160TcxaEEEIIAaeeeirhyiOVV53x1FNPZenSpTW6rvQsCCGEECIsSRaEEEIIEZYkC0IIIYQIS5IFIYQQQoRV5WQhVttjCiGEiBytbQL2YnzWB/jtuWjtjXVIIo5UOVmI1faYQojY0raN9nnDzsQWdVPA/oFs/2nkBi4n3/o/8gI3k+Ufitd6Xf6/BVCNpZNnnXUWZ511VqXbT506lU6dOvH0008D0LNnT+bPn88//vGPkOs8vV4vXu/RrDYrKwsIlgP1+/1VDblY0XNrco5EJvcnvPp6f6yDGRT88Dm+XxeA5Ue5k3EPPBX3yHMwko/W3q+v96ey4vX+BOxfyAvcCthAyf0IfOT4n8BjBnCZ40I8u/bU5v2Jt3ucCCJeZ6E622M+/vjjPProo2WOz549m+Tk5BrHNGfOnBqfI5HJ/QmvXt4fsxUMuPjo935g3vflNq2X96cK4vP+PFbB4zOjEgXUzv3Jy8urhUhESRFPFqqzPebEiROZMGFC8fdFO4iNGTOmxhtJzZkzh9GjR8tGLuWQ+xNefbs/WmuyXngI+8BeoJyuaKVwdh9M6qV3AfXv/lRVPN4fS+8g139Ohe085p9xmRdENJbavD9FvdGi9sRlBUe3213u9pxOp7NWfslq6zyJSu5PePXl/vi3rMbI3B52YpNevQiz4HqMtEbFx+rL/amueLo/yj6Eg4omMpqY5j6cZnRiro37Ey/3N5FEfOlkbW2PKYSILmvPVqhoi19tY2XujEo8ovYZqkXFjbAwaBnxWER8i3jPwvDhw5k5s/R4V3W2x6zr8vP9fPj+GmZ9sQmf32LAwFZce10/WrZKjXVoQpTP6YLKzIR3yKe4uspQbTHVYCy9hOAEx/Ik4TTGRDQOW+/GZ30GtMRnvYbpOL+SiYyIlir3LMRqe8ya0Fqz5Jc9vPvOagCysqK7fnjtmv306/Vvbr9lJp9+sp6Zn2/k8b/Mp1e3F3jn7VVRjUWIynJ1G1Bhz4JKTsPRpkuUIhKR4DH/AJiEejvwmA+iVEpErq21TX7gCbL9J1Fg/ROAAmsK2f6RFASekWWbcaTKyUKstsesrpUrMjlp+H849cTXue/uYG2H/r3/zeSH52FZoTLp2pOX5+eCc6azb18uALati/8OBGxuvelzFv+4K+JxiPrLzi8gZ+kqsn9ajj/zQKWfZzRogmvAqWETBs8pv0FJz0Kd5jD6keJ4G4OupY4rmpJk/g13BJdNeu0X8NkvEZxAW/R6bAM2Xvtf+OxXInZtUTVVHoaI1faY1bFx40HGnPEG+Xml19x6fRb/eHoRhw8XMOW5MyMaw4fvr2HPnpyQjxuG4rlnF/O/t34T0ThE/aMti/3vfs6hL75F+3zFx5P79aLlLVfgbNIozLODUi64CZ2fjX/Nz2CYoO1g8mDbuEeei+fE8yL5TxBR4jAGkuqcia1XYbMDRUNMNQSlIjdSrXUeXuvFsG0KrH/hMsahVNkJ7yK64nI1RG158vEF5Of5sayyyY3WMO2VZdx51xC6dmsSsRhmfbEJwwA7RCdGIGDz5RcbI3Z9UX/tnfomWfMXl1n1mLdiLdsfeYYOjz+AIz2t/CcXUk43qVc/iLVjA95l36Nzj2A0aoZ74OmYzdtEMHoRbUopTNUHkz5RuV5A/wDkV9Aqm4D+Eac6ORohiTASNlkoKAjwwXury00UipimYvrbq3h4UuR+EH0+K2SiUMTvs9FaoyqaeS5EJeVv2kbW94vLf9C2CRw6wqEZ39DsivMrPJdSCkf7bjjad6vlKEV9pnVuJVuG7pkV0ZOwu05mHfHi94d/l1ZKkZlR2R/Y6uk3oAWGGToJMAzF8f2aS6IgalXWt4vACPPrbdsc+fqH6AUkxDEM1bly7ahcOxFZCduz0KChG7fbxOu1QrbRWtOqdWSXLl57XT+e+ttC7PIq4BGc6Hj7nYMjGoOofwIHj4Qe+ypkZeeibRsVLqmoJu0rwLt8Pr4VC9HefBwt2+MeOlpWTohipjoeg+7YbKD8ZZsmpuqNafSIdmiiHAnbs+B2O7j08t6YjtCf2G1bc8VVx0c0jjZt0/nX1LNQilKxGEbw68uu6M3lV0RnjFDUH2aDtPA9C4CRkhyRRME6lMmRKfeS99FUApt+xdqxHu8vX5P1/IPkzXpTlsMJINizm+x4kuDmVeYxj5qAhyTz8egHJsqVsMkCwAMTR5Ce7sYMMQxw511D6NSpYcTjuPKq45k992rOPqcrLpeJMuD4vs158eVz+Pcr5xYnDkIA2AGbQ0u3s++79eRs2letc6SfPDR8z4Jh0ODUE6oZYXg5bz6FnXUw+E1RYlAYS8G3H+Fb9l1ErivqHtM4nlTHRzjUaI6+HZk41JmkOj/GNHrGMjxRQsIOQwB06NCQr+aN4+47vuCH+TuKj6enuXhw4jAm3B+ZF8vyDBveljeHty3+VCVzFER5dn+6nM1Tv8V38OhcmrQeLen+0Jmk92hV6fMkdetM6pB+5Pz8a9kqjIaBmZpC43PPqK2wS7EP7sUImago8r/9CFf/k+V3QABgGt1IMV7AqQ8C35Pm/B6Xs+JlvSK6EjpZAOjatTFfzLmKDesPsHZNJjbrWbryFtLSar7VdXXIC6QIZcc7P7HhH1+VOZ69PoMlt77BoFfGkda1ciVwlVK0uvs6Mv/7AUe+XgjW0bk7nuM60OqOcTgaNai12EtfPOzWU9iZO9G5WajUCF1f1FFFPzfyGhmPEj5ZKNK1WxM6dkpn5sz1eDxScU7El0BOAZtemFf+g7bG9lts+tc39H/28kqf03A6aXnj5TT97bnkrVyHDgTwdGqHu13r2gm6JuzQE49F3aC1H7/9MT77TSy9FUUqLuNCXOY4DNW80uex9EYKAlMo8M8DHiPbfyIedToex72YlVwxISKv3iQLQsSzzLlrsX2B0A1szcEft+Ddn4O7adVW8DjSU0kfMaiGEVaBrmDJcnpjVGrD6MQiIkJrL7mBm7D0DwR7BGw0WXjtf+Oz3yTFMR3T6F7heSx7JTmBywEvR9+OLAL6C3L880h1vFep84jIS+gJjkLUFd592Siz4l9H7/7sKERTMyopLcx+EgrPiHMisgpDRI/X+heWXlj4Xcnk0EKTQ27gFnQFSaPWmjzrQaAAOLanyQLyybcm1lrMombkN1aIOOBqnIKuxMZmrkaR2f2vNqVcfk9we+uSCUFh8uDsORjPyHNjFJmoDVp78dr/I/SW1haaHQT0/LDnsfVKbL0m7HksvQzLXleDaEVtkWRBiDjQ7PQe4XsWDEWD/u3wtEiPXlDV5GzXjQZ3P4N7+NmotEbgTsJsexwpv72L1KvuR5nHrqkXdYmttwFZFbRyYNm/hG1h6U2Vux6VayciS+YsCBEHXA2T6XjDSLa89H3ZB5VCKcVxd54a9biqy2zcgpRzriPlnOtiHYqobaoyyZ6usJ1SlV2RFv+9afWBJAv1lG1rlszZzeIvduL3WXQd2JSTLmkb67DqtY7Xj8RwOtg6bT5W/tFt1T2t0uk24XT03i3sW/kLZloqacMHVmqLaSFqm0FHFM3RZIZpZeFQI8OeJ/h4EuF3nkzDoaJXD0eEJslCPbRvZy5/PHcOW1ceLi5BPfPl9fznYSdXT43sXhkiNKUUHa45gbaXDOTAoi0EcgpIatMInbGZ/VOnoq0AGCbYNvve/JiGZ55C82suksmCIqqUMnGbN1NgPRaihYmpemGqgRWcJwW3eStea0rINh7zDpRyVz/YCEtb4SAttWbDajqnbiwjlleZeibgt3lo7Cx2rD0CgBXQWAENGgpyg59mt646FMsQ6z0zyUXz07rT+rx+GLl72ff6++hAADTB4kpag9Yc/mIe+9/+NNbhinrIZVyP0yiq+VH0Zhn84GHQjmTHvytVgM5tjMdl3FT43KK3IwNQuI3bcRm31G7gotokWahnFnyynZ3rsoIJwjGKqgJ/8q+1UY5KlEfbNvvf+Txsm4NffIOVnROliIQIUsogyXyMFMd0nOo8DNUXU51Ikvkkqc6ZGKpl5c/j+D1pzu9wm+MBcJt3keacj8fxf1LxNo7IMEQ988PH2zBMhW2F3vlvwSfb4JUoBiXK5d26k8D+g+EbBSxyflkZsU2hhAhFKYVDDcVhDK3xuQzVBrd5EzATt3kjhpIqu/FGehbqmYLcQNhEAcDvtWQb4Thg5YWb+FVIKezKtBNCiBqQnoV6pkOvhiyeuTNswtDmuAbS/RcHXC2bVdxIa5ytKl+HX9QufWAd9tqP0AfWgsOD0eFU1HFno9zxXw9DiKqQnoV65uybuqHt8L0GZ93cNUrRiHCcTRuT3LdH6UqIJSmF2agBKf16RjcwAYC9bBrWZzegN86EgxsgcwX2T//C+vBy9MGNsQ5PiFolyUI907JTGrc8NQQAwyjde1C0s/DoccdFOywRQovrfovhcZdNGJQCpWh129WydDIG7G3zsJe9GvxGl1z6psGXjTVnAtryxSQ2ISJBXmXqoYvu6c2kD0+n25Cmxccat0riqj/0B8DpknK88cLVugUd/voAqUP6QYnkLqlXV9pPuld6FWLEXvnW0ez6WNqG/APord9ENyghIkjmLNRTI85vz4jz25Nz2EvAZ5Pe1INlBZg5c1usQxPHcLVsRpv7bsTKySNw+AhmagqOhok1Jm5l7sS3bglYfszWnXEe1y9ue0x0wAv7VoVvpEz0np+hy9joBCVEhEmyEEO2rfn5y13Me3cLOYe8tOqSxlk3dKNjn+iV8U1teLQ6mlU3ConVW2ZqMmZqZevp1w12QS657zyLf92S4qEVbBujYTNSr/wdjrbxOCRWmZVCOtjDIESCkGQhRnIOe/nDOV+x9sd9xXUPTIfi43+u4ZIJvbnpb4NlRYJIaNq2yXn9rwS2byg8oIsrg9lHDpD1ymQa3PUUZpPKFfiJFuXwQMNOcHgrIRMHbaOaHx/NsISIqPjs56sHnrj6O9b/vB+geBljUVXF959ZxWcvShVFkdj8G38lsG1d+Z/AtQ0BHwXzP4t+YJVg9L6c0D0MCpwpqM5johmSEBElyUIMbF11iJ++3BW21sE7T67AsqQbUyQu36/zQy8LBbBtvEu/jV5AVaCOOwfV9bzCb0r8G5QJpgvj9CdQzsQaMhL1mwxDxMBPX+zCMBR2mHoH+3fmsWPNkajOXxAimnR+DtgVJMS+ArRtx91kR6UUxogH0e1GYq/9EA6sA4cb1fF0jB4XodLaxDpEIWqVJAsx4PdZwQ8jFbxO+r0y41AkLqNxi2DPQpiEQTVoEneJQhGlFKr9SRjtT4p1KEJEnCQLMdB1QJNyd30syZVk0qZbgyhFJI6VtXo3O99fQtaqXRhOB01P6UqLc2XCWm1yDx6F94cZoRsohWeojPsLEQ8kWYiBgWNa07xDCvt35pU7b8EwFWOv60pymuy8FgtbX1vA5qnfokwDXThvJGfzPra//zPc0SXG0SUOR4t2eE46n4LvPy37oDIwm7fFM+Ls6AcmhCgjPvv3EpxpGjz8zmm4k01MR9mSyx37NOL6xwbGKLr67cCCTWyeGpxUp0tOMLU1ljcAQCDXG4vQElLSmdeQfN6NqPTGRw86nLiHjCLtlj+j3EmxC04IUUx6FmKk2+CmvPDz+Xw4ZTVz39hEfo6fZu1SOPfW7lwwvieelLK9CgG/zU9f7mT3xmxSG7oYfn470pt4YhB94tr+1o/BssrlTT4tPJYxaxUdLxsW5cgSk1IKz/CzcA8bg5WxA6wAZtPWKI+sJBAinkiyEEOtu6Qz/rkTGP/cCWitwxZhWvT5Dv5xyw8cziwoLuLkuMPgont7cd1fBmKa0klUU1prDi/dUX6iUMKR5TtBkoVapQwTR6uOsQ5DCBGCJAtxIlyisOybPUy+aG5xDZiieQ4Bv827T63EtjQ3PzkkGmEmPK0rLuVbmWK/QgiRSOTjaB3wnz8uAYor4Zam4cNnV3Nwb17U4tFas299NruWHaIgyx+160aaUoqG/dqW2t2xPA36yBp6IUT9Ui96FrTWLFuawerVGaSmQVaWlyZN6sZKg8ztOaz9cV/YNlprvn9/GxeMj/x2xUve2sbsP61i3/psABxug0FXd+Dsx/uR2tRdwbPjX7srhgaHIspT2PvTYmzvKEYkhBCxl/A9CytXZHLS8P9wysjXuO/uWQAM6PMSkx+eVyfKKWcdqHjmvWEqsg4URDyWeU+v5c2rF7FvQ3bxsYDX5qfXtvLciK/IO1j3Vwk0O7kbHa8fEfzGLNHDYCgMlwmAM10mlYq6S+sAtt6FrTMqNewmBCR4srBx40HGnPEGq1aW/mRe4A3wj6cX8bt7Z8cosspr2jalVOn58lgBTfMOqRGN48jufD5/cHnwm2NeX2xLc2BLLnOfSIzNrzrfegoDXriKZqd0x90inaR2jWh/xVAGT7s21qEJUW1aeymw/km2/wSy/SeR7R9Ojn8sPuujWIcm6oCEHoZ48vEF5Of5scopfKQ1THtlGXfeNYSu3ZrEILrKadjMwwnntOPHmTtDbjzlTnJw8iUdIxrHT69tKeyGLz8GbWkWvbyJcx4/HiMBVmY0GtieRgPblzrm9yfO/AxRv2jtJzdwM5b+gZK/wzabyLd+h6234nHcF7sARdyr+6/qIRQUBPjgvdXlJgpFTFMx/e1VUYyqem7622CSUh0Y5jET7wq/vWPKUJJSIzsHY//GHMIs2ACg4Iif/MPyhipEvPHZ75VJFIKC33vt57DsxOgZFJGRsMlC1hEvfn/4OQlKKTIzcqMUUfW17daAKT+cw4AzWhUnCACtu6Txh+mncuYN3SIeQ1LDipMRZYArJaE7q4Sok3zWGxW0MPHZ06MSi6ibEvaVvUFDN263iTfMzo1aa1q1Tq2wIFK07d2SzWcvrmXhZzvwey16Dm/GBXf05K8zx5C5PYe9W3JIaeiic99GUYu7/2Xt+W7K+pCPG6ai9wVtcHrMqMQjhKg8m82ErxBiYekN0QpH1EEJ27Pgdju49PLeZfZeKMmyNC889xMNkv9Gl/b/5E+Tv+PA/ujVKyjPL7N3cVOfj/jw2dXs2pBF5vZc5n+wjQmnfMEbf15G8/ap9D2lJV36NY5qgtN+aGN6nNkSdexQCMEeBWUqRv0+8ks3hRBVp6iofLaBIi0qsYi6KWGTBYAHJo4gPd2NWc4bHATn62Vl+QDYty+Pfzy1kJNHvsae3dnlto+0I/sLePTirwn47FKTGYu2s/7fo8v46YudMYlNKcW490bS54JgQSJlKgxn8L4mN3Fz0+cn0XZg43CnEELEiNM4FwjX62fjNM6KVjiiDkrYYQiADh0a8tW8cdx9xxf8MP9ooR3TVChVtiKiZWl278rm3rtn8c77l0Q5Wpj1nw34vFb5lRoJdvV/MGUVQ85qG93ACrlTHFz3/kgy12Wx6tPd+PICtOrTgN7nt8F0JnTeKUSd5jJvwGd/AHiBY+dymRi0x2mcGYPIRF2R8K/wXbs25os5V/HL8pt59T/nAcGkINQbsmVpvpy5ke3bjkQxyqAV32egw8zJtC3Niu8zohdQCM27p3Pa//Vg7KQ+9L24nSQKQsQ5U3UkxfE6ioaFRxwUfVY0VDdSnG+gVGwrsGqdW/h3bIeC64Lnn3+ejh074vF4GDZsGIsXLw7bfsqUKXTv3p2kpCTatWvHfffdR0FB1Qr51ZtX+a7dmnDm2cdVqq3WwcqP0VaZKQhxNA9TCFGHOIzBpDl/IMmcgssYh8u4gRTHm6Q6PsdQrWIWl6U3kusfT7b/RACy/SPJ9d+NpTfHLKZ49s477zBhwgQmTZrEkiVL6NevH2PHjiUzs/z3rLfeeouHHnqISZMmsWbNGl599VXeeecdfv/731fpuvUmWagqlzv6s/r7ntIybLVGw1T0PaVl9AISQsQNrTW6YDs6dwXaf7Ba51DKjcs8nyTHH0lyPITDGB7TlWCWvZIc/4UE9CygaOWaRUB/QY7/Qix7Xcxii1fPPPMMN998M9dffz29evVi6tSpJCcnM23atHLbL1iwgJEjR3LllVfSsWNHxowZwxVXXFFhb8Sx6mWyEGrCY5HkFCcnDI/+vIAx13XFneQImTDYlubie2UTIyHqG334W/SqC9ErRqNXX4JeNhJ743h0QYhNz+oArTV51oNAAUcThSIWkE++NTH6gcVIVlZWqT9eb9m9dnw+H7/88gujRo0qPmYYBqNGjWLhwoXlnnfEiBH88ssvxcnB5s2bmTlzJmeffXaV4kvoCY6hXHFlH6a98iu2XXbiglJwx52DSU11RT2u9MZu/vTJGTx83lf4S6yIMB0KK6C54a+DGDRGtkcWoj7RBz5Hb77/mKM2HPoanfUT9Hof5WkXk9hqwtYrsfWaMC0sLL0My16HaXSPWlxVYa9tgp1Us7dROz8AbKJdu9L/h5MmTWLy5Mmlju3fvx/LsmjRokWp4y1atGDt2vIrcF555ZXs37+fE088Ea01gUCA2267rcrDEPUyWfjTY6eye3cuMz/fiMNhEAjYxX9fdkVvfv/wSTGLrd+prXh1zUXMfGldcVGmXsObc+5tPeg+pGmFz7csmyVzdrN5+UGcbpOhZ7elbbcGUYhcCFHbtJWP3voI5RdUssDKRu98EnXcc9EOrcYsvalS7Ww2YRKfyUJt2rFjB+np6cXfu921M+F03rx5/PWvf+WFF15g2LBhbNy4kXvuuYc///nPPPzww5U+T71MFtxuB2+/ezELf9jJ22+tJDMzl9Zt0rj6mr4MGhy7iT5FmrVN4do/DeTaPw2s0vPW/riPx66YR+b2XAxTobXm3/f/xMjftOf+aSeRnBbZ/SOEELXs0Gyww5Wkt+DQV2j/QZSzbtU5UaqiQlFFUiIaR7xIT08vlSyUp2nTppimSUZG6VVxGRkZtGxZ/ny2hx9+mGuuuYabbroJgOOPP57c3FxuueUW/vCHP2AYlZuNUC+TBQgWGRpxYjtGnFj3uu/Ks2PdER4YPQt/YXnrkkWdFn66g0cv+ponZo+Jq7LWQogKeHeAcoAOhGlkg28P1LFkwaFGAklAfphWaTjUCVGKKP65XC4GDRrE3LlzufDCCwGwbZu5c+cyfvz4cp+Tl5dXJiEwzeAEfh2qhkA5qjXBMRZrPEV47/59BX6fVe421ralWfbNHlZ8F/saDUKIKnCkgw69v00xM/wn0nikVApu89awbTzmHTGv/xBvJkyYwMsvv8zrr7/OmjVruP3228nNzeX6668HYNy4cUyceHRi6HnnnceLL77I9OnT2bJlC3PmzOHhhx/mvPPOK04aKqPKPQtFazynTp3KsGHDmDJlCmPHjmXdunU0b968TPuiNZ7Tpk1jxIgRrF+/nuuuuw6lFM8880xVLy/KobXmm+lbsANhtuN2KL6ZvlmWXgpRlzQaC9sfJ/QmUAqSe9XJCY4AbmM8Wufgs1/laDlqA1C4jVtxGbfEMLr4dNlll7Fv3z4eeeQR9u7dS//+/fnyyy+LJz1u3769VE/CH//4R5RS/PGPf2TXrl00a9aM8847j8cee6xK161yslByjSfA1KlTmTFjBtOmTeOhhx4q077kGk+Ajh07csUVV/Djjz9W9dIiBL/Xwl8Q/tOHbWuyD5ZdiiOEiF/K1QLd/ErIfJOyCUNwSFG1vTfsObS2COhv8dsz0DoLQ3XEZV6GqSpXpC6SlDJIcvwet76WPPtTANzmXSQ7L4hpoah4N378+JDDDvPmzSv1vcPhYNKkSUyaNKlG16xSslC0xrNkF0dl1ni+8cYbLF68mKFDhxav8bzmmmtCXsfr9ZZaY5qVlQWA3+/H7/dXJeRSip5bk3PEJUPTtL2HI/tCD+0YDkXrrilh/+0Je39qidyf8OT+hFfd+6Nb3Y+2TNj3LqBBmcE5DGYKqt0fUcnDIcQ5bX2E/MDtWHolwU/uFrCQPN7AbdyMyxwfJ/OYmmPY1wJzMOxxWAEnFjV/rRe1R+kqzHDYvXs3bdq0YcGCBQwfPrz4+AMPPMC3334bsrfgn//8J/fff3+pNZ4vvvhiyOtMnjyZRx99tMzxt956i+Tkys6gFUIIUR/l5eVx5ZVXcuTIkQpXGFRHVlYWDRo04MALQ0mvYZ2FrPwATe5YHLFYa0vEV0NUZ43nxIkTmTBhQvH3WVlZtGvXjjFjxtToZvr9fubMmcPo0aNxOhNrGWHuER8PjpnFns3Z5U5yvPje3lz9SP+w50jk+1Mb5P6UpbXG2r0Ja/c2LMNkXkae3J8Qov3zY9lryQ1cGqaFQtGaVOcMVLg681FSm/enqDda1J4qJQvRWuPpdrvLLUjhdDpr5Zests4TTxo2dfL3OWfzykO/MPfNTQR8we0rm7ZN5vKH+nLurd0r3d2YiPenNsn9CbIyd5LzzhSsPVsBCJhOGHw5vhnTSLrgZpRLZrGXJ1o/P5b1HQ4VoGwp5ZI2Yzp3YarOEY+nsmrj/sjvZ+2rUrIQyzWeomLpTTxMeHkkt/x9MDvXZ+HymHTo3RDTjP2nBpFYrMP7yfr3H9EFZbcT9v26gOycw6Rd94c4GQ+vp7SPokmQFbaT/yZRgSoPQ0yYMIFrr72WwYMHM3ToUKZMmVJmjWebNm14/PHHgeAaz2eeeYYBAwYUD0NUZ42nqLzUhm56DG1W5edl7Q1OkMzOKKBxW8nMRWgF8z9De/NA2+U8qglsWEZgy2qcnWXjs1gxjT5ghyvmBJCEoTpEJR5Rt1U5WYjVGk8ROdt/OsCMh35ly6JMRr7l4YnuM+lyYgvOeaIfbQc0inV4Ig75lnwDdnmJQiHDwLfsO0kWYsihTkPRAs0+oLz/KwOXcRlKJUU7NFEHVWuCYyzWeIrI2Dx/H1NHzcO2NEaJjTY3fp3JcyfO5c5vTqP90CaxC1CUS9s2vl17sb0+XC2bY6ZGb5WQtu1yhx9KsW3s3CPRCUiUSykHyY7nyQ1cA/goPXfBwFC98JgTQjxbiNLq7d4QIjhn5N2bf8IO2GV6k21Lo30279/2MxOWjI1NgKJcR75ZyP4PvyCw72DwgGmSPmIQza7+DY4GaRG/vjIMVGoDdE6YZMAwMBpUfShM1C6HMZBU52f4rFfx2Z8AeSja4DavxmWMk14FUWky8y2B7N+Vy9rF+9i7JbtS7bctOsC+ddnlDzsD2tLsWnaYXcsO1WKUoiYOfPQle//95tFEAcCyyPrhZ7Y//DSBrJyoxOEeMhrCLbezbdyDT49KLCI8U3UmyfEYDVwrSXduIt31PW7zVkkURJVIspAAtqw4xMSzZnNVh/e4Z8QMru36AXeP+Jzl8/aEfd7+DZVLKg5sis4bkAjPv/8g+9+dUf6Dto1//0EOfjI7KrF4Rp6D0agZhNje1jVkFI7WnaISi6g8WZ0iqkuShTpu07ID3HviDJZ9XTox2PDzfh4aO5vFM3eGfG5SI1fIx0ryNKxcOxFZR779MfwSN9vmyNcL0OEmHtYSIzmN9Fsfw9lrWJkehqRTLyblAtkASIhEInMW6rjn7/kRX0HZraltG5TS/OPWH3hj62/LrbXQbVQL3OkOvFmhl1elNHXR+aSmtR63qDp/xn6C2ULo+iR2fgF2Xj5makrE4zHSGpJ25e+wsw9h7d2GHxNWb8Zz8gWoED0OQoi6SZKFOmzXhixW/ZAZ8nGt4eCefJbM2c2QM9uWedyZ5GDMw7357P+WhzzH2Ml9cLikHkZtOrR0OzveXszBxVvBtknv04Z2lw+h6Uldw3YTmynJFRfPMQwMT3QrJxppjTDSGgU3M1q9OarXFkJEh6T/ddiezZWYc6Bg75bQcw5OmdCdM//UB9OpKH6fUuBwG5z7ZD9G3B77bWwTyc4PlrD09jc58MNG7AI/ts/i8LIdrHjgAzb965uwz00bOQis8LUN0ob1RznkM4AQonbJq0odllqZOQcaUsLMOVBKMfqPvRlx+3EsfW8rB1jLBf8YwIBLOpJcyTkNonJytx5g/VOzgOBKk2J28Ovtb/5Io8EdaDK8S7nP93TpQMrAPuQuXRXsNipJKZRp0PhCWeYqhKh90rNQh3Ub3JTm7cOPTbs8JsPOKTsEcayUJm6G3RjcTGbodZ0kUYiAXR8tQRlhxhFMxc73fgn5sFKK1vfcQNrwgUUHilcjmA3Tafv78Xg6tKnNkIUQApCehTrNMBQ3/HUQT1z9Xcg2V0zsS0q6vPHHg6wVu0r3KBzL0hxZuSvsOQy3i9Z3X4/v8vPI+XkF2ufD3a41KQN6R2VSoXVoH96FM/Eu+x7tzcds0hL3sLG4B50W8WsLIWJHkoU67rTLO1OQG2DqhMUU5AYwHQrb0pgOg8sfOp4rft831iGKQspZ8URRw1G5yaSu5k1pfHZ036ADuzaR9cpk8HuL94Ww9m4n75OX8P36A56rHohqPEKI6JFkIQGcdWM3Tru8E99/uI1923Np0MzDSRd3IL2JJ9ahiRKajjyOI7/uKjvfoJAyDZqe3DXKUVWOtiyy33gSfN5jdpoM/lsCW1dT8P0nQOSXbAohoq9eJAtaa5YtzWD16gxS0yAry0uTJom1BbMnxcnoa2TlQjxrdV4/tr6+ACvfXzypsVjhVIa2vx0c/cAqwb9+CfrIgdANtMb701w4/vzoBSWEiJqEn+C4ckUmJw3/D6eMfI377g7ORB/Q5yUmPzwPK9wyNCFqmatRMv2nXIaZ7CpdL8FQKIdJn8cuJLVLfG6+FNixEYzwQyTaW8FOlEKIOiuhexY2bjzImDPeID/PX+p4gTfAP55exOHDBUx57swYRRc9urDbW+rCx16D49sy4qM72DtzBQcXb0EHbBr0a0fr8/vhbpoa6/BCMwzCVY4UQiS2hE4Wnnx8Afl5fqxyZqBrDdNeWcaddw2ha7cmMYgusmxb89X/NvLxc2vY/OtBHE6DYee045IJvel5QvNYh1evOdM8tLtsCO0uGxLrUCrN2bUfBV+/F7aN0SDxfo+EEEEJOwxRUBDgg/dWl5soFDFNxfS3V0Uxquiwbc2T477j6Rt/YPOvB9E2+L02Cz/dzn0nz+Trt6Ukr6gaR/vumG2PC7nLJIBnxLlRjEgIEU0JmyxkHfHi94efk6CUIjMjN0oRRc+c/27km+lbgNIT162ARtvw1A3fc2CPjC+LylNKkXb1gxhNWhUdCP5dmDy4R56Da/DptXKtQMYOCn6cTcHiOVj7w2+zLoSIjoQdhmjQ0I3bbeL1WiHbaK1p1TqOx4mr6eN/rkYZx6xwK0FbMGvaBq78Q7/oBibqNCO9EQ3uegrfqh/x/TofnZ+L2awt7iFn4Gh7HH6/v+KThGEfOUDOu/8ksKV0b5+z2wBSfnsXRkp6jc4vhKi+hE0W3G4Hl17em7feXIEVKH8owrY1V1x1fJQjiyzb1mxZcSjUUv7iNhuWhFkGJ0QIyuHE3e9E3P1OrNXz6oI8sl5+BPvwvjKP+TcuJ/vVyaTf/gTKKdVIhYiFhB2GAHhg4gjS092YZvmrAO68awidOjWMblARphQYjvCrHgwDnO6E/q8XdYz3l6+xD2YWV4Ysxbax9m7Ht2JB9AMTQgAJnix06NCQr+aN44ThpTdSSk9z8cijJ/OXx2tnjDWeKKUYelY7zDAJg23D0LPbRTEqIcLz/vINYZdmKoV3ybxohSOiSOsj+O1v8dvzYx2KCCNhhyGKdO3amC/mXMWG9QdYsyYDzQaWrryFtLTkWIcWMb/9XW8Wfba93McMU9G4VRInX9IhylEJEZqdeyR8A62xsw9FJxgRFVrnk289jt9+F/ARCLiBJ8jz/Z50xyMolRbrECuUtbEluGtWDTjLW7O5PtGS0D0LJXXt1oSzzg7W3fd4EqvU87F6j2zB/f85CdOhMAq3RFaF/9ONWybx+JdjcHkSPk8UMaL9PrxLvyNv1pvkf/0+gYwdFT7HaNjs6AqL8igDs1GLWoxSxJLWAXIDN+G33wJ8pR4L8DlZ/pMJ2GtjE5wol7xjJKhRV3eh/2kt+fLVDWxYegCn22TY2W05+bcdcSfJf7uInCPP3IWZlxUsD601+V9Nx9lzCKmX3o1yJ5X7HM+QUeTu2BD6pNrGPXRUhCIW0RbQs7H0wjAtjpAb+A2pjo8xje5Ri0uEJu8aCaxpmxSufqR/rMMQ9YR/Z/DNXnsLggfso8uW/Wt/IeftZ0i77g/lPtfV/2S8P88N7kFx7JpfpXAc1xdnj0ERiVtEn896l+AGKeFKiHvJtyaSanwYpahEOPVmGEIIEVnebz8t/KqcNwBt41+/lMDOjeU+VzmcpF3/cLCwk1niM4zThXvE2aRd/SCqgo2sRN1h611UZq8RSy/DstdFPiBRIelZEELUmPbm49+0HAb3DN3IMPGtWIijbflbqSt3Eqm/uQ37zKuxdm0O9ii06YLy1O3JyDpvLRz5Dh0IAG3Qoaql1SNKNQO9mcokDDabMJGhiFiTZEEIUWPFQw8Vtqu4zLiRlIpxXN+ahhRzOnAIvfE+yF4IGGjbA0xGr7oA3e1pVErvWIcYMy7jEvKtRZVsnRLRWETlSLIgYiJzXRbz/7WB1Z/vJuCz6Ti8KSfd1ZUup8iOmHWRSkkDlyd8I20f3VsiwWkdQK+7EfKKZvTbQOEcDt9e9Lpx0PsTlLttqFMkNKdxDgXWK2gqWvGQhkOdEJWYRHgyZ0FE3arPdvFU3y9Z+O9NHNqWR/aeAlZ9uosXTvuGWZNXxjo8UQ3KdOAZeGoFjQzcA06JSjwxd3ge5K2iOEEoxQYrH53xepSDih9KuUl1voVB57DtPOYdKOWOUlQiHEkWRFRlZxTw30sXYAU0dok9O4q+nv2nVaz5QnYarIvcJ51f+NUx9RIK6yckn3sDRmqD6AYVI/rgDCDchEwLDnwa5vHEZ6iGpDpn4zQuJfgzU/RzYwAKt3EbLuOW2AUoSpFkQUTVj69sxvLbIec1Gabiuyky+7kuMpKCO7i6B58OJTZ8Mlt2IPWq/8NzwthYhRZ9gcOU36tQgpUTjUjimlIGyY4nSHN+h9scD4DbvIs053w8jgdQ4Qp1iaiSOQsiqjZ/vy/k1tkAtqXZMn9/9AIStS757GtxnHU19uH94HJjNmwW65Ciz9MRsn4kdMKgwFWz+QrayofDc8GXAc4m0GgUykyt0TljxVBtcJs3AzNxmzdiqMSuslsXSbIgoqsyfVnyYaLOUy4PZvP6OXkPQDX9LTrzrfBtml9R7fPrfe+itz8Bdi7B4Q4LtnmgzX3Q4lr5RC5qnQxDVIPfb7FrZxYHD+bHOpQ6p+vpLYr3qSiP4VB0PUP2ABB1m0rpBS2uDfGoAcl9oPnl1Tq33v8xeuvDhYkCFPde2AXoHY9D5pvVOq8Q4UiyUAVZWV4m/XEendv9k55dX6Bjm2cZe8YbzP1qS6xDqzOGXt8JZ7IjZMJgBzSn3CcFWETdp9pNRLX/IziPSX6bXYrq8TrKqGCpaTm0ttA7nw7fZtcUtO2t8rmFCEeShUrKzvZy1ug3+eeUHzly5Ogv4o+LdnHR+e/w5hsrYhhd3ZHSxM1Nn52Ew2OizKNdpYYj+PWFUwZw3KlSa0HUfUopVItrUP2+QfX5HNUj+InfaPd/KLOahYZyloA/M3wbKxuOzK/e+YUIQeYsVNI/nlrE6lX7sKzS0/htO/j9PXd+yZlnHUeTJuXvqieO6nJKcyauP4dFL29i9ee7sXw2HUc0ZeQdx9Hq+IaxDk+IWqWUCUldUQ4/sLlmJwscrt12QlSSJAuVEAjYvPLy0jKJQkn+gMXbb65g/N1DoxhZ3dWgdRJjJ/Vh7KQ+sQ5FiLrD1aZy7dyVbCdEJckwRCUcOpjP4UPha9+bhsH6dQeiFJEQol5K7glJ3Qn90q3A1RrS5EOLqF2SLFRCUnLl1vympLgqbiSEENWklEJ1mAzKpOzLd7Dyoer4J1S4JUdCVIMMQ1RCaqqL007vyHffbgs5FBEI2Fxwoczirw82PPsV+75Yg5XnxdOqIW0vHkibiwdieqSQjIg8lTYQeryB3vEE5Cw9+kByL1S7B1Dpw2IXnEhYkixU0gMTR/DtvG0oBfqYfME0FScMb8uw4TJOmMiy1+4FYO+MFZAfXNtesPswG//1NRlfrWHA81fiSJbeJRF5KrU/qud0dMF28GeAowkqKfymTELUhPRVVdLIE9sz7fXz8XgcKAVOp4HDEbx9w0e24613L5aqaQlMWzarJn9a+PUx2aKG7HV72fLSdzGITNRnytMelTZEEgURcdKzUAUXXdKTUWM68+70Vaxds5/kZCfnXdCdwUNaSaKQ4Pb/sAnfvjAb/9ia3Z8so/Ntp9TZ4Qht22QvXMKhWd/i3boT5XCQOqQfjc85DXd76TUToj6TZKGK0tPd3HTLwFiHIaIse90elBm+I87K95O/8xCpx8V3USlt2/j2ZIKtcbZsiuF0om2bvS++Qdb3iykaa9M+P1nfLyZr/mLaTLiZ1EHHxzp0IUSMSLIgRCUYDhN97GSVciinGYVoqkfbNoe//JaDn31F4NARAIyUJBqOPglHk0bBRAFKT8qxg1uE7n52Gl1e+AtmajUrDwoh6jSZsyBEJTQZ0QXs8MmCp1UDkts1jlJEVaO1JuPVd8j87wfFiQKAnZvPwU/msO+Nj8Lu9qn9AY58uygKkQoh4pH0LAhRCWndW9KgfzvCzFqgw7XDUUZ8zl3JX7+ZI3N/KP9BrdFeX4XnKNi4rZajqjrtzUJv/AKd+SugUK0GojqPRbmkx0OISJJkQYhK6jXpXHbN/yb4jaHA1ihToS1N+2tOoPUF/WMaXzhH5v4AhlE8rFBlSqHM2A6x2Lt/xv76IQgcraaqt82DJf/GHPU0qrmUDhciUiRZEKKSnOnBTcJ6/+UCDny1jkCOl6R2jWh9QX9SOzeLcXTh+XbtrX6iAGDbpPTvVXsBVZHO3o099//A8gPHDAf58rDm3If5m+mo5CYxiU+IRCfJghBV1GR4F1qe3CPWYVSJkZJCuRXFKvVkA7NBGqnD+td6XJVlr/0Q7ABlEoXgoxAoQG/4FNXv+miHJkS9UC8mOGqtWbpkL++9uxqArCxvjCMSIrrSRw4KnygYiuS+hQmQUfiyUFg7xExPpd0fxmM4Y1c/Qm/7FnSYnhFtY2+TolhCRErC9yysXJHJbTd/zq/LM/EkGbz8n+4M6PMSN9w0kIcnn4xZwdp5ET+0rcnekYMO2KS2S8V0xe8yxXiTNnwQBz6ahT/zQNnhCMPASPLQ6rarsX1+Dn81n4LN2zHcLlIHHU/6iUMwPO7YBF7E9lfcxqp4kqYQonoS+p1y48aDjD3jDVat3FfqeIE3wD+eXsTv7p0do8hEVWitWfPaWt4d9j7vDXuf90d+yFt9p/PL35Zgea1Yh1cnGC4n7R+5B0+ndoUHDChMlJ1NG9F+0j04GjfE1bIZza/+De0fuYe2D95Ow1Enxj5RAGjas3CnxRCUiWoWuzkVQkTT888/T8eOHfF4PAwbNozFixeHbX/48GHuvPNOWrVqhdvtplu3bsycObNK10zonoUnH19AXp6/3J0itYZpryzjzruG0LWbTIqKZz9O/olV/15Vqg6A77CPZc8uJ/PnTMa+NQbDmdB5b61wNG5I+7/cT8GGLeSuWAe2TVLXTiT37YEy4vv+GT0vwd4eZphBWxg9LopeQELEyDvvvMOECROYOnUqw4YNY8qUKYwdO5Z169bRvHnZ6rE+n4/Ro0fTvHlz3n//fdq0acO2bdto2LBhla5brVeIWGQ1VVVQEOCD91aH3FIagrtFTn97VUTjEDWzb+m+YKIAZee22bD7+z1seHdj1OOqq5RSJHXrTNOLz6Lpb88hpX+vuE8UAIxWg1B9rg5+o0rEW/i1MfAWVNOeMYhMiOh65plnuPnmm7n++uvp1asXU6dOJTk5mWnTppXbftq0aRw8eJCPP/6YkSNH0rFjR0455RT69etXpetW+VWiKKuZNGkSS5YsoV+/fowdO5bMzMxy2xdlNVu3buX9999n3bp1vPzyy7RpE9mNabKOePH7wy8VU0qRmZEb0ThEzaz93zqUGabQkQFrXlsTvYBEzBiDbsM49S/QrDeggolCi/4YZ/wdo++1YZ+rD27A+vl5rPl/xV42DZ2zNzpBC1FJWVlZpf54vWUn4vt8Pn755RdGjRpVfMwwDEaNGsXChQvLPe+nn37K8OHDufPOO2nRogV9+vThr3/9K5ZVtSHcKg9DlMxqAKZOncqMGTOYNm0aDz30UJn2RVnNggULcBbOpu7YsWNVL1tlDRq6cbtNvGHGtLXWtGqdGvFYRPUd3nCk7JbQJdlwZHNW9AISMaOUQnU8DaPjaWhtA6rC3V615cP+/i/orXOL5zxoNCybhup3LUb/m2THWFFtB7a2wOt01egcOf7gxNx27dqVOj5p0iQmT55c6tj+/fuxLIsWLVqUOt6iRQvWrl1b7vk3b97M119/zVVXXcXMmTPZuHEjd9xxB36/n0mTJlU6ziolC0VZzcSJE4uPVSWr+eSTT2jWrBlXXnklDz74IGaIinBer7dUVpWVFXwz8Pv9+P2VmBVNcP7WFVf34r13V2MFgm82Ho9R6m+l4NLLe1b6nImu6D7E0/1wNXWikoEwnUTOxs6oxByP9yeexOP9sX58Fr11PuAqO4y1/C0MZ2OM7udHJZZ4vD/xpDbvT128xzt27CA9Pb34e7e7diYW27ZN8+bNeemllzBNk0GDBrFr1y7+/ve/Ry5ZiFZW8/jjj/Poo4+WOT579mySk5MrHe8Zo+GM0d3KHH/uxa7FX69a9QOrZNpCKXPmzIl1CEddCE0urHhzpkjPgSkpru5PHIqv+9MNGpV9DSi2CdgUvZ8diLf7E39q4/7k5eXVQiTRlZ6eXipZKE/Tpk0xTZOMjIxSxzMyMmjZsmW5z2nVqhVOp7PUh/OePXuyd+9efD4fLlflekYivhqiOlnNxIkTmTBhQvH3WVlZtGvXjjFjxlR4M4+1adMhHpgwh0WLduHxGDz3Yld+/8BWbrx5EHfeNRQjTjf+iQW/38+cOXMYPXp08ZBRrAW8AWacN5Ps7dllhiOUqTCTHJw/41wMp8HKf69iw3sbsfICKJdB5/M60ee23qR3rNrPTCjxeH/iSbzdH3vjTOwfp1TYzhz7T1TTyFfkjLf7E29q8/4U9UYnGpfLxaBBg5g7dy4XXnghEHyPnTt3LuPHjy/3OSNHjuStt97Ctm2MwsnM69evp1WrVpVOFKCKyUK0shq3211uF4zT6azyD1GPHs35dOZVbFh/gDVrMtBsYNHPN5OWVvkeivqmOvc5UpxOJ2e9dSZfXTeX/csPoBzB5E4HNMmtkhj12hk4TAefnT2D/H35xQmFLrDZNH0z2z7Zzjkfn0WTPrW3PDae7k88ipf7Y2sfNuXsJXEMA19Uq1PGy/2JN1oHJ5s7HH6czpq9Pify/Z0wYQLXXnstgwcPZujQoUyZMoXc3NzieYTjxo2jTZs2PP744wDcfvvt/Otf/+Kee+7hrrvuYsOGDfz1r3/l7rvvrtJ1q5QsxDKrqamu3ZrQsVM6M2duwONJ3B+kRJTSKoXzvzyPjMWZ7Jq3C21pmg1sSrtR7TAcBrOvmVMqUSiiLU0gP8C8O77jom8vlIlscSKwaxPeJfOwsw9hpDXCPfA0HG061/6FGnWmokQBDFSD9rV/bVFplt5IQWAKBf55wGNk+0fiUafjcdyLqSLwc1HHXXbZZezbt49HHnmEvXv30r9/f7788svi6QHbt28vfq+F4MTJWbNmcd9999G3b1/atGnDPffcw4MPPlil61Z5GCJWWY2o35RStBzWgpbDSs+XydmVw46vdoZ8T9CW5vD6w2T+nEmLIS3KbySiQlsWuR/8C9+y78Ewg3s9KAPvwi9w9T+JlIvH1+o22KrlAEhrAzl7yt9XQpnQbiQqOb53DE1klr2SnMDlgJejb0cWAf0FOf55pDrewzS6xzDC+DR+/PiQH9DnzZtX5tjw4cNZtGhRja5Z5WQhVlmNEOU5vO5wxR8egUNrDkmyEGP5s9/Ct2x+8Bu7cEmzDv7tWzYfI60xyWddU2vXU8rAPHkS1pd3BXes1CWWUSsTkhpjDruv1q4nqkZrTZ71IFBAcLlTybcjC8gn35pIqvFhTOITpVVrgmMsshohymMmVe5H2PQkdGXzuGcX5FKwcCahMztNwcKZeE67CMOTUmvXVc16Y573Kvavr6O3fB1MGBweVNdzMY4fh0qOTal3beVC4Ag4GqLM+jl/ytYrsXW4gmoWll6GZa+T3oU4IK+gok5rPqgZ7kZuvIdCbzuuTEXb0yJbMVSEF9i8CgIVrH0P+AlsXoWr19BavbZq2Anz5Mnokb8Hfx64UlFG7F767C0T0UdmAhYoB7rRWag241GejjGLKRYsvalS7Ww2YSLJQqzFf1F4IcIwXSZ9xx8fuoGC7ld3J6lZUvSCEmXoihKFKrarDmW6UJ6GMUsUdP664BeH5hLsZgd0AA7ORK+6GJ23PiZxxYpSle1Rqb2eJlF9kiyIOu/4O/rQ57beQLAXQZmqeIllp/M7csKfa/eTqqg6R8uOtdquLtLbigrNHVuC3gI7H731j9EOKaYcaiRQURKfhkOdEI1wRAVkGELUeUophk0eSo9x3dnwzkZyduWS1MRDl0u60PR42X48HpjN2+Do2JPA9uDW2GUYBo4OPTCbJ+Zwkc5dBXnrwrSwIHc5Om89KjlMxclQ59casn9C73sXvFvBbIhqci40Pgtl1E7Z4NqmVApu81a81pSQbTzmHSgVn/HXN5IsiITRoHMDBk8cFOswRAgpl4wn68Xfo/OzSycMhoFKTiPl4jtjF1ykFVRufJ6CTVDFZEFrG731D7D/Q8Ak2HNhoLO+hz0vQY/XUc74XB7qNsajdTY+exrB2CHY4a1wG7fiMm6JYXSiJBmGEEJEhdm4BQ3u+jvu4WeDu7D72Z2Ee/jZNBj/d8zGCby01ajk+Hxl25W0d1phogBHhzgKk7GCreiN91T9nFGilEGS4w+kOb/Dbd4BgNscT5pzPh7HA1JILY5Iz4IQImqM9MaknHMdyWdfC1YATEf9eENIHw6GJ3wbMxXSh1XptFoH0HunhWlhQc4v6NwVqJQwE4FjzFBtcJs3AzNxmzdhKKmyG2+kZ0EIEXVKKZTDWT8SBUCZKagW14Zv0+pWVEUJxbHyN0HgQAWNDMhaWLXzHkNrP7Y+jNZ1b+tnUTukZ0EIEZfsgly8i2bh/emr4D4SKQ1wDz4d9/CzMJLTYh1e1bW8CfgSUIAJShWWodbQ8kZoeXM1TlrOZNEyVHCJZnXOrndSYL2A3/6IYElmNy7jItzmHRgqMSejivJJsiCEiDt29mGyXnoY++Be0MGqj/aR/eR//R4FP88l/dbHMBs2jXGUVaNUsCNX9fkUdWQm2r8P5WwOTc5HuVtX76SeTmCkgJ0bppEFqQOqfGpLbyLXfwmaHI7OhfDis9/Fb39BivN92eipHpFhCCFE3Mn95CXsQxnFiUIxrdHZh8h9/1+xCawWKFdrVOvbMTo8gmp9W/UTBQgOWzS/nNAv5WYwoUireq2C/MD/HZMoFLHQZJMfkP196hNJFoQQccU6vB//mp/Kr8cAYNsENq/EytwV3cDilGpzN6QNLvquxCMGONJRx/2rynNDLHsdll5G2UShuAWW/gVLb6h6wKJOkmRBCBFXrN2by/YolCOwa2MUool/yvCgur2K6vgXSO4FZhq4WkOrW1F9PkMlHVflc1o6XAGpEu3s+lWiuj6TOQtCiPhimBW3qUq7ekAZLmj2W1Sz39bO+VTl9lJRqoqrN0SdJcmCEDFkB2wO/LCRzLlrCOT5SG7fmNbn9yelY/0tU+3o0AMczvC7VBoGzs69oxdUPeNQwwEPUBCmVZLs21CPSLIgRIz4Duay7J7p5GzIBEOBrTloKna8tZiON55I55tPinWIMWEkpeAeNgbvgpnlD0cohav/KRhpjaIfXD2hVCpu4wa89otA+UNCbuMmlJIdIesLmbMgRAxorVnx0Afkbt4XPGAHX5C1Ffx766vz2TNzRazCi7nksVfj7FE4ac8wSv3t6HI8KeffFKPI6g+3eR9O4/LC78wSf8BpXIXbvDtWoYkYkJ4FIWIga9VujvwaZja/gm2vL6DlWX3qTZXDkpTDSerVDxDYvBLvL19jHz6ASm+Ee+CpOI/rhzIS63OOtnIg8230vnfAlwGOBtD0IlSLa2K2CZRSJsmOx7D0dfitj7DZh0FznOZFmKpLTGISsSPJghAxcGDBJpRpoK0QywM15G07SMHeLJJaNYhucHFCKYWzy/E4u8Tvnga1QQcOoddcDQWbKa7I6N8He15B73sfer6F8nSMWXym6orpeCBm1xfxIbHScyHqCNtvlV4SH4L2V69Mr6g79Pa/QsEWypZutiBwGL1pQizCEqIU6VkQIgbSurdEB8LX9XekuvG0rPu9Cjrgx7fsOwp+nI19YA/Kk4Kr/8l4TjgTI71+T1LU/oNwYAbhih+Rtyrud40UiU+SBSFioNkp3XA2SsZ/JL94cmMphqL1bwZguOr2r6j2e8l+7a8Etqwq3DhJowvyKPj2I7yLZ5N+858wW7SLdZixk7+O0IlCEQW5K0CSBRFDMgwhRAwYTpPjH78Iw2mizBLjESr4J71XazrdeGLM4qst+XPfJbB1dfCbkssgtY0uyCX7jSfRoco614DOO4C98i2sH6dgL38dnb271q9ROypTWEqDckY8EiHCqdsfW4Sowxr2b8eQ129gx9uLyZi9CqvAT1KbRrS5eCBtLhqI6a7bv57a76Xgx9mhSzfbNvaBPQQ2r8R5XN/auabW6F9fx172avCAMtDahqUvoXpcjDH0HlQ8VX5MOb4Su0YqSB8RtZCEKE/dfjUSoo5L6diEHhPPosfEs9BaJ9QySWv/HvDmh29kGAS2r6u9ZGHth9hLXy5xwC7x2AfYziTMQbfXyrVqgzKT0C2vhd2hih8Z0GgMyt0m2qEJUYoMQwgRJxIpUQBAVeLlRVNrezxoO4C9fFr4NqveQXuza+V6tUW1vhMan1v4nVn679QBqE6PxSKsatNao7U31mGIWlYveha01ixbmsGaNRmkpEJWlpcmTWQMUIhIMpu1QaU2QOccCd1I27XWq0DmSig4HL6N7UfvWoTqPLp2rlkLlHJA579D8yvR+98H705wNkU1uQAanIhScTRsEoalN+EN/Bu//hTwoWiGy7wKt3E9SqXFOjxRQwmfLKxckcltN3/Or8sz8SQZvPyf7gzo8xI33DSQhyefjGlK54oQkaBME89J55P/xf/Kb2AYmG2Pw9G26lsol0cH8irX0F/JdlGklIK0gai0gbEOpVoC9s/kBsYBfopWd2j24bX+id+aSarzXZRKj2mMkbB7WytSHDXbeTM3EG6zrviR0O+UGzceZOwZb7Bq5b5Sxwu8Af7x9CJ+d+/sGEWWePz5ASx/7c9qF3WbZ+R5uAadHvymqERz4XCL0bglaVf+X61dS6W3r1y7Bh1q7ZoCtA6QF7gL8FF2GaiNzSYKrKdiEJmoTQnds/Dk4wvIy/NjWWUnDmkN015Zxp13DaFrt/q7HXBN2JbNopc3892z69m3LjgOfNxpzTntgR70GNsqxtGJeKAMg5SLbsc98FS8P32FtX8XKikNd78TcR0/AuV01d610ttCy4GQsazUxMajDEhrDS361do1BQT0PDQZYVpY+Oz38egHUCo1anGJ2pWwyUJBQYAP3ltdbqJQxDQV099excOTTo5iZInBtjVvXLWI5e/tKHV803f72PhNJhc+O4CT7uoWo+hEPFFK4ezUC2enXhG/ljn8fqwZtwaHGnSJT7nKBMPEPOnhxJtIGmOWXk3wrSRcafICbL0dU0X+Z0BERsIOQ2Qd8eKvoFtcKUVmRrj1zSKUJW9sZfm7O4Kz2UvW2ilMzj6+dyn7N8bXrHOR+FSDDpjnvoLqNCqYIASPQrsRmGf/G9W8T0zjS0QKF2X3tSivoTvisYjISdiehQYN3bjdJl5v6FKqWmtatZZuseqY/68NKCNEby9gGIqFL23mvCely1dEl0pvi3nyI+jh9wdXR7jTUS75PY8UhzodeDJMC4WiDQadohWSiICE7Vlwux1cenlvTEfoLkfb1lx+Zd38pKG1ZsOSA8z/aBvL5+3BqmBTotq2Z8WRkIkCgG1pdi07FL2AhDiGciaj0lpLohBhptENhzqN0KWrNR7zTlRl6m6IuJWwPQsAD0wcweefrSfriLfcuQt33jWEzp3r3q53qxZk8tydC9my4uibcaOWSdz410GMHlc7y9Aq4nCbBLyhswVlgDOpbqwPF0LUTLLjH+QGbsbSPxFMGmyCn0Ut3MZdOI1LYxugqLGETvU6dGjIV/PGccLwtqWOp6e5eOTRk/nL46fHKLLqW/vjPh4Y9SVbV5X+1H5obz5P3TCfGS+ti0ocfX7TBiNMr4224fgLpUStEPWBUumkOKaT4vgfTuO3ONSZuI2bSXV+jcdxn0wqTQAJ3bMA0LVrY76YcxUb1h9gzZoMNBtYuvIW0tKSYx1atfz7/37CDtghhwBeeuAnzriqM56UyFaoPOW+7ix5c1twl8RjOm0MU5HW0kP/yyq37r2k7O3ZrHl9Lbu+3Q22puWIlvS8ricNj2tQO4ELISJCKYVDjcRhjKzW87XOLfw7D5Df93iT0D0LJXXt1oSzzu4KgMdTN0s979mczeoFmYTb0bcgJ8CCT7ZHPJbWfRty/YcnBocaFChTFfc0NGibxO1zT8OVXLVcdNus7bw/8kNWTl3FwZUHObj6EGv+s5YPT/6IDe9ujMQ/QwgRY5beSK5/PNn+4Jbs2f6R5PrvxtKbYxyZKCnhexYSyYHdFZepNUzF/l3RKWfb69zWPLLjfH7+71Z2/HwQ06nocWYr+lzYBofLRGtNwRE/ylR40sInaNnbs/n6pm+wA3a5SzG/v/d7GvduTJPejSP5TxJCRJFlryIncBng5ejbkUVAf0GOfx6pjvcwje4xjFAUkWShDmnUIqnCNraladSy4na1JbmRi5PvKV18ybY185/fwPfPrmf/xhwA2g5qxOkP9KTfb9uVe561/12HtnX5u/QCGIrVr67mpGdOrM3whRAxorUmz3oAKCA4IbLk25EF5JNvTSTV+DAm8YnS6s0wRCJo0zWdboObhN35151kMuKCqs8VqC22rXnrmkV8dPcS9m/KKT6+a+kh/nvZAmb/aVW5z9s5b1dxL0J5dECz85tdtR6vECI2bL0SW68hdEEnC0svw7KjM2lbhCfJQh1zy5NDMAwVMmG49k8DSUmvvXr7VfXr+ztY+vb2spUdC18PZk1eWX79hdB5QtXaCCHqBEtvqlQ7m8q1E5ElyUIdc/zJLfnzZ6Np3r50oZmUBk7ueHYYF90bmdrrO345yPQbfuSxLp/zeLcZfHT3EjLXZZVpN//5DSgz9DIpw6FY+O+yv/ytRrYM+zxlKlqNbFm94IUQcUepyq5IS4loHKJyZM5CHTRodGteW38xK7/PYO/WbNIbexg4uhUuT2T+O79/bj0f37MUw6GwA8GP9wte3MiCqRu5ZvoI+l50tI7FnhVHwg4n2IHyKzv2vK4Hq19dE/J52tL0vlE2oREiUTjUSCAJyA/TKg2HOiFKEYlwpGehjjIMRd9TWjLm2q6ccF67iCUKWxfu5+N7lgIUJwoQnEhpW5o3rljAwW1HN+NyVVS1UYE7tWysDTo34ORnT0IZqlQPgypcjnnCX4bRbGCzmvxThBBxRKkU3OatYdt4zDtQsgFVXJBkQYT1/XPrQ1dq1GDbsKjEsEK/S9qFrewI0Pei8ldEHHdJFy6cez7druhKSpsUklsl0/nCzpw/81x63yS9CkIkGrcxHpdxI8HqbkUfNAxA4TZuw2XcErvgRCkyDCHC2jA3s1SPwrG0pdnwdUbx9yfe3Y1Fr2xG21aZKpOGqUht7mbg1R1Cnq9xz8ac+FT1KsAJIeoWpQySHH/Ara8jz/4EALc5nmTnhRiqVYyjEyVJz4IIq1Il3Uu0adollZtnnownPViEyXCUrux429zTKizQJERNaDuAvWM+9q//xV79Ljp7d6xDEhUwVBvc5s0AuM2bJFGIQ9KzIMLqekYLlr+3I2TvgjIV3c4ovUqhyynNeWTn+Sx9eztbF+7HdBh0G92C3ue3wXRKfioiR+9divXtJMg/AMoMrtld/Cyq82iMERNRDhn/FqI6JFkQYZ18TzeWTg+x14QKDi2ccEvnMg+5kh0Mu7Ezw24s+5gQkaAPbsCafR9oq/CAdfSxLXOx/AU4zngiRtEJUbfJxzwRVvuhTbj4+UHBxKDExEXDVJgOxbh3R9CovayDFrFnL38t2JNQ3pas2oYd36P3r416XEIkAulZEBUacdtxdBzRlAUvbGTjt5kYZnDDqBG3H0fTLqkVn0CICNMBL3r7d+UnCkWUib3lK8ymPaIXWBRo2we+XaBc4GqNqtREIyGqRpKFOFKQ6yfrgJe0xm6SUuNrEmDrvg25ZOrgWIchRPkC+eEThSLeslVH6ypt5aN3vwD73gYrO3jQ3RFa3wZNLpSkQdQqSRbiwK6NWbzxp2V8++4WrIDGMBUnXtSBax7pT/ueDWMdnhDxz5UKjmQIhNueXaPSWkctpEjSthe9/nrIWU6pjZi829BbHgLvDlSbu2MWn0g8MmchxratPsxdwz4rThQgWB1x/kfbuOuEz9mw5ECMIxQi/inDgep2HmG3ZAXUcWdHKaIIy3wbcpZRdsfGwlVLu59H58sGTKL2SLJQAzu2H+GxP3/PdVd/zJ23zWT2rE3YdtW2Rpxy2wLycwLFiUIRO6DxFVg8feN8tJbtFoWoiNF3HKS0CC6ZLO/xATejUppHOarI0JlvVdDCRO97LyqxiPqhWsnC888/T8eOHfF4PAwbNozFixdX6nnTp09HKcWFF15YncvGleef+4k+PV7kqb8t4OOP1vH2myu55ML3OPXE19i/L1xX6FHb1xxm9YJM7BAbL9mWZsuKQ6z/WXoXhKiI8jTEPPvfqE6jSicMqa0wRv4+mEwkAK01eLcTfs92Cwq2RCskUQ9UOVl45513mDBhApMmTWLJkiX069ePsWPHkpmZGfZ5W7du5f777+ekk06qdrDx4tOP1zHxgbloDZalsW1NIBDsDlzxayaXX/pBpXoDtq89UqnrbV97uCbhClFvqOQmmCc/gnn555jnvIx5wf8wL34Xo+s5sQ6t1iilwKhoe2cTTFmpJGpPlZOFZ555hptvvpnrr7+eXr16MXXqVJKTk5k2bVrI51iWxVVXXcWjjz5K5851v0jP359cgGGUP9PYsjSLF+1i8Y8Vl5hNSqnc/NJ4WxkhRLxT7nRUs16oRp1RFcxjqJOanMPRjZfKY6EanxWtaEQ9UKXVED6fj19++YWJEycWHzMMg1GjRrFw4cKQz/vTn/5E8+bNufHGG/n+++8rvI7X68Xr9RZ/n5UVXO7k9/vx+/1VCbmUoufW5Bz79+Wxbu0+XG5FqU0RSnA4DL6cuZ6Bg8KPj/YY0ZiGLZzkZoWOx51k0vfUZjWKubJq4/4kMrk/4cn9Ca82749uMg69bxbYPspOcjQhqTMqZSSqDv1f1Ob9kZ/B2lelZGH//v1YlkWLFi1KHW/RogVr15ZfGW3+/Pm8+uqrLFu2rNLXefzxx3n00UfLHJ89ezbJyRV1v1Vszpw5NXr+y//pXolWWcycObPCVle+UHFX4Tff1Szeqqrp/Ul0cn/Ck/sTXu3dnz+Ef3jL7Fq6TnTVxv3Jy6vcvDFReRGts5Cdnc0111zDyy+/TNOmTSv9vIkTJzJhwoTi77OysmjXrh1jxowhPT292vH4fD6++uor1qxqgN8H/Qe0YNSYzjgcle+m9Pst+vf5N4cPe8O2+8ezY7j08t4Vnk9rzZt/Xs6Hz65CGQrDUNh2cB7Eubd05/rHBoUc8qhtfr+fOXPmMHr0aJxOGfo4ltyf8OT+hBeJ+6NtPxyZh85bA4YTlX4SJPeukwWZavP+FPVGJ6rnn3+ev//97+zdu5d+/frx3HPPMXTo0AqfN336dK644gouuOACPv744ypds0rJQtOmTTFNk4yMjFLHMzIyaNmyZZn2mzZtYuvWrZx33nnFx2w72GXmcDhYt24dXbp0KfM8t9uN2112dzin01ntH6I9u7MZd/UHjL+nEf+c8jPeAhu/36Z161TeevdiBg46uiXqgf15vPHfFSxfnoHbbXLmWV0457xuOBwGTqeTq67uzz+eXlTuMkmlIC3NzW8u7l3pWK//8xDOuaUXX7+5if2782jcIonTr+xMy05p1fq31lRN7nN9IPcnPLk/4dXu/XFC87OBBKkfQe3cn0T++StaZDB16lSGDRvGlClTGDt2LOvWraN589BD3zVdZFClZMHlcjFo0CDmzp1bvPzRtm3mzp3L+PHjy7Tv0aMHK1asKHXsj3/8I9nZ2Tz77LO0a9euWkFXldcb4Nyz3mb37iNAIwKBYKIAkJGRy7lnvs3Cn2+gQ4eGfPDeGm696XMCARulgjOP3/zfCjp3acQnMy6jQ4eG3P/gcL6dt5Ulv+wtlTA4HAZKwbT/nk9yctV+WJu3S+Hyh/rW5j9bCCFEHXFsb0ioD80lFxkATJ06lRkzZjBt2jQeeuihcs9dcpHB999/z+HDh6scX5WHISZMmMC1117L4MGDGTp0KFOmTCE3N7c48HHjxtGmTRsef/xxPB4Pffr0KfX8hg0bApQ5Hkkff7iODesP4kkqO9xgWZr8fD9Tn/+F31zcgxuv+xStNUdXPga/2Lb1MOefPZ2flt5MSoqLz7+8kqnP/8xL/17C7l3ZOBwG51/Yjft+dwL9+pftZRFCCJFYtm1vQZKRVKNz5Nv5AGU+PE+aNInJkyeXOhatRQblqXKycNlll7Fv3z4eeeQR9u7dS//+/fnyyy+LJz1u374dw4ivpUoffbgm7Li/ZWnefWcV27cfQSmwy9mPxrI0WzYf5vNP13PRJT1JTnYy4f+GM+H/huP1BnA6zajNLRBCCJFYduzYUWpOXnm9CtFaZFCeak1wHD9+fLnDDgDz5s0L+9zXXnutOpeskcOHCgqHC0K/mefk+PhixkasENUUAUxTMXPGRi66pGep42637MclRF2htUbvXYre8xPYNqp5H1Tb4ShDfo9F7KSnp9doAn95qrvIoDz14rejW/cm/LhoZ8jHlYIunRuxcuW+sOexbY23IFDb4QkhokTn7MWa+yAc2lhcElqvtCC5OeYZf0M16RbjCIUILVqLDMoTX+MFEbByRSbzv9+BZYVvd9OtA+nWrTHhVhwppejTNzE2ohGivtGBAqwv74LDhXsmaCv4ByB/P9aXd6Fzw5etFyKWSi4yKFK0yGD48OFl2hctMli2bFnxn/PPP5/TTjuNZcuWVWmRQUL3LGzceJAxp/+PvLzQ1bwMQ3HiSe24elxfLEtz/32hC5kYhmLctbJiQYi6SG/5CnJClGHXNgTysNd8gDn49ugGJkQVxGqRQUInC3/76w/k5IQv+3n9jf154u9n4HKZXH9jf+bM2sSsL4P7wBetiDDNYKGkfz5/Jq1ax6b2gRCiZuwtXxGctxRiXpK20VtmgyQLIo7FapFBwiYLBQUB3ntndYXt0hu4iycoOhwGb717Ma+8tISpz//M5s2HUQacfkYn7v3dME46uUOkwxZCRIovh/DbOgP++lEm2LLX4bOnY+n1KFJwGmfhNM5GqbIz8EX8icUig4RNFo4cLii3wuKxfl5culvS4TC47Y7B3HbHYAoKAjgcRpXKQQsh4pNq0Al9YP3ReQplW0B6+6jGFAsF1j/xWlMI7lppAQYB6yu81rOkON/EUG1iG6CISwn7LmjrihMFCC6ZDMXjcUiiIESCMLpfECZRANAYPX4TtXhiwWd9WpgoQDBRgKJdK212keu/Aa3LKTQj6r2EfSesbO2D47o2jnAkIp5YPgvvIS+2JS+I9Y1q3gfV45Ki7459FNqcgOo8JtphRY3WGq/1IqHrzVjYbCCgf4hmWKKOSNhhiEaNPHQ5rhGbNh4K2+7c82RddX1wcM0hlv9zOVs+24oOaJypTrpf1Y2+d/Ulqakn1uGJKDGG3Ytu2BF75RuQszd40N0Ao+clqOOvSejCTJoD2KyroJWDgP0dTqN6mw2JxJWwvxlKKe5/cAS33zwjxOPQqnUa557fNcqRiWjLWJzBF5fOwvbb6MIKnf4cP6teWc3WGVs5b+a5JDdPjnGUIhqUUqgev0F1vwByMoLDEqktEzpJOKqCYjPFpPCcKCthhyEArryqD3feNQQILn8sohQ0bpLEh59citNpxio8EQW2ZfPNbd9i+6ziRKGItjS5e/L4cfJPMYpOxIpSBiqtFSq9bT1JFEDRFEWzCloFMFVsaslonVv4d/1YkVLXJHSyoJTi8SfP4Ms5V/Gbi3vQrVsTAP748En8svwWevWu6BdH1HW7v91N7u5cQs3Z0pZmy6dbKDhQEN3ARMLSuauwNz+EvewU7OWnYm/5PTpvTazDQikTl3ktoecsGCga4DTOjmZYWHojuf7xZPtPBCDbP5Jc/91YenNU4xDh1YuUesSJ7RhxYjv8fj8zZ87ktjsH43Q6Yx2WiIKDqw+hTFWmV6EkHdAc2ZKFp0nk5i7kbMhkx/s/c/DHLaCh0aD2tL10MOk9WkXsmiL6dOY76G2TCH4OK+z23/8xev+H6LaPEeuXXLdxE5b9EwH9LaULVJmAg2THv6Naa8GyV5ETuAzwcvTeWAT0F+T455HqeA/T6B61eERoCd2zIIQjyURXot6GwxO54ag9X6xg8bXT2Pv5r3j3ZuHNyGLvrFX8fN1r7PxgScSuK6JL560pTBQ0pecHWIBGb/9TbAIrQSkXyY6XSTIfx1A9ATeKhriMy0l1zsBhDI1aLFpr8qwHgALKzqewgHzyrYlRi0eEJ8mCSGjtxlRcZCeldQqNe0VmCW3u1gOs+fMMsHXp3o3Cr9f/fRZZa/dE5NoiunTGG4R/SY2Pl1ulHLjMy0hzfk4D1xrSXUtIcvwZU3WOahy2Xomt11BU56EsC0svw7IrWsEhoiE+fnqFiJC0dql0uagzygi9nWj/+/qFfbwmdn3wS/idTE3Fzvd+ici1RZRlLyL8ioPKrkaoHyy9qVLtbCrXTkSWJAsi4Z341EjajQluxaocCmUG/6BgwP396X515GptHPple/j5Epbm0M/bInZ9EU3ycloVSlV2uXJKROMQlVMvJjiK+s2R5GD0a2ewb9l+Nn+0Ge8hL6ntU+l6WVfS2qWitWb7nB2seW0NB1cfwpnipPP5nehxbXeSW9Sw/kIlOizC9TyIOiR9JOzbRegeBFmmXZJDjQSSgPwwrdJwqBOiFJEIR5IFUW8069+UZv2bljqmbc33E35gw/QNpVZNLJuynFWvrOas98fStG/T8k5XKY2HdSJ36/7iOQrHUqai8bDojhWLyFAtrkHveyfUo5IVHkOpFNzmrSX2qijLY94hO2HGCek3E/Xa2v+uY8P0DQClhgu0rfHn+pl99VdYvuqPNbe5aCAKFbKHQWto+9tB1T6/iB8qqQuq81MEX1ZL9iKYgIHq+FhsAqsGW2cQsBcRsJejw26+VTNuYzwu40aCvyBFb0cGoHAbt+EybonYtUXVSLIg6i2tNSumrgz9Rm5p8jPz2Tqz+nMKkts2os9jF6IMA0pMolSmAkPR6+FzST2uebXPL+KLanIO6vgvoMU1kNQNkrpDi2tRx3+JajQq1uFVyNa7yPXfQrZ/BLmBK8kN/IZs/4n4rOkRuZ5SBkmOP5Dm/A63eScAbnM8ac7v8TgeQElvTNyQYQhRbxUc8JK9NTtsG+VQZCzKoMuF1R8qaHZqd0549xZ2frAkWJQJaDSoA20uHkhKhybVPq+IT8rTEdW+nPoAfn/0g6kCW+8lx/8bNIc4WqwJNBnkW7/H5gCewjf02maoNrjNm4GZuM2bMJQUzYs3kiyIeqvSH1pq4cNNUptGdL37jJqfSIgI8VrPFSYK5Q87eK1/4DIuwVAtohuYiAuSLIh6y93YTYPjGnBk05GSH6RK0QFNq5GVK8mcu2U/ez7/Fe++bJyNkml11vGk9WhZixELERlae/HZH1JRLQi//RFu87boBCXiiiQLot5SStH3jj58P+GH8h83FcktkukwNnwVSG1r1j89m10fLEGZBlprlFLsfOdnmo/uRa9HzsWQ3U1FHAv2KHgraGVg653RCEfEIZngKOq1rld0pdeNPYHCSYdFFLgbuhn71mgMZ/hfk62vLWBX4R4P2rILSzsHS9hmfrWaDf+cG5nghaglijQqfjvQKCJTFl3EP+lZEPWaUooT/jKMjmd3YM1/13Jw1SGcKQ46nd+Jbld0xdM4/E6UVoGf7W8uCt1Aw+6PltLpxhNxNaxhgSchIkSpFBxqFAE9l9BDERZO8/xohiXiiCQLIqydSw+xdcF+DEPR5bTmtOiRHuuQap1SilYjW1V6bkJJR37diZXrC9tGB2wO/riFlmN7VzdEISLOY95DTuBbghN4jt3cSeFUF2Kq42IQmYgHkiyIch3ansv/Ll/ItkUHjq4G0NB9bEuu/N8JpDaVqmoAtjdQuXa+yrUTIlZMoycpjtfJC0xAs5vgsIQNmDiNy0kyH45xhCKWJFkQZeQf9vGvk74ma09hzfYSKwU2fJXB1DO+4d7Fo3G4ZdJeSpdmlWonhZdEXeAwhpLm/I6A/gFbb0CRgsM4HUNV7udcJC6Z4CjK+On1LRzZlYcdKLue0LY0e1YcYfl7O2IQWfxJat2Qxid0BjNEMQZDkdqtOek9qz7EIaJLa40+sB575yL0oc2xDidmlDJwGifhNm/AZV4miYIApGdBlGPpW9vRxw5ZlqAM+Pm/Wxl0dceoxRTPuj94Jr/c/F98h3JLbRilTIWZ7KbXZJkUFu/snQuwFz8HWduPHmzcFXPovaiW/WMWlxDxQnoWRBk5ByqYsGdDdkZBlKKJf0mtGjDk9etp99vBmMkuAAy3g1bn92fI69eT2lk+mcUze/v32F89AFnH9JYd3IQ162703qWxCUyIOCI9C6KMRu2TydnlDdm7oExFky6p0Q0qzrmbpNL13lEcd/cZWAV+TI8TZcgmOPFO2xb2wr9TfglPG7TCWvQM5gX/lU2NRL0myYIoY8h1Hdn+w6GQj2tLc8JN1d9YKZEpQ+Eo7F0Q8U/v+RnyD4RrAYc3w8EN0KRb1OIC0P6DsP9DdNZCQKPSBkHT36JcMlk2Xqzdl4Rb1ax+ijdEqfl4I8MQoowBl7enw/AmpSsaFlIG9DqvNd3PlAl7IgHkZlaqmc7NiHAgx1wv60f0r2egdz4FWfMh6wf0rn8Fjx2SiqAi+iRZEGU4XCa3zjqF4Td3xuE5+iPiSnVw6v09uPa9ERjSxR7XCrbu5PBX8zn89QL8meE+OddznoaVaqY8jSIbRwnal4HecCvYBZQeHrFB+9Gb7kbn19/VGiI2ZBhClMud6uTiFwZz9l/7snv5YZShaDOwEe4U+ZGJZ77M/ez552sUbNxa6njq0P60vO0qzOSk2AQWp1TroeBKBV9O6EapLaFZr6jFpPe9C7aXslUUATRojc58E9VBiiSJ6JGeBRFWUkMXXU5pTueTmkmiEOcCWTlsn/QPCjZvL/NYzs/L2fnEC2gr/BbE9Y1yuDEGht9y2Rh8J0pF8aXy8DeUnygUseDw19GKRghAkgUhyrADFoFcL1rXkZlHhQ7P+hbrSBbY5bzR2JqC9VvIWboq+oHFOaPHbzBO+B04iyaqFQ6xuRtgnPQIRsfToxuQrkRp8Mq0EaIWyUdFIQplr93L1tcXsO/b9WBrnA2TaXPxANpfOQxHSvzvhXHk20Vgh0lwDEXWdz+SNrhv9IKqI4weF6GOOwe9cwHkH4SU5qg2J6BMZ/SDSR0A+RsJvfujGWwjRBTVi2RBa82ypRmsWZNBSipkZXlp0iQGLwIibh1YtJlf738v2JtQ+IbrP5zH1v8Ek4dBU6+GON8Lw8rODd/A1gQOZ0cnmDpIOdyojqfFOgxU8yvR+94J08JCtbgmavEIAfVgGGLlikxOGv4fThn5GvfeNQuAAX1eYvLD87CscOOCor6wvAFWPfwJ2rJLlWsGwNbkbt7Pllfmxya4KnA0bhi+gWHgbN4kKrGI6lPJ3VHt/1D4XckENfi1an0XKm1I1OMS9VtCJwsbNx5k7BlvsGrlvlLHC7wB/vH0In537+wYRSbiyb5v1hLILii/iB+Ardn9yTIsrz+qcVVVw1EjIVyVQdum4WnDoxdQgtO2hd67DHvbPPT+NbU6x0W1uAbV4w1oeCoYyWB4IH04qtsrqDbja+06QlRWQg9DPPn4AvLy/FjHfloEtIZpryzjzruG0LWbfNqqz3I27kM5DHQgdE+Tle/Hty++u/AbnnEiR+b9iG/X3rKTHBWkDh1AUq+usQkuwdibZ2P//ALklfgg0qAj5vD7US1rZz6BShsiPQgibiRsz0JBQYAP3ltdbqJQxDQV09+W2eH1neF2BLPHitq54nuei+Fx037SvaSNGATm0V9t5XHT+PzRtL7rOtnfoBbYG2Zgf/do6UQB4Mg2rFn3oPcui0lcQkRSwvYsZB3x4veHn5OglCIzo4JJYSLhNTupK1tfDTMnQUFKl+a4msX/5llmajKtx19LYNxFeLfuRJkmni4dMDzxv5qjLtABL/bif4Z6FLTG+umfOM6bFtW4hIi0hO1ZaNDQjbuC2etaa1q1jv83ABFZaT1a0mhoRwhVwlpDp+tH1KlP5Y70NFL69iS5dzdJFGqR3rkA/GGqPWLDgXXow1ujFZIQUZGwyYLb7eDSy3tjOkK/wNu25vIr+0QxKhGv+jz2Gxoc3wYAZRrBxKHwT9d7z6D5GT1jHKEIR9uB6BTRyttPcdGmcPHkVW6DKiHqioQdhgB4YOIIPv9sPVlHvOXOXbjzriF07hy9DWJE/HKmeRg49WoOL9lO5tdrCeR6SW7fmNbn9sPdPC3W4YlyaDuAXvcx9pr3IWsHKBPan4jZ52pUpPZySGpM6GUzR6kkmTQtEktCJwsdOjTkq3njuOv2mSz4YWfx8bRUJw88NIwJ98syskTlz/Wz/9cDaEvTpE9j3A0r7opXStFoUAcaDeoQhQhFTWg7gDX3Qdj1Y4mDFmyfj7X9e4xT/oQRgQJLqt1IcCRDIC9UC2jUGRp2rvVrCxFLCZ0sAHTt2pgvv7qaDesPsGZNBpoNLFt1K2lpyRU/WdQ5ls/il78tYc1rawnkBuvnGy6Drpcex9DJQ3GlxveKBlE5es37hYnCMZ/ytQUo7O//hGo1COVOr9XrKocHY/Dt2IueLu9RQGEMGV+n5rfEC61zC//OAxrENhhRRsLOWThW125NOOvs4Bpzj0feMBKRtjVf3/wNK15YWZwoANg+m/Vvb+DL335JoEA24KnrtNbYa94j9HCABsuP3vhFRK5v9LgIY/j/geuYRCSlOcaov2G0HhqR6yYqS28k138X2f4TAcj2jyTXfw+W3hzjyERJCd+zIOqPnd/sYvusHeU+pi3NvqX72fjuRnqM6xHlyEStCuRBzt7wbZRCH1wfsRCM7hcGN57a/RMUHILUlqiWA6K7lXUdorWNzVbAwqA9SgWHBS17FTmBywAvR9+OLAJ6Jjn+b0h1vIdpdI9N0KIUSRZEwlj35nqUqdChCnEpWPu/9ZIs1HWqMi9bCkxXZMMwnah2IyJ6jbpOa43PfgOv9W80uwuPpuEyrsBt3EOe9QBQANiUfjuygHzyrYmkGh9GO2xRDkmDRcLI3p4dOlEA0JCzM9waeVEXKIcbWg2GcJ/itRWcjChiqsB6jAJrUolEASAbn/0KuYFLsPUagolCeSwsvQzLXheFSEVFpGchAvx+iy9nbmTD+oOkprk459yutGlbuxOtRFlJTZOC6W+Ywp2eJp6oxSMixzj+auw9P5f/oDIhvS2qjax2iiXLXonPDlXJ0sZmTaXOY7MJExmKiLVq9Sw8//zzdOzYEY/Hw7Bhw1i8eHHIti+//DInnXQSjRo1olGjRowaNSps+7puzuzN9OjyPFdd/hF/+dN3/N+EOfTu/iJ33/kFPp8V6/ASWtdLu4RNFDCg62XHRS0eETlG6yEYIx4M9i4oA1BHexrSWmGOfgZlhK/gKiLLZ0+n9Bbb1ZVSC+cQNVXlZOGdd95hwoQJTJo0iSVLltCvXz/Gjh1LZmb5FcvmzZvHFVdcwTfffMPChQtp164dY8aMYdeuXTUOPt78uGgXl138Pvv3B9dgBwIarYOVIv/72q/cfWdkZmeLoI7ndqRxn8Yos+yyNWUqUlqm0ONq+YSSKIxu52Ne8iFGv+tRHU5BdRqNcepfMC98E5XaMtbh1XvB1Qw1/YCUhkOdUBvhiBqqcrLwzDPPcPPNN3P99dfTq1cvpk6dSnJyMtOmld/d9Oabb3LHHXfQv39/evTowSuvvIJt28ydO7fGwcebx//yPVrrcjcwtG3NW2+sZOPGg9EPrJ4wXSZnv3cmbU8Llm0uXPYOQLP+TTnnk7NxN5J9EhKJSmmG0f8GzNMewzz5EYyOp6EMGV2NB4oGVPwWkxT2UY95R/HKCRFbVfqt8vl8/PLLL0ycOLH4mGEYjBo1ioULF1bqHHl5efj9fho3bhyyjdfrxev1Fn+flZUFgN/vx+/3VyXkUoqeW5NzhHLoUAELFmzH6VI4Q9SON03FRx+s4t4J8ZkpR/L+RIuRanDaf04la0sWexbuRdua5oOa0bhn8OctXn9+EoHcn/Dq3f2xziFgzQvTwMSprkApA5/9PwKB4HyiQCAJULiNG1Bcj9+u+v2qN/c4ipSuwu4ru3fvpk2bNixYsIDhw49OHnrggQf49ttv+fHHH8M8O+iOO+5g1qxZrFq1Co+n/MlmkydP5tFHHy1z/K233iI5WSovCiGECC0vL48rr7ySI0eOkJ5e+5PLs7KyaNCgAXcyDbeq2XuSV+fxPDdELNbaEtX+uieeeILp06czb968kIkCwMSJE5kwYULx91lZWcVzHWpyM/1+P3PmzGH06NE4nbVbxTEvz0fv7lPDTmI0DJj8p1O58eYBtXrt2hLJ+5MI5P6Elwj3R/vysL5+CA6sDU6Y1DbBsSwNjbtinvE3lKt629onwv2pKlvvJz/wOyy9lOBkRwUEULQk2TEF0zi64Vdt3p+i3mhRe6qULDRt2hTTNMnIyCh1PCMjg5Ytw08oeuqpp3jiiSf46quv6Nu3b9i2brcbt7vsOJXT6ayVX7LaOk9JDRo4Of+CHrz95spyd7gMXtfgt5cdH/cvFJG4P4lE7k94dfn+WAufxTi4ErDLVpM+tAb10zOYp/65Rteoy/en6lrhdr1FwF5OQH8HOoBp9MWhTkWp0islbL0HANNxEKezbY2uWn/ub/RUaYKjy+Vi0KBBpSYnFk1WLDkscawnn3ySP//5z3z55ZcMHjy4+tHGuT88fBJNmyZjHjMbv2hPmceeOJ0mTcJP6BFCxIbOP4je8lVhb0J5DWz01nno3PJXfonQHEY/POZdeBz34TTOKJUoBOyl5PgvJ8c/FoAc/2hy/FcRsH+NVbiiHFVeDTFhwgRefvllXn/9ddasWcPtt99Obm4u119/PQDjxo0rNQHyb3/7Gw8//DDTpk2jY8eO7N27l71795KTk3iV9Nq0Tefr78Zx7vndSiUMnTo34tXXzue2OxI3URKirtOZKwp3rQzHRmfIm1ht0LoAn/UBuYHLsHTpAluW/pHcwKUE7KUxik4cq8pzFi677DL27dvHI488wt69e+nfvz9ffvklLVq0AGD79u0YxtEc5MUXX8Tn83HJJZeUOs+kSZOYPHlyzaKPQ+3aN+B/b/2GfZm5bNlymLQ0Fz16NpUta4WIe5We6y1qQOtcCqwp+Oy3gPwQrWwgQH7g96Q6Z8rrZxyo1gTH8ePHM378+HIfmzdvXqnvt27dWp1L1HnNmqfQrLlUHhOirlDN+pSY1BiyFarF8VGLKdFoXUBu4CosXTgvJCwbm3XYehWm6hON8EQYspFUPbRrYxbzP9rGT1/spCBX1iMLAaCSm6I6nhF6gyplQPuTUSktohtYAvHZ/8PSK6g4UTjKZnvkAqqjYrHlgpQ6q0f2bsnmH7cuYNnXe4qPeVIdXHxvb656uF8MIxMiPhjD78fK2g4H1lG8ZLLo74adMUc+FNsA6ziv9QZVHe5RxG/tgVgo2nJh6tSpDBs2jClTpjB27FjWrVtH8+bNy7Qv2nJhxIgReDwe/va3vzFmzBhWrVpFmzZtKn1dSRbqiQO787j3xBkc2e8tdbwgJ8Cbjy3n4N587nxuSIyiq5oDqw6y6cNNeA95SW2XStdLjyO1TfXWvgtRknKlYp71InrLHOz1n0HePkhuitH1XFTnscHtsUW1aK3R7KzScxSNMNWwCEUUX46tDRGqhEDJLRcApk6dyowZM5g2bRoPPVQ2mX3zzTdLff/KK6/wwQcfMHfuXMaNG1fp+CRZqCfe/fsKjuz3YpdXA0LDF6+s57w7ukY/sCqwvBbf3vUdWz7dinIUTnjSsOTJpQy8fwD9J/STiVCixpTDjep6LkbXc2MdSkIJ/m4mA7mVfo7b/B1KxW/NhDVGAY4avuYEdAHY0K5du1LHy1sEEK0tF8ojyUI9YNuaWa9tLD9RKGQ6FN+8vZlm8bltBQALJi5ky+dbAdCB0v+WJX9fSlIzDz3G9YhBZEKIynAZ5+Oz36Xi3SjdeMz7cZtXRiOsuLBjx45SFYrL61XYv38/lmUVrz4s0qJFC9auXVup6zz44IO0bt2aUaNGVSk+meBYSdu3HeHB+7+iQ+spNE57kv69p/KvZxeTlxf/EwS9eQHys8PHqTUc2B1qGVPs5e7OZcP0DWHnRS19Zjm2VfmJU0KI6HKZNwEuyn/rCX5C95iTSHf+iNu8MZqhxVx6enqpP+UlCzVVtOXCRx99FHbLhfJIslAJvy7PYMTQabw09RcOHSogELDZsuUwf/z9N5w56g2ys70VnySG3MkO3MnhO5GUgobNq/bDE03b5+wod+vvkvL25nFwpWwBLkS8MlUnUhxvoGhaeMRBcM8IMNUgAFzmxSglkxrLUxtbLsyePbvCLRfKI8lCBWxbc/UVH5Gb6yu154PWwcdW/JrJo498G8MIK2YYitHjumA4Qo+tWQHNaVd0imJUVRPID1RqPkIgPxCFaIQQ1eUwBpDmnE+yYypu4zbc5t2kOj4hxTkt1qHFvVhuuSDJQgXmfbOVrVsOh9wcyrI0//vvr+Tk+KIcWdVc+n/Hk5LmxDDLvuEqBadd2ZlOx1dtwks0NerRCG2H71pQpqJBlwZRikgIUV1KOXAaY/A4JuAx78I0pNBVZcVqywVJFirwy897ymwMdaz8vAAb1sd393eLDqk88/3ZdB3YpNRxp9vgN/f04v5XT4xRZJXT5uTWpLZNCV0vx1R0OKs9Sc1koy5Rt2hfBvrgF8E/voyKnyDqtcsuu4ynnnqKRx55hP79+7Ns2bIyWy7s2XO0lk7JLRdatWpV/Oepp56q0nVlNUQFXE6zwrFyAJcr/vOu9j0a8s+F57Jp+UG2rDiEy2My4IxWpDUKTqTx+yuaoRw7ylCc+sIpfHHpLGy/jS7R06NMRVLzJE74c/1Yjy0Sgw5kobc+AodmcXTmroFuNBbV8U8oh4zbi/LFYsuF+H+Hi7HRYztjV9D93bJVKj16Ng3bJp506deYUVd34eRLOhYnCnVBi6EtOP+Lc+l4bgdUYW+PI9lBz+t6cMGs80hpJXtxiLpB2170umvh0GxKL/Gx4dBs9Lpr0XZ8T5wW9Yv0LFSgV+9mnHZGR76bty3kvIV7JwzDNCXviobGPRtz+r9PI1AQwJ/tx93QjeGUey/qmAOfQd7qEA9awccOfA7NLo5qWEKEIq+ylfCf/15Av/7B8aCi+QsOR/DW3XbHIG6/s3qzS0X1OTwOkpolSaIg6iS9/wOK6gqUTxW2ESI+1JuehaVL9rJmTQYpqZCV5aVJk7IlRL3eAB9/uI4Zn60nN89Pnz7NufaGfnTu3Ii5345j1hebeO/d1Rw+VECnLo249rq+9Osffm2rEEKU4csg/IZKGnx7oxWNEBVK+GRh5YpMbr9lBsuXZeBJMnj5P90Z0Oclbrx5EH+cdFLx8MHWrYc576y32bb1CIahsG3N119tYcozi3j8yTO4Y/wQzj63K2efG9/7Jwgh6gBXS/DtJnTCYATbCBEnEroPd+PGg4w94w1WrsgsdbzAG+CZpxbyu3tnA2BZNr857x127gju+lU0odGyNFrDQ/83ly9mboxu8EKIhKWaXkz4ngUb1eySaIUjRIUSOll48vEF5OX5y52YqDVMe2UZG9YfYNYXm9i08VDICYymqZjy9KJIh1sv7NuQzUd3L+HRtp/wxyYf8eKob1jx0U50ZdanCpEompwHyX0o/yXYDD7WWHa9FPEjYYchCgoCfPDe6pAJAASTgOlvr+LA/jwcDoNAoPxNiCxLs3DBTnJzfaSkuCIVcsLb8HUGr5z7HXZAYxfuGrnp231s/DqToTd24tKXhsgW06JeUIYLur+G3jYZDs6kZJ0FGp+F6jA52EaIOJGwyULWES9+f/gdCJVSZGbkYlVyp0KfzyZFlvJXS0GWn//8Zj6Wz0aXuN1FxZUWv7qFTiOaMvT6zjGKUIjoUo40VJen0e0ehJylwYOpA1Cu5rENTIhyJOwwRIOGbtxuM2wbrTWtWqcycFCrChOG9h0a0LBh9QoYWZbNsqV7WTB/B5kZudU6R133yxtb8eYESiUKJSkDvv3H+ugGJUQcUK7mqMZjg38kURBxKmGTBbfbwaWX98YMs9OibWsuv7IPl17em+RkJ6F6wJUK1lOoThf5f19bTp8eL3LyiNc4c/SbdO/yL66+4iN27cyq8rnqsm2LDqCM0PdP27B35RH8smukEELEnYRNFgAemDiC9DR3yI2g7hg/hM6dG5Ge7ua1Ny7E4TCKiy1BMElQCsae2YXb7qh64aWn/76Q8bd/wa6d2cXHLEsz47P1nH7yf9m7p2q7ftVlylQhk7FS7cIkFEIIIWIjoZOFDh0a8tW34xh2QptSx9NSnTzy6Mk89sTpxcfGntmFb3+4jksv70VKihOHw6BX72Y8+68zeevdi0slEZWxZ3c2f578XbmPWZYmMzOXvz3xQ9X/UXVUtzNaFE9qLI8yoePIpjgqGDoSQggRfQk7wbFI166N+fKrq9mw/gBr1mSg2cCyVbeSlpZcpm2f45sz9eVzmfpyzZcsvfXmyrCfpC1L89b/VvC3v4/C5Ur8N8i+l7Tj8weXk53pLbVjZBFtwWn394hBZEKIeKB1buHfeUCD2AYjykjonoWSunZrwllnB6svejxlSz3Xtu3bjlQ4xyE/P8DBA/kRjyUeOD0mt3x5CsmNXKVK4huFc0rO+svx9Lkg2ANkB2w2f7KFmZd8yfTB7/Lx6E9Z+dIqfFm+WIRep9gFXny7Mwgcrl9zYkTdZemN5PrvItt/IgDZ/pHk+u/F0ptjHJkoKeF7FmKlceOkCtsYhiItvf6spW51fEMmrj+bn17fyoqPduLPt2g7oBHDb+tCm/6NALC8FnOum8uub3ahDIW2Nbk7czmw8gCrXlrFOR+fTWrb1Bj/S+JP4NAR9r37Odnf/4QOBCeJJvXoQtPfnkNy724xjk6I8ln2KnIClwFejr4dWQT0DHL8X5PqeA/T6B7DCEWRetOzEG2XXNozZJEnCBaEOue8rvWuyFNSQxcn39ONO+edzr0/juaSqYOLEwWAJX9fyq5vdwGg7RLDFRpy9+Qx96Zvoh1y3AscOsK2P/ydrG9/LE4UAPLXbWbHX54j+8elMYxOiPJprcmzHgAKAOuYRy0gn3xrYvQDE+WSZCFCevdpziWX9sQoZ3a/YShMh8GDE0fGILL4FcgLsOa1tUeL2R1DW5r9y/azb+m+6AYW5/ZN/zQ47GAfc+O0Bq3ZO/VNbG/5QzjassjfsIW8Vetl6EJEla1XYus1hPyFx8LSy7DsddEMS4QgwxAR9OJL55CS7OR//12B1hrDUFiWpmWrVF597Tz69msR6xDjyqG1h/Dn+MO2UYZi78K9NBvQLEpRxTcrL5+sH34umyiUYOcXkP3jMhqcPLT4mNaaw1/M48DHs7GyCpf2GorUIf1pce3FOBo3jHDkor6z9KZKtbPZhIkMRcSaJAsR5HY7eO7Fs5n4x5P4YuZG8nJ99OjVjNPP6Fi8NbYoobIlFmT/iGKBA4cgcGwX7jFME9+ejFKH9k//lIOfzCndztbk/LScgk1b6fDXB3Ckp9VytEIcpVTZFWnlkxr78UCShSho3SaNG28eEOsw4l6jHo1wpjnxZ4fuXdC2ptWIllGMKr4ZHk/FjbSNkXS0nW/vvrKJQhHbJnDwCAc/mUPzay6qpSiFKMuhRgJJQLgVYWk41AlRikiEIx9vRdxwJDnodUPPkD+VylQ0H9SMpv2aRjewOOZs1hh3x7bhe1tsTdrQ/sXfHpm3EIwwv/q2zZGvF6DDDG0IUVNKpeA2bwnbxmPejlLV25NH1C5JFkRcGfC7/rQ7oy0QTA6CXwT/pLZN5fSXT4tdcHGq6W/PCU5mLI9SpJ04BFfLo3M8/PsPVXhOO78AHWJSpBC1xW3chcu4keAvedHbkQEo3MZtuIxbYxecKEWGIURcMV0mo147g+2zdrD2f+vI2pyFp4mH437bha6XHoczJfIFteqa1EHH0/L2q8l49R20zw+mGUwebJu04QNpecuVpdo70lIqnB+iHCbKJfdaRJZSBkmOP+DW15FnfwKA2xxPsvMCDNU6xtGJkiRZEHHHMA06nt2Bjmd3iHUo1VKw9wi7PlrG4eU7UKai8bDOtD6vH65GlZ3QVXUNTjmB1CH9yF7wC769+zCTk0g7YQCu1mVX3KSdOIRDX8wLfTLDIG3kYJSZ+GXIRXwwVBvc5s3ATNzmTRhKEtV4I8mCqFe01uxbup8N0zeQsyuXpCYeulzShdYntqqVHS8z5qxm9eTP0FpDYVGpw0t2sO0/P9D36UtpNLB9ja8RipmcRMNRJ1bYLqlLB1KH9CXn5xVlhy8MhXI6aHLBmAhFKYSoiyRZEPWGbdl8f998Nr67CWUqtKVRpmLDuxtpfXJrRv3n9BoNc+RsyGTVpE+Lk4RiWmMVBFj+u3cZ/v5tuJvEvlx1q7uuJ+PV6WR9tziYMCgFWuNs1pRWd19Xbo+EEKL+kmRBRI0vL4Dls/E0cFa4yVYkLHt6ORvfCxaCKdr5sujvPfP38MODCzn1XydX+/w73v0p+J5b3oNaY3sD7P5kOZ1uiH3lTsPlpNXt19D0svPIXbIS7fPj7tCGpF5dY/J/I4SIb5IsiIhbN3svc59YzaZ5wTLNDdokceL4rpx8XzccUdqeO5AfYOVLq0K8kwfrN2z+cBND/jCIlFbVKwJzYMGmcrffLmZrDizcFBfJQhFn44aVGroQQtRvkiyIiFr40ibev+3no8sggSO78pn5h19Z/9VebppxclQShsxf9lVYSlrbsGvebrpd0bVa19BWxXUJdJjNxYQQdctiZwZKVaIwWhhaFwQ33YxzUmdBRMyRXXl8cOcvAGU+cWsbNnydyYIXNkYlFttfuTdp219B6eQwGhzftlRSdCxlKhr2a1vt8wshRKxIsiAiZvG0LSG7/YvMf35DVGJp3LtR2DfyIjWpDtn2ssFhhyG0rWlzkZT9FkLUPZIsiIjZs/IIYbMFDQc25RLwVf/TfGUlN0+m4zkdQiYMylQ06dukRslC48Ed6XRT4fh/ieso0wAFPX5/Nsntm1T7/EIIESsyZ0FEjDPZRBkKfexSwhIMh8JwRCdnHf7YCRxYcYDsbTmlYlKmwt3AxWkvnlLlc1oFfg79vJVAjpfkdo3peOOJpB/fhp3v/BwsymQYND6hE+0vH0p6b6lIJ4SomyRZEBHT54I2/Pz61pCPGw5FnwvaYNRCMaTKSGqWxPlfnsfqV9ew9n/ryNubh7uhm26Xd6X3rb1JaVn5Cotaa3a8tZgt0+Zj5R7dQyGlc1N6/P5s+j1zaST+CUIIEROSLIiI6XVua5r3TGf/hmzswDG9C8EaQJz2fz2iGpO7gZsBE/ozYEL/Gp1n67Qf2PLy92WO5249wNI73mTQy+NI6y5baQshEoPMWRARYzoMbp11Cs27pwFFQw4KFDg9JuPeGUH7oXVvDN93KI+t034o/0FbYwdsNr34bXSDEkKICJKeBRFRDdsm87vlZ7Ju1l5Wf7YLf4FNm/4NGTyuI0kNXbEOr1r2zVuHtsMsxbQ1B3/cjO9ALq4m1SvwVERrTf7qDRya/T3eLdtRLhdpw/rT8IyROBo3rNG5hRCisiRZEBFnGIqeZ7Wi51mtYh1KrfAdzEOZRvgCSxp8h2qWLGit2ffGRxya8TUYBhQmKAd27+XQzG9o+/vxJHXtWO3zCyFEZckwhBBV5G6SXHG1RgWuxjXrVcj+4edgogDFiULwa43t9bLzby9ie33lP1nUOq01OuNX7A0zsLd+g/blxjokIaJGehaEqKKmp/Vg87PfhO5ZMBRNTuhc42Th4Odzi3eDLMPW2Dm5ZC/4hQanDa/RdUTFdOZKrPmPQdb2owdNN6rPVRj9r0cp+dwlEpv8hAtRRa4GSXS66aTyHzQUhtOk8+1Vr9lQku3z4d26s/xEofhaBnlrolMuuz7TBzdgzboLsneWfsDyopdPw/75hdgEFkNa2wTsXwnYC7D1rliHI6JAehaEqIYO1w7HTHKy5ZX5BLILio+nHtecHg+dSVrXFjGMTtQma8nLYAeCG5qUQ6+aju51KSqleZQjiw2f9REF1tNodhceUTjUSXgckzBVp5jGJiJHkgUhqkEpRbvLhtDmNwM4tGR7YQXHRrVWW8FwuXB3ahe+d8G2Se51XK1cT5RPe7Ng5wLCli1XCr15Dur4q6IWV6x4rdcosP50zFFNQP9Arv8iUp2fYKj2MYlNRFa9GYZYumQv7727GoCsrDqwH6ioEwyXgyYndKbFqJ61XoSp8blnhE4UDIWRlkLa8EG1ek1xDG8F+5sAKANdcDAq4cSSrQ9TYD0e4lELTQ75gaeiGpOInoRPFlauyOSk4f/hlJGvce9dswAY0OclHn3kW6yKZrQLEUNpIwbR6JzTg98YJX5VDYXhdtP2gdsx3HWzVkWd4WkEFU1etC1UcrPoxBNDfvtTIBCmhUVAf4HWWdEKSURRtZKF559/no4dO+LxeBg2bBiLFy8O2/69996jR48eeDwejj/+eGbOnFmtYKtq48aDjD3jDVauyCx1vMAb4JmnFnL/fXOiEocQ1aGUovk1F9HukXtIG9oPZ/OmuNq1pslFZ9HpmYelxkIUKFcqqv0p/H979x/U1LnmAfybhPyQERAvw8+iFoq1119MZWHBurQdKl4dbf646movpF2K7Qo71uxgqVqjpVWGKsUKLYOttX9oY3XUdgtDi7TcjmKno4SOClotWOlsg7JTCxeEhOTZPxzSGwlHDiYnJDyfmTOOL29ynnwNyePJOXkhUwhMkkMWt1i6orzETv+L+39ybYMdt6Qoh0lMdLNw5MgR6PV6GAwGNDU1Yf78+cjMzMTNmzddzm9sbMSaNWuQk5MDk8kErVYLrVaLixcvPnDx91OyqxF9fVbYbMMPIxIBH+434epV/z98yHxb4J8TEP1KDuLe3Y6H396MsL8uRUBoiLfLmjDkj+cCAZoRjzDIE/8DsklTJa5KenJZKID7LycvAz83/ZHoExxLS0uRm5uLF154AQBQWVmJ6upqHDhwAIWFhcPm7927F0uWLEFBQQEAoKioCHV1dSgvL0dlZaXLfQwMDGBg4I/zCrq77x7WslqtsFqto6pzYGAQ1f9zGUqVDErcXdVQo5E7/alQyPCp8QI2FaaN6j793VC2o814ouF8hPltPoHRoMUVsH2/F7h16Y9xdTDkc/8G+8xnIRvFY/b5fOgvGLTuxcjncMihkCXDJguBDeIfozvz8dmMxzEZkdCF3M4sFgsCAwNx7NgxaLVax7hOp8Pt27fx2WefDbvNtGnToNfr8corrzjGDAYDTp48iR9++MHlfrZv344dO3YMGz98+DACA0e/jDBjjLGJp6+vD2vXrsXvv/+O4OBgt99/d3c3QkJCMFltgEymeaD7IurHPwZ2eKxWdxF1ZKGrqws2mw0REc7XkEdERODy5csub2M2m13ON5vNI+7ntddeg16vd/y9u7sbsbGxWLx48ajDtFgGMSv+PQxY/jhsptHIse/9BPzXf15Ff78dCoUMGzam4L8L+BvwgLvdeF1dHZ555hkolUpvlzPucD7COB9h/pAPkQ0DtjJY7Idw92RHOQA7ZAjHpIAiBMjH/lrqznyGjkYz9xmX37OgVquhVquHjSuVylE/iZRKJVZoH8PhQxdgG3Q+eNLfb0f/HTtkMmDVv8/12V9cTxGT80TE+QjjfIT5dj5KqFAIO63DoL0ehH9ALnsYAbJFkAmdBCpmD27Ix3fzHb9EneAYFhYGhUKBzs5Op/HOzk5ERrq+xjwyMlLUfHfa9FoagoPUUChkLn++Pv9fEBcX6vE6GGPMn8hlU6FSrIRa8QKU8ifd1iiw8UtUs6BSqbBgwQLU19c7xux2O+rr65Ga6vrwU2pqqtN8AKirqxtxvjtNnz4Fp/6ejZR/jXEaD5qsxLYd/4a3ip/2eA2MMcaYrxP9MYRer4dOp0NSUhKSk5NRVlaG3t5ex9UR2dnZiImJwa5dd7/pa8OGDUhPT8eePXuwbNkyGI1GnDt3DlVVVe59JCNISJiK2lN/w9Uf/w+trZ0gXEXzpZcQFMQnSjLGGGOjIbpZWL16NW7duoVt27bBbDYjMTERtbW1jpMYb9y4Afk/fdtcWloaDh8+jK1bt2Lz5s1ISEjAyZMnMWfOHPc9ilFImPknzHg4GDU1V6HR8OdZjDHG2GiN6QTH/Px85Ofnu/xZQ0PDsLGVK1di5cqVY9kVY4wxxrzM79eGYIwxxtiD4WaBMcYYY4K4WWCMMcaYIG4WGGOMMSaImwXGGGOMCeJmgTHGGGOCuFlgjDHGfEhFRQVmzJgBjUaDlJQUfP/994Lzjx49ilmzZkGj0WDu3LmoqakRvU9uFhhjjDEfceTIEej1ehgMBjQ1NWH+/PnIzMzEzZs3Xc5vbGzEmjVrkJOTA5PJBK1WC61Wi4sXL4ra77hcdfJeRHdXjXzQZUetViv6+vrQ3d3Nq5K5wPkI43yEcT7COB9h7sxn6L1i6L3DUwgDwAPugjAAYPj720irL5eWliI3N9exxEJlZSWqq6tx4MABFBYWDpu/d+9eLFmyBAUFBQCAoqIi1NXVoby8HJWVlSIK9QEdHR2Eu/8kvPHGG2+88TaqraOjwyPvSXfu3KHIyEi31Tl58uRhYwaDYdh+BwYGSKFQ0IkTJ5zGs7OzacWKFS5rjY2NpXfeecdpbNu2bTRv3jxRj9knjixER0ejo6MDQUFBkMlcLzc9Gt3d3YiNjUVHRweCg4PdWKF/4HyEcT7COB9hnI8wd+ZDROjp6UF0dLSbqnOm0WjQ3t4Oi8XilvsjomHvba6OKnR1dcFmsznWYhoSERGBy5cvu7xvs9nscr7ZbBZVo080C3K5HA899JDb7i84OJh/WQVwPsI4H2GcjzDOR5i78gkJCXFDNSPTaDTQaDQe3cd4wic4MsYYYz4gLCwMCoUCnZ2dTuOdnZ2IjIx0eZvIyEhR80fCzQJjjDHmA1QqFRYsWID6+nrHmN1uR319PVJTU13eJjU11Wk+ANTV1Y04fyQ+8TGEu6jVahgMBpefBTHO5344H2GcjzDORxjnMzp6vR46nQ5JSUlITk5GWVkZent7HVdHZGdnIyYmBrt27QIAbNiwAenp6dizZw+WLVsGo9GIc+fOoaqqStR+ZUQevraEMcYYY25TXl6Ot99+G2azGYmJiXj33XeRkpICAHjyyScxY8YMHDx40DH/6NGj2Lp1K65fv46EhASUlJRg6dKlovbJzQJjjDHGBPE5C4wxxhgTxM0CY4wxxgRxs8AYY4wxQdwsMMYYY0yQ3zUL3li605eIyWf//v1YtGgRQkNDERoaioyMjPvm6evEPn+GGI1GyGQyaLVazxboZWLzuX37NvLy8hAVFQW1Wo2ZM2f69e+Y2HzKysrw6KOPYtKkSYiNjcXGjRvR398vUbXS+vbbb7F8+XJER0dDJpPh5MmT971NQ0MDHn/8cajVajzyyCNOZ/gziYlaSWKcMxqNpFKp6MCBA3Tp0iXKzc2lKVOmUGdnp8v5Z86cIYVCQSUlJdTS0kJbt24lpVJJFy5ckLhyaYjNZ+3atVRRUUEmk4laW1vp+eefp5CQEPrll18krlwaYvMZ0t7eTjExMbRo0SJ69tlnpSnWC8TmMzAwQElJSbR06VI6ffo0tbe3U0NDAzU3N0tcuTTE5nPo0CFSq9V06NAham9vpy+//JKioqJo48aNElcujZqaGtqyZQsdP36cAAxbDOlebW1tFBgYSHq9nlpaWmjfvn2kUCiotrZWmoKZE79qFpKTkykvL8/xd5vNRtHR0bRr1y6X81etWkXLli1zGktJSaGXXnrJo3V6i9h87jU4OEhBQUH08ccfe6pErxpLPoODg5SWlkYffPAB6XQ6v24WxObz/vvvU1xcHFksFqlK9Cqx+eTl5dHTTz/tNKbX62nhwoUerXM8GE2zsGnTJpo9e7bT2OrVqykzM9ODlbGR+M3HEBaLBefPn0dGRoZjTC6XIyMjA2fPnnV5m7NnzzrNB4DMzMwR5/uyseRzr76+PlitVkydOtVTZXrNWPN54403EB4ejpycHCnK9Jqx5PP5558jNTUVeXl5iIiIwJw5c7Bz507YbDapypbMWPJJS0vD+fPnHR9VtLW1oaamRvSX5firifT67Av85uuevbl0py8YSz73evXVVxEdHT3sF9gfjCWf06dP48MPP0Rzc7MEFXrXWPJpa2vD119/jeeeew41NTW4du0a1q9fD6vVCoPBIEXZkhlLPmvXrkVXVxeeeOIJEBEGBwfx8ssvY/PmzVKUPO6N9Prc3d2NO3fuYNKkSV6qbGLymyMLzLOKi4thNBpx4sSJCbUs60h6enqQlZWF/fv3IywszNvljEt2ux3h4eGoqqrCggULsHr1amzZsgWVlZXeLm1caGhowM6dO/Hee++hqakJx48fR3V1NYqKirxdGmPD+M2RBW8u3ekLxpLPkN27d6O4uBinTp3CvHnzPFmm14jN56effsL169exfPlyx5jdbgcABAQE4MqVK4iPj/ds0RIay/MnKioKSqUSCoXCMfbYY4/BbDbDYrFApVJ5tGYpjSWf119/HVlZWXjxxRcBAHPnzkVvby/WrVuHLVu2QC6f2P+XG+n1OTg4mI8qeIHfPBu9uXSnLxhLPgBQUlKCoqIi1NbWIikpSYpSvUJsPrNmzcKFCxfQ3Nzs2FasWIGnnnoKzc3NiI2NlbJ8jxvL82fhwoW4du2ao4kCgB9//BFRUVF+1SgAY8unr69vWEMw1FgRL9kzoV6ffYK3z7B0J6PRSGq1mg4ePEgtLS20bt06mjJlCpnNZiIiysrKosLCQsf8M2fOUEBAAO3evZtaW1vJYDD4/aWTYvIpLi4mlUpFx44do19//dWx9fT0eOsheJTYfO7l71dDiM3nxo0bFBQURPn5+XTlyhX64osvKDw8nN58801vPQSPEpuPwWCgoKAg+uSTT6itrY2++uorio+Pp1WrVnnrIXhUT08PmUwmMplMBIBKS0vJZDLRzz//TEREhYWFlJWV5Zg/dOlkQUEBtba2UkVFBV866UV+1SwQEe3bt4+mTZtGKpWKkpOT6bvvvnP8LD09nXQ6ndP8Tz/9lGbOnEkqlYpmz55N1dXVElcsLTH5TJ8+nQAM2wwGg/SFS0Ts8+ef+XuzQCQ+n8bGRkpJSSG1Wk1xcXH01ltv0eDgoMRVS0dMPlarlbZv307x8fGk0WgoNjaW1q9fT7/99pv0hUvgm2++cfl6MpSJTqej9PT0YbdJTEwklUpFcXFx9NFHH0leN7uLl6hmjDHGmCC/OWeBMcYYY57BzQJjjDHGBHGzwBhjjDFB3CwwxhhjTBA3C4wxxhgTxM0CY4wxxgRxs8AYY4wxQdwsMMYYY0wQNwuMMcYYE8TNAmOMMcYEcbPAGGOMMUH/D7+LSgYLSmm5AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAAGdCAYAAACciDANAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADAvUlEQVR4nOzdZVhUaR/H8e/MMHSogICILXYndmFjK3b3Giurrl1rre3arWv32oGBydquja0YIIp0TZznBY/ssgysKDDE/bkuXnjumXN+HIk/97lDJkmShCAIgiAIQiLk+g4gCIIgCEL6JooFQRAEQRCSJIoFQRAEQRCSJIoFQRAEQRCSJIoFQRAEQRCSJIoFQRAEQRCSJIoFQRAEQRCSJIoFQRAEQRCSZKDvAF9Dq9Xy7t07LCwskMlk+o4jCIIgpGOSJBEaGkquXLmQy1Pnb+KoqChiYmJS5FyGhoYYGxunyLlSS4YoFt69e4eTk5O+YwiCIAgZiK+vL7lz507x80ZFRZEvvzn+fpoUOZ+9vT0vXrxI1wVDhigWLCwsgNj/eEtLy28+j0ql4uTJkzRs2BClUplS8TINcX+SJu5P0sT9SZq4P0lLyfsTEhKCk5NT3O+OlBYTE4O/n4b7z5ywsPy+novQEC0lCvoSExMjioXv9eXRg6Wl5XcXC6amplhaWopvVh3E/UmauD9JE/cnaeL+JC017k9qP7a2sJRj+Z3FQkaRNT5LQRAEQRC+mSgWBEEQBEFIkigWBEEQBEFIkigWBEEQBEFIkigWBEEQBEFIkigWBEEQBEFIkigWBEEQBEFIUrKLhfPnz+Pm5kauXLmQyWT88ccf//keLy8vypcvj5GREYUKFWLjxo3fEFUQBEEQBH1IdrEQHh5OmTJlWLZs2Ve9/sWLFzRr1oy6dety+/ZtfvzxR/r27cuJEyeSHTaziImJ4ejRo2zatInTp0+j0aTMkqGCIAiCkBqSvYJjkyZNaNKkyVe/fuXKleTPn5/58+cDUKxYMS5evMjChQtp1KhRci+f4W3YsIHRo8fw8eOHuGNOTnlZtmwJbm5uekwmCIIgCLql+pgFb29vGjRoEO9Yo0aN8Pb2Tu1Lpzvr1q2jd+/eBH/OhanhcMyNfsHUcBB+70xo2bIVR48e1XdEQRAEQUgg1feG8PPzw87OLt4xOzs7QkJCiIyMxMTEJMF7oqOjiY6Ojvt3SEgIELt2uEql+uYsX977Pef4VjExMUycOAlL8yoYGbSGuDXL84HUg2j1VsaOHU+DBg30tg23Pu9PRiDuT9LE/UmauD9JS8n7I+5xykuXG0nNmjWLqVOnJjh+8uRJTE1Nv/v8np6e332Ob7FixfIkWqcDcOzYsbQJkwR93Z+MQtyfpIn7kzRxf5KWEvcnIiIiBZII/5TqxYK9vT3+/v7xjvn7+2NpaamzVwFg7NixeHh4xP37y3ajDRs2/O5dJz09PXF1dU3zXd82bNjAjz+OwNxo0j96Ff4mSSGERy9g165dehvLoc/7kxGI+5M0cX+Slt7vT2RkJOPGjWP79q1ERsb27JqaGtOlSzd++eWXRH9ep5SUvD9feqOFlJPqxYKLi0uCZ/Genp64uLgk+h4jIyOMjIwSHFcqlSnyTZZS50kOBwcHIiMjkGneo5DbJ2hXa94SqYokd+7cev9Boo/7k5GI+5M0cX+Slh7vj0qlolUrN65evczwkea0bpsDgH17wlk8bxn37t3h+PGTaZI7Je5Peru/mUGyBziGhYVx+/Ztbt++DcROjbx9+zavX78GYnsFunfvHvf6gQMH8vz5c0aPHs2jR49Yvnw5u3btYsSIESnzGWQQjRo1wtraFpXmLJIkxWuTJA1q6TwlSpSiTJkyekooCEJWtWvXLs6ePc/OP2wYPS47hYsYUriIIT+Pz86O/bacOePF3r179R1T0KNkFwvXr1+nXLlylCtXDgAPDw/KlSvHpEmTAHj//n1c4QCQP39+jhw5gqenJ2XKlGH+/PmsXbs2zbvaJUkiPDw8Ta8ZEBDA1q1bWbt2LX/99ReLFi1ApblDlHoLGu0rJCkcteYp0ZoNaKXXLF68UG+DGwVByLrWr19DrTpm1KiV8FFDrTomVK9lyvr1a/SQTEgvkv0Yok6dOgn+Mv4nXasz1qlTh1u3biX3UikiMjKSRYsWsXTpcj5//sT27dtxd+/IyJE/Ua1atVS5ZkxMDCNGjGD16jWo1X+Pyi1Tphxz585l8eIlvHmzMu54kSLFWLr0GPXr10+VPIIgCEnx9X1F4+aJ/zooU9aA0ydepl0gId1Jl7MhUkpkZCSurg3x9r6CQlYac7PaAJw+fYuDB2uzc+cO2rZtm+LX7d69O7t378VAXh8zo4rIMEGjfcKDByeZOXMW165d5d27d3z48AEnJycqVaokehQEQdAbW1s7nj4JSLT92RMNtrZ2ibYLmV+mLhbmzp3Ln95XMTbog0KeFwNF7FMXI3k/ImU76NatOw0aNMDKyirFrnn9+nV27tyJsbI9SkX5uOMGiqIopDyEhf7GvHnzWLFiRaLniIiI4MCBA7x79w57e3tatmyJubl5imUUBEH4p65dezBkyA88fBBDseKG8doe3I/B80QEK1b01E84IV3ItLtOajQali1bgVxWFoU8b/xGmQJDRTOioqLYsmVLil538+bNKJXZMZCXTdAmk5kikyrw+6bNaLVane9ftWoV9nYOdO7cmXE/T6Jb12442OdiyZIlKZpTEDIqjUbD2bNn2bZtG2fPnhV7q6SA7t27U7x4UVo1CWDX9jCioyWiorTs3BZGqyYBlChRjK5du+o7pqBHmbZn4dOnT3z44IexsoHOdrnMEkOlI3fu3EnR63748AEZOZDJdNdhcrktEZHhREZGYmZmFq9tw4YNDBw4EEdZLcrK3TDBhkj5J15GHGXYsGEolUoGDhyYonkFISPZu3cvI38awctXvnHH8uV1Yv6CRbRp00aPyTI2MzMzTp06S8+e3ejf05MBvWIfSUgSNGnSkI0bN6fIgnhCxpVpiwVjY2MAJEn3Sl6SJCFJESm+0Eju3LmRpKNIkhqZLOHt1WjfYWmZLcE3nkqlYuyY8TjIqlJc1jNuDIOJzJpism5otDFMGD+JXr166VyDQhAyu71799K+fXual83Olm6lKJnblHtvIvj1yFvatWvH7t27U2UMUlZhZ2fHsWMnefToERcuXACgVq1aFClSRM/JhPQg0z6GsLS0pFatOkjcRJISdvlrtM+IUX2iZcuWKXrdnj17olKHoNJcTdCmlYKRZDfp27d3ggGNFy5cwP/De/LKGukc7JhX1ohPgQGcPn06RfMKQkag0WgY+dMImpfNzp4hRahS0AIzIwVVClqwZ0gRmpfNzqiRHuKRRAooWrQo/fr1o1+/fqJQEOJk2mIBYPz4scSoXxKtPoAkRcYd12hfopb2ULFiZerUqZOi1yxRogSDBw8mWn2YKNUhNFo/tFIwMeprxGhWkzNndkaNGpXgfZ8+fQLAhJw6z2v6/+NfXicIWcmFCxd4+cqX0c0ckcvjF9NyuYxRTR158fJ13F/EgiCkrEz7GAKgYcOGrF27lkGDBhOpuo1CUxCYRWTMRkqWKs7hwwdTZcrikiVLyJUrF3Pnzic4+DIAMpmMJk2asmLFcuztEy73nC9fPgCCeY4NJRO0B/M83usEISt5//49ACUddT83L5XbNN7rkkOSJLy9vdm9ezehoaE4OzvTs2dPcubUXbgLQlaUqXsWAPr06YOv72umz5hK6zZVANi3bx/Xr19NsHV2SpHL5YwfP573799y6tQpDh8+zIsXLzhy5DB58uTR+Z6KFStSvFhJXsgOoZXib6+qldS84BAFCxSmRo0aqZJZENIzBwcHAO691T0G6e6biHiv+1rBwcE0auhK9erV2btlNXe89jB54jicnHKzcuXK/z6BIGQRmb5YgNiBO2PGjGH16tUA1K9fH7k89T91ExMT6tevT7NmzcibN2+Sr5XJZKxYuYxw+Suuy2bjJ10jXHqPv3SDG7JfCZY/YeWq5WLxJiFLqlmzJvnyOvHr4bdotfFXkNVqJeYceUv+fHmoWbNmss7bpXMnrnpfYO/Qojz9tQyXJ5Tg1fzy9K5hzaBBgzhw4EBKfhqCDjExMWzfvp02bVoB0K5dG3bt2oVKpUr6jUKayhLFQkZRq1Ytzpw9TbHKDtzRLueSdhx/aZdSqLw1p0550qCB7mmggpDZKRQK5i9YxJG/PtN2iQ/eT0MJjdTg/TSUtkt8OPLXZ+bNX4hCofjqc966dYsjR4+xvFs+WpTPETcWIoe5kt+65qdu8WzMnPFLan1KArFbSdetW4vOnTsTHnUFgOBQb9zd3XF1rUdYWJieEwpfiGIhnalevTqXL1/k8ePHeHl54ePjw9Wrf1K7dm19R0sxfn5+PHv2jMjIyP9+sSD8X5s2bdi7dy/3g8ypNeMuOQZfodaMu9wPMmfv3r3JXmfhjz/+wNrCiDYVrRO0yWQy+tXOydVrN3j37l1KfQrCvwwePJD7929ywsuB3X/YArD3kC2HPe25ceNPhg0bpueEwheiWEinChcuTO3atXF2dtZ3lBRz9OhRqlZxwcHBgUKFCpHT1o5hw4YRGBio72hCBtG6dWuePnuBl5cX27dvx8vLi6fPXtC6detknysiIoLsZkoMFLof7dlaKONeJ6S8d+/esWPHTsZPsaSKi3G8thq1TPh5vCVbt24hICDxPSuEtCOKBSFNbNiwgWbNmvHueghNGUo7JlA8vD5rl2+gRrWaGapg+PTpE3PmzKFunbpUd6nGiBEj8PHx0XesLEMul1O7dm06duxI7dq1v3n8UcmSJXnmH87zD1E62z3vBWFlaYGjo+P3xBUScf78eTQaLe3czXS2t3U3IyZGxaVLl9I4maCLKBaEVBcYGMiggYMpRT3aaSdSVFadPLKS1JB1xF0zlZdPXzFjxgx9x/xq5cqWY+K4CajufMDkSSQbV6ylePHicQNohYyhffv2ZLOyZNTOV6jU8Rduu/82glXnAujZq3eKr/IqxJKk2IGq8kSGmRgYyOK9TvjbsmXLyJcvH8bGxlSpUoWrVxMuAvhPixYtokiRIpiYmODk5MSIESOIitJdJCcmU6+zIKQPW7ZsQa1SUx33BLM5csgcKaGpx9o165g1axaGhoaJnEX/goODAchNNpaW6U12ZexOoDFaFStfH2PgwIGUKFGC6tWr6zOm8JVMTU3Z9Ptm2rZtQ6Vp9+hXyxbH7IacexTCxksfKVDImSlTpug7ZqZVrVo1ZDIZB/dF0L23RYL2A/vCUSjkVKlSRQ/p0q+dO3fi4eHBypUrqVKlCosWLaJRo0b4+PjoXBtk27ZtjBkzhvXr11OtWjUeP35Mz56xWwosWLDgq68rigUh1fn4+GBr4ISpWvdW4LkpzvXQQwQEBKTrLt+tW7eSL18+RudrS3b+7jo1lCsZkrc5f4W/ZMGCBaJYyEDc3Nw4f/4Cs2bOwGP7UbRaLTbW2Rky/CfGjBmTotvXC/HlzZuXli3d+GXycSpVNaJw4b/3vLl7J5pZv4TQvn17cuXKpceUSbO4a4CF+dfPwNFFCkveEuULFiygX79+9OrVC4CVK1dy5MgR1q9fz5gxYxK8/vLly1SvXp3OnTsDsQv7derUiStXriTruuIxhJDqLCwsCJeC0OrYowMgjNjxCubm5mkZK9nOnjkDQA7DhH8FyWVy6mYryamTp9I6lvCdqlatyoGDhwgNDSUgIAA//wBmzZolCoU0sHr1WhzsC1Oj4jv69fwIQJ/uH6ld5T358hZn+fIVek6YdkJCQuJ9REdHJ3hNTEwMN27ciDeNXi6X06BBA7y9vXWet1q1aty4cSPuUcXz5885evQoTZs2TVY+USykI2q1mocPH3Lv3j2dXygZVbt27QhVf+YpujbX0nBPcZqGDRqm+x/O6v/YpMhQrkSjUadRGiGlmZqaYmNjk6y1GoTvY2try+XLV1i8eAkBfoUACAwozLJly7lw4TLZs2fXc8K04+TkhJWVVdzHrFmzErzm48ePaDSaBKsP29nZ4efnp/O8nTt3Ztq0adSoUQOlUknBggWpU6cO48aNS1Y+USykA1qtlnnz5pHHKR/FixenVKlSONg7MmHCBGJiYvQd77tVrFiRpo2bckqxmkfSJTRS7C/UECmA/czBX/uCHDY5WLt2LaGhoXpOm7gvz07D1LoHBl0MfkBVF5e0jCQIGZ6ZmRk//PADZ86cB+D06XMMHDgQU1Pd+4BkVr6+vgQHB8d9jB07NkXO6+XlxcyZM1m+fDk3b95k3759HDlyhF9+Sd6CY6JY0DNJkujTpw+jR/+M3L8gFeWjqSQfi0VwBWbPmkOLFi1RqzP+X6s7du2gfqN6HGUJaw0Gs0nhwTqG8Yq/MJKZ4rn3PP37DyCXfS62b9+u77g69ezZE4AVvkdQa//uZZAkib3vL3E/+BXDhotFZARBSD5LS8t4H0ZGRgle86Xny9/fP95xf39/nRsUAkycOJFu3brRt29fSpUqRevWrZk5cyazZs1Cq9X9aFgXMcBRz86ePcvGjRspIeuDo/zvTaKyy5yxlUpz4sQ8tm3bRvfu3fWY8vtZWFhw+Mgh/vrrL/bt28fOHTsJfvKRelJvimqrYyApCZE+cjFyO127dMXGxgZXV1d9x47nyzejd7AP3T4toG62UhjLlXiH+PA49A2jR4+mRYsWek4pCEJmZWhoSIUKFTh9+jStWrUCYnumT58+zZAhQ3S+JyIiIsFaJF8etSVnWqroWdCz1atXY2mQm1yyhCPorWUlsFGUZNXKNXpIljrKlCmDu7s7Po99qCf1pqSsDgay2JXyLGU2NJF+wEFWmKlTpuk3aBLOXziPW+c2XNA+4WjkXxSqUZpjx47x66+/6juaIAiZnIeHB2vWrGHTpk08fPiQQYMGER4eHjc7onv37vEeYbi5ubFixQp27NjBixcv8PT0ZOLEibi5uSVrfI7oWdAzn0dPsNAURCbXveSslbYgT578mcapUteePXswUZhTVJOwQJLJ5JTSNuD45WX4+fkl2rWmT8WLF2ft2rX6jiEIQhbk7u5OQEAAkyZNws/Pj7Jly3L8+PG4QY+vX7+O15MwYcIEZDIZEyZM4O3bt9ja2uLm5pbshfBEsaBnOXJk543MP9H2KALJls5nCSRXaGgopnJLDLRKne0W5Ih7XXosFgRBEPRpyJAhiT528PLyivdvAwMDJk+ezOTJk7/rmqJY0LNOnTty9mx/wuTvMJfFX3wkWgrmg/wa47slXGgjI3N2diZQ7Ueo9AkLWcId/97wEFNj03S9GEtStFotp06d4vz588hkMmrXrk29evW+eQ8DQRAEfRM/vfSsc+fOFCxYmL/kCwmQ7iBJWiRJ4rP0mNvy+WTLbsXAgQP1HTNFdezYETMTUy7KtiP9a6GmYOkDdww86dq9K2ZmujeYSc98fHwoWbwEjRo1YtWCpayYvwRXV1dKlyzF06dP9R1PEBL4+PEjt27d4uXLl/qOIqRjomdBz0xNTTnrdZo2rdtx7fpCjA0skCEnUh2Mc8Gi7P/jeIIFODI6CwsLVq1ZRdeuXQlVfKSUpgHm5OAND7hj4ElOR+tkzwFODz59+kS9OnUxDJNYXHwAJczzAHA39CULXx+gXp263Ll3l2zZsuk3qCAQu5Lfzz+PZv/+/Wg0sUV71aqVmDp1Og0bNtRzOiG9ET0L6UDu3Lm5ctWby5cvM27SKEaP/xFPT08ePrpP8eLF9R0vVXTu3Jnjx4+Tp7I1x1jKbqZx2/gIXXq7433lss4NUdK7tWvX8jHgI7ML96CkRV5kMhkymYzSlvmZXbgn79+/Z8OGDfqOKQg8e/YMF5fKXL12mBlzsnHmUi42bsuJTHGPJk2asHfvXn1HFNIZ0bOQTshkMlxcXHDJQisANmzYkIYNG/L+/XtCQ0NxdHTMkI8evti5fQc1shXH1jDhgFQ7o2xUy16Mndt3MGLECD2kE4S/jRr1EyamYZy+aIeNbez0ufIVjXBrZUrvrh8ZOLAfzZs317kwkJA1iZ4FQe8cHBxwdnbO0IUCQHBQMDaGlom22yqtCPn/NteCoC/+/v4cOHCIoSPM4wqFLxQKGROmWPHx42f++OMP/QQU0iVRLAhCCilSrCj3Il7rbJMkiTvhL3EuWjSNUwlCfC9fvkSr1VKlmu5eg8JFDLG2MeTZs2dpnExIz0SxIAgpZMDAATwIfsX5wHsJ2s4G3uFJ6Fv6D+ivh2SZw61btxg1ahS9e/dm2rRpvH6tuzATkvZlgO2b17p3UQ0K0hASrBYDcYV4RLGQAZw9e5bmzd0wNjJBqTSkZo1a7NmzJ1nregupz83NjQ4dOjD96Q4WvNjPjeCnXA96wtzne5n1bDddOnemSZMm+o6Z4URFRdGhfXvKly/PlnXLuH9hP/NmTyd//vxMmzZNfB8kk7OzM2XLlmLVslC02oT3buPaUCRJRuvWrfWQTkivxADHdG7ZsmUMGTIEK4O85NG0QI6Ch3/eon379gwfPpyFCxcik+leKlpIW3K5nK1bt1KuXDmWLP6NI4+uAZA7lyOzf52Nh4eH+L/6BoMHD+LQwf1s7FcY9yo2GChkhEVpmHfsLZMnT8be3p7+/UWPzdeSyWRMnTqdli1bMrDPR8ZNyka+/EpCQrRsXBPCL5OC+OGHoTg4OOg7qpCOiGIhHXv48CFDhw4lj6whRbQd4/aPyEtDXstOs3jxYlxdXWnWrJmekwpfGBgYMGbMGEaOHMnz58+RyWTkz58fAwPxrfYt3rx5w6ZNvzO/U166VLONO25urGBK6zw8+xDNrJnT6dOnT7I2xcnqWrRowe+//87QoYPZvf0N9g5GfA5Uo1JJDBr0A/Pnz9d3RCGdET/B0rGVK1dirLDEWdsuwV+keeT18ZddZsmSpaJYSIcMDAxwdnbWd4wM79ChQ8hl0KO67nU3+tfJyY7Z9/nrr78oX758GqfL2Lp160abNm3Ys2cPz58/J0eOHLRr1w5HR0d9RxPSIVEspGNXr1wjm6YEcrnuDZdyaEpz7erFNE4lpCcfPnxgw4YN3L59GyMjI9zc3GjRogVKpe6vmYwmIiICY0MF5sa6h1fZWCjjXickn5mZGT169NB3DCEDEMVCOmZkZISGkETb1URhmEl+KQjJt3XrVvr07g1aiTLWdoSoY9i0aRPFnItw9MRx8uXLp++I361kyZKERaq48jyMqgUtErR73gvCwEAhenEEIZVlmdkQGo2GgIAAfcdIluZuzfgku0u0lHAhH62kIkBxlRat3PSQTNC3ixcv0r17dxrnys+55t35vU5L/mjQnj2u7Qnz86dJw0aoVCp9x/xuDRo0oEC+vIzd7UtEdPypfq8/RTP/hD9t27TNkMuDC0JGkumLhbCwMCZOnIidnQOFChUCwM2tBWfOnNFzsv/Wq1cvLC0tuCNbSpT0Ke64SgrjLqtREcawYcP0mFDQl3lz51I4mzUzK9Ujm5Fx3PGSOXKyqEpDHj15zMGDB7/p3Fqtljt37nDlyhUCAwNTKvI3USgU/L5lK7d8oyk/+R4Ljr1l//VPjNv9ikpT72FkacuChQv1mlEQsoJMXSyEhYVRu3ZdZs2aS0hQIYyV7gD86f2MBg1c2bp1q54TJs3a2poTJ48jtwriojSaG9IcbmoXcIGfCFbeZ8/e3ZQoUULfMYU0ptVqOXzkCK3yOKOQJ/wWLpHDluLWdskuFiRJYu3atRQuUJAyZcpQtWpVcjk40KN7dz58+JBS8ZOtevXqeP95hUp1mjNh/1s6LPNh9cUQuvYawJ9XrpErVy69ZROErCJTj1n49ddf+euvuxgp+qGQO2KgiP3BaijvjYF8N3369KVJkybkyJFDz0kTV6lSJZ6/eMaWLVs4deoUarUaF5dO9OnTR3S9ZlFqtRqNRoOlMvFNfiyVhkRFRSXrvNOnT2fSpEk0zVOYSXVaks3QmIt+r9mwdx/el73xvvIn1tbW3xv/m5QqVYrtO3YQHR1NaGgo2bJlE9NRBSENZdrvNo1Gw4oVq5BTHoX8X1OBZHIMDRoTGXOHzZs3M3z4cP2E/EqWlpYMHjyYwYMH6zuKkA4YGhpS1LkIF/1f07ZAsQTtwTFR3P7kR4uyZb/6nK9evWLKlCkMLl6RYaWqxB0vmt0G19wFaHd6L7Nnz2bu3Lkp8Sl8MyMjI7EToiDoQaZ9DPHp0yc+fQpAIS+os10us0CpdODBgwdpnEwQvt/gIT9w8s1zLrx/Fe+4Rqtl9u1LaIHevXt/9fk2bNiAmdKQvsUSrlWQ1yIbbfIWYcO6dWi12u+NLnyjqKgoHj58yLNnz8QS10Kay7TFgomJCQCSFK6zXZK0SFI4pqamaRlLEFLEwIEDadKkCQMvHmWE9wn2v3jEJp+/aHt6DwdePWbtunXY2dl99fmeP39OYStrTA10T8Uta23Hp8+fCQlJfCqvkDrCw8MZPXo0uXLZUbx4cQoVKkTRIoVZu3atKBqENJNpiwULCwvq12+AlutIUsK/hjTaJ8SoAmnTpo0e0gnC91Eqlezbv5+Fixbx3EjO2Kun+fXOZQpXq4KXlxfdunVL1vly5MjB+8gwNIn0HLwJD8VQqcTMzCwl4gtfKSoqisaNXFm2dCG9myk4szI3BxfkonSeD/Tr14/x48frO6KQRWTaYgFg/PhxqDVviVbvQSuFxh3XaJ6gkvZQvXoNatSooceEgvDtlEolQ4cO5dFjH6KiooiJieHgoUPUrFkz2efq1KkT70OD8Xz7PEFbhFrFrpePaNeuXaZZGTKjWLlyJX9eucLJJQ7MGWZL7fKmNKthzs5ZDsz8wYZZs2Zx//59fccUsoBMXSzUrVuXzZt/R6F8RGTMHFTatQBEqrZSuXIZDhz4Q+wCKGQKRkZG37WRUuXKlWnerBnjrp9l57P7RKpjF3S6+8mfARePEKiKZuy4cSkVV/hKa1avoE1dc1xKmyRoG9E5O3bWRqxevVoPyYSsJtPOhviiS5cuNG3alM2bN+Pj4wPA8ePHqVmzpigUkunRo0esXbuWZ8+ekT17dtzd3XF1dUWuY66/kLHIZDJ27tpFvz59mbJzBzNvX8TYQElwVCR5nfJw/OQJSpYsqe+YWc7jJ88Y1Fz3dFVDpYyqJQ148uRxGqcSsqIs8VM+e/bsDBs2jEWLFgHg4uIiCoVkkCSJ8ePHU6xYMVYuXstfB15yaLMnjRs3plbN2gQFBek7opACTE1N2bp9G0+fPuXXefMYM3kShw8f5tmL5+JxnZ5YWVrw5kPiy3a/+SBhaWmVholSXlRUFOvWraNJk4YANGvWmI0bNxIdHa3nZMI/ZfqeBeH7rVmzhpkzZ1KDjpRXN8NApkRSS7zmHseu/EaXzl05cvSwvmMKKaRAgQLpfu2RrKKDeyc27V7P2J5aLMzi/233591IbjyMYPwMdz2l+36fP3/G1bUeN2/epkkzGwAUBnfo1asXq1Yt58SJU1haWuo5pQBZpGdB+HZarZZZM2ZTVFadyrJWGMhiB7jJZDLyykpRW9ODo8eOcO/ePT0n/T6SJHH+/HmmTJnCpEmTOHHihFhTQNA7Dw8PImKUNPvxPbcfx67IqdFIHDwfRpvRHyhfrgxubhl3M7kBA/rx4uV9znrn4vcdscXClt02nL6Yi4cPbzFkyA96Tih8IXoWhCT5+Pjw8vUL2tIJdDy5caYqZxTrOHLkSLp4ph0REcHGjRtZv3Y9796+w97Bnp69e9K7d2/Mzc11vufVq1e0adWam7dvkd3YArlMzi+//EKRws7s+2M/xYsXT+PPQhBiFSpUiBMnPOnQvi0Vur7Gyd6YiCgtn4JiqF2rBrt2782wy177+vqyd+9+5i3OTtlyRqj/8bSlQiUjxky0ZNLYHcyZMxd7e3v9BU2C9pE1WpPvu//aSDXwLGUCpaKM+VUmpJkvzw0N0b14lUJmgFJmlC6eLwYGBlK/bn3u3L1DWaNyVFRU4v3j93j86MHqlas543UmwX4aYWFh1K9bj0j/YOYU7U15y9gVPx+EvWbR64PUq1OXO/fuin04BL2pWrUqz1+84tChQ1y/fh1DQ0OaNm1KpUqV9B3tu1y6dAmtVkvrdrrX7mjdzoyxIwP5888/adWqVdqGExIQxYKQpEKFCmFmYsaLyFs4UChBu5/0jDB1EOXKldNDuvgGDRzEs4fPmJh9Ek7KPHHH35m+Y8HTefTr248DBw/Ee8+WLVt48fIlG0r/SG5jm7jjJSzy8qtzT7rdWcDKlSuZNGlSmn0egvBvBgYGtG7dmtatW+s7ipBFiTELQpLMzc3p0asHfymOEyDF34cgRorknOJ38uTOS9OmTfWUMNa7d+/Yu3cvbsYt4hUKALkMctHSpBWHDh/ixYsX8dp2bt9JpWzO8QqFL3IoLaiTvSQ7tm5P1exZhb+/PzNnzqR169a4u7uzYcMGIiMj9R1L0JPq1asjl8vZt1v3kvz7doejVBrg4uKSxskEXb6pWFi2bBn58uXD2NiYKlWqcPXq1SRfv2jRIooUKYKJiQlOTk6MGDEi2dvnCvozc+ZMipRwZod8IielldyVznBJ2sXvBiMJMX7Hzt07vmtBoJRw9epVNFoN5Y0q6GyvYFQRSZLw9vaOdzw4KAhbZeKjrW0NrQgODk7RrFnRrl27yJsnD9OnTiH4jjevvM/Su3dvnAsVEisQZlFOTk60a9eG6VNCuHUj/mPMa1ei+HV6KB07dkzWHidC6kl2sbBz5048PDyYPHkyN2/epEyZMjRq1IgPHz7ofP22bdsYM2YMkydP5uHDh6xbt46dO3cyTqwGl2FYWVlx4dJ5Jk+bREjuF3iymvumJ3Hv1YbrN69TtWpVfUeMWxhKi+4ZDF+O/3sBqcJFnbkf4Zvohjz3wl9R2LlwCibNem7cuEGXLp1pXtiOe4Mbs8e9Bke71uLqgIZYaSJp3NCV8HDdf10KmdvKlaspWKAkdau9o2v7jwB0bvcR11rvKV68HEuXLtNzQuGLZBcLCxYsoF+/fvTq1YvixYuzcuVKTE1NWb9+vc7XX758merVq9O5c2fy5ctHw4YN6dSp03/2Rgjpi7m5OePHj+eV70vUajWh4aGsXr0aZ2dnfUcDoFq1ahgpjbgSdUVn+5WoP1HIFQn2Tejfvz8vwt5z4uPNhO8J8uFW0DMGDBqYKpmzigXz55PHyozlzSuSzcQw7njBHBb83royb9/7sX27eNSTFWXPnp0LFy6zfv16tJoyAMiksmzatImzZ8+LNRbSkWQNcIyJieHGjRuMHTs27phcLqdBgwYJune/qFatGlu2bOHq1atUrlyZ58+fc/To0SR3xYuOjo43uv7LtrgqlQqVKvHVzP7Ll/d+zzkys+Tcn/S2BoGVlRU9e/dk19ZdFJQXpIjh30XMs5jnnOQEXbp0IWfOnPE+v5o1a9K3b1+WbdvGQ9VbaucohRw5lz8/4OSn27Ru1ZpWrVrF+9oTXz+6JXZ/Tp06Rb+yBUFphPpf78ltk526zk6cOHGCHj16pFFS/RBfP7opFAq6du2Ku7s7np6e7Nt3IG7Dsm+9V+IepzyZlIwN0d+9e4ejoyOXL1+ON+hk9OjRnDt3jitXdP9V99tvvzFy5EgkSUKtVjNw4EBWrFiR6HWmTJnC1KlTExzftm0bpqa6p/AJgiAIAsSut9K5c2eCg4NTpXciJCQEKysrPi2vjOV3rrMQEqnGevDVVMuaUlJ96qSXlxczZ85k+fLlVKlShadPnzJ8+HB++eUXJk6cqPM9Y8eOxcPDI+7fISEhODk50bBhw++6mSqVCk9PT1xdXcVWuzpkhvujVqs5duwYm3/fzLs377DPZU+Xrl1o3rz5f35OGo2GFy9eoNVqyZ8/f4LXZ4b7k5oSuz8NGzRA+eE1W9olHNsSEaOmyppT9P9hSKafnprZvn78/f05ePAgQUFB5M+fHzc3N4yMjL75fCl5f770RgspJ1nFgo2NDQqFAn9//3jH/f39E11ha+LEiXTr1o2+ffsCUKpUKcLDw+nfvz/jx4/XuWOhkZGRzi86pVKZIt9kKXWezCoj3x+lUkmbNm1o06bNN723WLFiX/W6jHp/0sK/70+/AQPo0qUL+/+ypX3Jv6e1aiWJqZ63+RQSSt++fbPMPc3oXz9qtZqRI0eybNlS5HIJSysDPgbEYG2djRUrVtO+ffvvOn9K3J+MfH+/xrJly5g7dy5+fn6UKVOGJUuWULlyZZ2vrVOnDufOnUtwvGnTphw5cuSrr5msAY6GhoZUqFCB06dPxx3TarWcPn060bmwERERCQqCL9PskvEERBCEDKpjx4707NGDgYeu0WHXZdbffMbSK4+pveEsm26/YNWqVeTNm1ffMYWv9NNPP7F06W+Mn2LJkzdOPH3jyI17ualZR03Hjh05ceKEviNmasmdkbhv3z7ev38f93Hv3j0UCkWyi7pkz4bw8PBgzZo1bNq0iYcPHzJo0CDCw8Pp1asXAN27d483ANLNzY0VK1awY8cOXrx4gaenJxMnTsTNzU3vc/MFQUh9crmcdevXs2nTJkKyOfCz5x1mXHhE4So18PLyok+fPvqOKHylt2/fsmzZUiZOy8aIUdmwsor9FVKwsJL1W2yoWt2YyZMn6Dll5pbcGYk5cuTA3t4+7sPT0xNTU9NkFwvJHrPg7u5OQEAAkyZNws/Pj7Jly3L8+PG4hTNev34drydhwoQJyGQyJkyYwNu3b7G1tcXNzY0ZM2Yk99JCGlKpVBw8eJADBw4QERFBqVKl6NOnD7lz59Z3NCEDksvldO/ene7du6PVapHJZMhkOnYmE9K1vXv3YmAgo1e/hGPH5HIZA34wp0fH67x48YL8+fPrIWHG9e9xFroex3/LjMR/W7duHR07dsTMTPeeHIn5pgGOQ4YMYciQITrbvLy84l/AwIDJkyczefLkb7mUoAdv376laeNmPPR5gL2iAMZaCw7/cZTpv0xn+Yrl9OvXT98RhQxM1zglIWP4/Pkz2XMYxPUo/FvevAZxrxPFQvI4OTnF+/fkyZOZMmVKvGMfP35Eo9EkWNXSzs6OR48e/ec1rl69yr1791i3bl2y84mNpIQE2rZux/tnH+nCTOy0BQCI0URygW3079+ffPny4erqqueUgiCktQIFCuDvF83L5yryFUg4iPDqn9EoFPIEv/iE/+br6xtvtt/3zCxJzLp16yhVqlSigyGTIkp8IYGHPg9orB6CnaxA3DFDmQn16E0uRWFmz/pVj+kEQbh+/TrTpk1jwoQJ7N+/H7X638tdpY62bdtiZWXBjKlBaLXxB6h/+qhh6aIwWrduja2tbZrkyUwsLS3jfegqFr5lRuIX4eHh7Nix45vHCIliQUjA2sCRXLKEyzjLZDKKa2pz5uxpsVugIOjBx48fqVe3NpUqVWLxghlsWjufNm3aUCB/3q9+Zv09TE1NWbZsJXt2htOqyQeOHAznzl/RrF0ZQr3q/kRFmjN7tvhjIrV8y4zEL3bv3k10dDRdu3b9pmuLxxBCAkaYJNpmSOwKmjExMZiYJP46QRBSllqtpmmTRrx6fo+9c3LhVtMMhULG7cdRDJ/3icaNXbl+/RaFC6fuxmedO3fG0tKSSZPG06X9HQAUCjktWrgxd+58ChYs+NXniomJ4Y8//uDkyZNA7Oy50NBQcuTIkSrZMwMPDw969OhBxYoVqVy5MosWLUowI9HR0ZFZs2bFe9+6deto1aoV1tbW33RdUSwICfhrXhIuBWEmy5ag7aXsFnlz50vXy5IKQmZ05MgRrl2/yfk1TlQv83ehXtbZmMMLHSjWwZcFCxYkuZR+SmnevDnNmjXj6dOnBAUFkSdPnmRvJe3j40PTpo14/vwVpUqbYmllghtuFC9elM2bt4pxUYlI7oxEiL3XFy9ejCvKvoUoFoQEjIwNORu5kSbSEBSyv79EXkl38ZF7M3vYLDHtTRDS2M6dOylX1DReofCFhZmcns3MWLlzW5oUCxD7WPJbezHCwsJo2LA+JqafuHjdkZKlDFGrjLh4CipUkmjZ0o2bN29TtGjRFE6dOSRnRiJAkSJFvnsRRDFmQUhg9ZrVPJdfZ6vBz1yTDnJXOsMRFrNfNhvXBg0YNmyYviMKQpYTHBxE7pyJF+m57QwICQlLw0TfbuvWrbx5844d+2woWcowXtuqjTmwyiaxaNEi/YQTdBLFgpCAm5sbl70vU7d1Nf5U7sGT1VDoM4sWL+Tg4YMYGhr+90kEIRO6ffs2U6dOZcyYMWzbto3o6Og0u7azcxGu3lcTo9L9F+LF21EULlRAZ1t6c+DAH9Sua0L+ggmnX5oYy3HvbMKBA3v1kExIjCgWBJ0qVarErl27iI6OQqVS8ejxQ4YOHZrpN2gRBF2CgoJo2qQx5cqV47f5s9i5YSldunQhj5Pjdz0HTo5+/frh/ymaBVs/J2i7ci+SPWfC6Nd/UJpk+V6RkeHksE68lyRHDjmRkVFpmEj4L2LMgpAkmUyGgUHCL5Po6GiePXuGQqGgUKFCYp8PIdOSJIk2rVty+/oVtg1ypnUFawwUMh69j2Dkjte0aOGGt/eflCtXLlVzFC9enHHjxjF+5kxu+UTTo7kFFqZyDl8IZ8W+UCpVrMSgQRmjWChduhzbd1whJkbC0DBh0XDaM4ZSpUrrIZmQGNGzICRLdHQ0EydOJJe9IyVKlKBo0aLkz1uAxYsXo9Vq9R1PEFLc+fPnOet1nk19C9C+sg0GithfbkUdTNk7xJk8OZTM/tc0tdQyffp01qxZw53XOXEb8Y46A96w7oiGgYOGc9LzdIaZzjxgwAACPsQw+5fPCQbeHT4YwXmvcAYPHqqndIIuomdB+GoqlYoWzVtw5owXpbT1qU8ltKh5+PYiP/74Iw8ePGDlypVipoSQqezatYsCdmY0Lp0tQZuRUk7fmjaM37cPlUqV6o/pZDIZffv2pU+fPjx79oyYmBjy58+fYYqEL4oXL86cOXMYPXo03pdVdOxsgomJKTmzw+C+AXTu3BF3d3d9xxT+IcsUC9HR0fj6+uo7Roa2detWTp46SVvGk1dWKu54XkqTS3Jm9erVdOvWjRo1augxpSCkrODgYHJlUyZaBDvmMEKt1hAVFZVmY3pkMhmFChVKcFyj0XD8+HFu3bqFsbExzZs3T7fTD0eNGkWRIkWYP38OwwdfwsQkgu3bYf78BfTv319sOJbOZPr/jeDgYH766Sdsbe0oXTr2GVj9+g04cuSInpNlPCuXryK/vGy8QuGLUtQjh4EDq1at1kMyQUg9zs7O3H4dTmikRmf7BZ9g7O1sMTc3T+Nk8Xl7e1OoYH6aN2/ObwunM2XyWIoVK0arli0SbH+cXrRo0YJz5y4SERHBu3fvAOjTp48oFNKhTP0/EhwcTI3qNflt8QqiI8pgouwGwF+3A2jevPk3bdOZlT158oRc2iI622QyOQ5qZ574PEnjVIKQunr37k1kjJbpB30TPF+/6xvO5suf6Nd/oF4fvz169IiGDRvgmC2QKxvz4Hc8LwEn87Fxij1eZ4/TulWL716UJzWZmJhgZmam7xhCEjL1Y4jZs2fz8NETjBQDUMjtUShiayMjRQ+Uir0MGjSYli1bYmNjo+ekGYOlpRWhQZ8SbQ+TB5I7e640TCQIqS937tzMmTOHn376iYfvo+hd0xZrcwNO3gtixdkAihQrzsiRI/Wacc6cOWQ313J0cW7MTf//c85QTremlthkU9D8x3N4eXlRt25dveYUMq5M27OgVqtZtWo1ciqgkP9r606ZDEODRmg0Er///rt+AmZAnbt25LHiMpFSwi7Nj5Ivr7R3ce8oBiUJmY+Hhwc7d+7knTYX7Zf6UG/2fZafC6ZHn4Gc9Tqv171SJEli587t9GlhFlco/FNjF1Oc85qwfft2PaQTMotM27MQGBjI58+BGCt1r2gml5mhNHDg0aNHaZws4/rhhx9YtWI1+0JmUVfTGwcKARIvucMZg3U45ytCx44d9R0z3ZIkCW9vbx48eICZmRmNGzcme/bs+o4lfKUOHTrQvn17fH19iYyMJE+ePOliFkJMTAwREVHksbfS2S6TychjLycoKChtgwmZSqYtFkxNTZHJZEhSqM52SdKilUKxsLBI42QZV65cuTh77gytW7Zhx4uJWBrkQIOacHUIlcpUZv+Bfenih2d6dOPGDXr16Mnd+/fijpkYGfPD0CHMmjVL58JXQvojk8nIkyePvmPEY2RkhGMue/68G0mP5gkLhqhoLbd8VPStkzGWghbSp0z7E8rc3JyGDRtx5sw1JKkiMln8FQbV2keoVJ9p166dnhJmTKVKleLxUx9OnDiBt7c3CoUCV1dXXFxcxPoKiXj48CH16tTFQZ6NOUV7U9ayAMGqcA59uMLC+QsICQlh1apV+o4pZGD9+g9kzq/TGdIhmhIFjeK1Ldz2mU9BMfTp00dP6YTMINMWCwATJozH07MO0dqdGBo0BXIAoNY8QK3dS9269ahatap+Q2ZAcrmcJk2a0KRJE31HyRCmTZ2KudaIeUV7Y6qI/UGew9CCHrkbYGVgxpLVq/npp59wdnbWc1IhoxoxYgT79u6m9oDH/NjJksYuZgSFadhwMJQdJ0OYMGHCN28nLQiQiQc4AtSoUYPdu3dhaPySiJi5qLSx+7xHqXZRp2519u/fJ/4azmDevn3L+PHjKVywMA45Hahftz67du1Kt0tNR0REsHfvPtxsKsUVCv/UNGdFLA3N2LJlix7SCZmFpaUlXucu0KFTb37dHE6Vnq9pNOQt155mZ9WqVUybNk3fEYUMLlP3LAC0adOGhg0bsmPHjrjBjOfOnaNSpUp6TiYk182bN2lQrwHR4dFUVFbCSm7F4z99cPdyp3279mzfsT3dbWgVFBSESq0ij7GtznZDuRI74+x8+PAhjZMJmU327NlZuXIlc+bM4cmTJxgbG1OsWDGxwFEqCnlqD0bft2pnSLQqhdKkrizxVWRubk7fvn2Z9f/NXsqWLavfQEKyqVQqWrVoRfao7MzMPpvulj1oad6KUVY/M8jqB/bt3cfChQv1HTOBHDlyYGJkzLOI9zrbIzXRvIv8SO7cudM4mZBZWVpaUqFCBUqUKJEhCoWwsDB+++03ateOXSa+bt2aLFu2jIiICD0nE/4p/X8lCQJw4MABfN/60s2sB+by+MvqVjCuQBXjqixZtOQ/H0ecPXsWt+ZumBiZYKg0pFaNWuzZsyfVVrczNjamY+dOHPx0jSBVWIL2PX6XiNTE0L1791S5viCkZwEBAbi4VOann0aQy+kFALb2zxg+fCg1argQGBio54TCF6JYEDKEy5cvY29sj5PSSWd7BaMKvH77Om59eV2WLl1KvXr1uHv6Ls0N3Whr0o6AGx9p3749I0aMSLWCYfLkycjNlAx/tAbPgFt8ignhSfg7FrzYz8Y3pxgzZky6m44nCGmhf/+++H94xoVrDqxabw3A2k02nLuSi1evHzJ48EA9JxS+yPRjFoTMQS6Xo5G0SJKkc1CqRtLEvU6Xhw8fMmzYMFxNG9LB3D3uHA1w5azyDIsXL8bV1ZVmzZqlePa8efNy8fIlBg8azOzTu+OO21rbMH/+fEaMGJHi1xSE9O7ly5ccOHCIxcutKVbcEPU/Ht2XLGXI2ImWjPlpL2/fvsXR0VF/QQVA9CwIGUS9evUIiP7Ac9Uzne1Xoq/gXKgIDg4OOttXrlyJpYElbc3bJSg26prWo4BxAZb8tiTFc39RuHBhPE958vTpUw4dOsSZM2d48+4tHh4eYkaOkCV5e3sjSRIt2pjqbG/ZxgyNRsvVq1fTOJmgi+hZ+A+SJOHl5cXFixeRyWTUqVOH6tWrix/waaxx48YULVyUja83MkwxHFtF7OwCraTFK/IsN6Kus2rUqkT/X65duUZxRXEMZLq/5EspSnPp2sVUy/9FwYIFKViwYKpfRwCtVktAQAAGBgZYW1vrO47wL196ATVq3e1qtRTvdYJ+if+FJDx58oSSJUtTr149fpk2l6lTZ1OzZk3Kl6/Iq1ev9B0vS5HL5Rw6egilrZLxn8ayJHgxv4dsZFLwRLaFbmXo0KH069cv0fcbGRkRJUUn2h4lRaE0/L4pUEL6oFKpmDNnDvnz5cHe3h4bGxsqVSzPrl279B1N+IeaNWtiYKBgz86EA38B9uwIw9BQSbVq1dI4maCLKBYSERgYSK1adXjy+AMmyr4YKcZirBiHibIX9++/onbtuoSG6t53QkgdhQoV4u79O/y25DeyVcpGWJEwGrSrz4ULF/jtt9+S7O1p5taMe6q7BGuCE7SpJBVX1Vdxa+mWmvGFNKBWq2nbpjXjx42lbl4Ve4YW4ff+hcke/RJ3d3dmzJih74jC/+XKlYuOHd2ZMSUE70tR8drOe0Xy64xQunXrjq2t7jVKhLQlioVErFmzhg8fAjBU9MZAURCZTIZMJsdA4YyhrCevX78S21vrgaWlJT/88ANe5724cesGm7dspkaNGv/5vl69emFhacHy0GUEav6ejhWmDWNtyBrCpTCGDRuWmtGFNLBx40YOHznK/mFFWNunEC3LW9PJxZajPxVjQovcTJgwgQcPHug7pvB/y5atoHTpSjSp9562bgEAtG4WQItGflSuXI3FixfrOaHwhSgWErFlyzbksuLIZQl3cZPLbTCQF2HrVrE/fEZhbW3N8ZPHCTYLYsyn0cwLmsuioIWMDhzJfekeu/fspkSJEvqOKXynVSuW07RMDhqXTrj191i33OS0Mk6Xm3YFBwdz/vx5Ll26lKUWI7K0tOTMmXPs2LGDbJaxjxuss1dn9+7dnDx5GjMzMz0nFL4QxUIiPn8OQk62JF6Rjc+fP6dVHCEFVKpUiecvn7Nk6RKKNS1K/ob5mDp9Kq9ev6JFixb6jiekgAcPH1K3mO5t5w0N5NQsbMaDf2wTrm9hYWEMHjyYXLnsqV27NjVq1MDR0Z5x48ahUmWMZYC/l1KpxN3dnd279wKwa9ce2rVrJ7ZtT2fE/0YinJ0LEfDhpc42SZKQyX1xdq6QtqGE72ZhYcHgwYMZPHiwvqMIqcDMzJQPwYn/kvUPVWPtaJ5oe1qKjo6mSeOG3L51jdFdrWhT1w6VRmL78VDmzfuVxz6P2LV7j5gNIKQL4qswEQMHDiBG9Ry15lGCNrX2LjGqNwwY0F8PyQRBSEybtu3Z7B1IRLQmQdv9txFc9Ammbdt2ekiW0O+//86ly94c/82BiX2tKVHQiLLOxvw6zJZt0+3Yu28/J0+e1HdMQQBEsZCotm3b0ry5G9GarUSpDqLWvkCtfU6Uaj/R6p24u7vTpEkTfccUBOEfRowYQUg0tFnymGcfYkfYS5LEpSchtP7tMc6FC9K+fXs9p4y1bu0qmla3wKW0SYK21nXMKVvElHXr1uohmSAkJIqFRCgUCvbu3cPEieOxsHxMZMxqImPWkC3HK6ZP/4UtW7aIhZkEIZ0pUqQIh48c5S8/GUV/vkm5yfcoOvYOdWbewzxnPk56nsbY2FjfMQF49eoVlYob6myTyWRUKGrAyxe6VywVhLQmxiwkwdDQkClTpjB27FgeP36MTCajSJEiKJVi8R5BSK/q1KnDa9837Ny5k2vXrqFUKmncuDENGzZMV8//ra2teeqre+tygOdvtdjY5Pyua2i1Ws6fP8+bN2/ImTMn9erVEwMHhW8ivmq+gpGREaVKldJ3DCEV+Pv78+DBA0xMTKhQoYIoBDMJExMTevbsSc+ePfUdJVFduvZg2tSJTBuoIq9D/K+7Gw+jOHs9jM2bu33z+Q8dOsTw4UN48eJ13DFHR3tmz55L165dv/m8QtaUfspsQUhDfn5+uLu7k9sxN/Xq1cPFxYU8jnlYuHBhqm1VLQj/NGDAAOztc9Hgh/ccOBeGRiMRHaNl6/EQmo3wo1zZ0t88vuLo0aO0atWKwkU+cfKcA++D8nLuSi4qu4TSrVs3saCckGyiZ0HIcj5+/EgNlxp8evuJdqbtKWlYiggpnAthF/Dw8ODdu3fMnTtX3zGFTC5Hjhyc9TpPl84daTPqCoZKORKgUmlp0rghv2/eipGRUbLPK0kSI0f+SO26xmzfZ4tCETu2qkxZI9ZvsUWhgJ9/HknHjh0xNNQ9ZkIQ/k0UC0KWM2/ePPze+DEh26S43SsBCigLYqewY968efTt25ciRYroMaWQFeTLl49Ll//kxo0bXLp0CYVCQb169ShWrNg3n/PatWs8fPiE2Qvt4wqFL2QyGSNGZ2PPzrd4enrSrFmz7/0UhCxCFAtCliJJEuvWrMPF0CVeofBFfdMGnIw+wYYNG5g9e7YeEgpZUYUKFahQIWUWefPz8wOgWCIzLYoVjx0f8f594oMrBeHfxJgFIUuJjIzkY+BH8hnk19mulClxVDiKLciFDMvBwQGAB/didLY/uB+7wmWuXLnSLJOQspYtW0a+fPkwNjamSpUqXL16NcnXBwUF8cMPP+Dg4ICRkRHOzs4cPXo0WdcUPQvfKCAggA0bNnDz5k0MDQ1p1qwZrVu3Fs8A0zljY2NMjE34oPmgs10rafkofcTa2jqNkwlCyqhYsSIlShRlwZzX1KxjHO9RhCRJzJ8dhINDTlxdXfWYUvhWO3fuxMPDg5UrV1KlShUWLVpEo0aN8PHxIWfOhFNtY2JicHV1JWfOnOzZswdHx9g/hrJly5as64pi4Rvs2rWLbt26o1ZrUcjzIJNFs3nzZvLlK8CpUycpWLCgviMKiZDL5XTq3Ik/tvxBA60rpnLTeO03o28QEB0gppYJGZZMJmP+/EU0a9aUdm4f+GmMJaXKGPHEJ4ZF80I4fCCcrVtXi2nCGdSCBQvo168fvXr1AmDlypUcOXKE9evXM2bMmASvX79+PYGBgVy+fDnu/zxfvnzJvq54DJFMV65coVOnzkiaYpgqf8bYoC9Gih8wNRzG27ehNGjQkOjoaH3HFJIwduxYNEYaFobM51HMIyRJIkobyZmI02wIW49bczeqVKmi75iC8M0aNWrE4cNHePfGgeaufuTN+YoGNd9z93Y2duzYQefOnfUdUfiXkJCQeB+6fo/ExMRw48YNGjRoEHdMLpfToEEDvL29dZ734MGDuLi48MMPP2BnZ0fJkiWZOXMmGk3C/VOSInoWkmnevHkYKGwwlLdDJlMAoJXCUWvuodZE8fJlAHZ2uRgyZBDDhw/H1jbhIDpBvwoVKsQZrzN06diFeU/mYCg3RC2pQQZdu3Rl5aqVYilvIcNr3LgxDx8+wdvbmzdv3mBnZ0eNGjVQKBT6jibo4OTkFO/fkydPZsqUKfGOffz4EY1Gg52dXbzjdnZ2PHqUcNNDgOfPn3PmzBm6dOnC0aNHefr0KYMHD0alUjF58uSvzieKhWSQJImDBw+BVOcfhUIwETGrkaQwFPJCSFIIIcHBzJgxm2XLlnPx4gVKlCih5+TCv5UvX54HPg84f/48t2/fxsTEhKZNm5I7d259RxOEFCOTyahWrZq+YwhfwdfXF0tLy7h/f8saG7potVpy5szJ6tWrUSgUVKhQgbdv3zJ37lxRLKQWSZJQqWIwVPy9S1yUaj+SpMZAXgq19gYymTUGiqJopVCCgnwoX74S9+79ReHChfWYXNBFJpNRu3Ztateure8ogiBkcZaWlvGKBV1sbGxQKBT4+/vHO+7v74+9vb3O9zg4OKBUKuP1KBUrVgw/Pz9iYmK+elC+GLOQDHK5nOLFS6LlCQBabSAarQ8GisKotTcwMmiBmaEHxso2mBr2wMxwFCqVKa4NGiX7+ZAgCIIg/JOhoSEVKlTg9OnTcce0Wi2nT5/GxcVF53uqV6/O06dP0Wq1ccceP36Mg4NDsmbviWIhmYYNG4JK/QCV5gEa6S0AGu0rDOQlMTRwQSb7+5bK5dkxUXbg1esXHD9+XF+RBUEQhEzCw8ODNWvWsGnTJh4+fMigQYMIDw+Pmx3RvXt3xo4dG/f6QYMGERgYyPDhw3n8+DFHjhxh5syZ/PDDD8m6bpZ5DBEWFsaLFy8AvmujoD59+nD8+An++GMrclnu/5/vIwYGjXS+Xi5zwsDAmtOnT6fp0qoRERHs2LGDPbv3EBwcSslSxenfv3+KrRInCIIgpD13d3cCAgKYNGkSfn5+lC1bluPHj8cNenz9+nW8rdidnJw4ceIEI0aMoHTp0jg6OjJ8+HB+/vnnZF030/csfPr0iUGDBpHT1i5uOly1ajXYs2fPN51PoVCwe/culi1bSv4CxnHHZYncSplMhlymiNcFlNpevXpFqZJl6NunL9dOvuLFn2q2rt9HxYoV+fnnn8WuioIgCBnYkCFDePXqFdHR0Vy5ciXeVG8vLy82btwY7/UuLi78+eefREVF8ezZM8aNG5fsWTGZulgIDAzExaU6a9duRqN2wcSwNwBPHkfRvn17li5d+k3nVSgUDBo0iCdPfBgyZAggR6W5r/O1Gq0fMaoP1KhR41s/jWTRarU0b+bGB99QqslnUF42ilLyAVTT/oqzrANz5sxh06ZNaZJFEARByBwydbEwc+ZMXrzwxUg+ACODBijkeQAwUnRBqXBhxAiPBKNKk2v+/PmULFkCtfYWKs29eG2SFIFKux8HB0datmz5Xdf5WqdPn+be/bsU1fbCTOYQd1wmk5NP3gQ7eXl+nT0nU/cuREVFERkZqe8YgiAImcY3FQv62MQiudRqNWvWrEMmVUAu/9fCSDIZRgYN0Grh999//67rGBoacuvWTerWrUOUaisRMSuJVnkSpdpPlHoepmahHDp0IM2WVj158iTmShuy46yz3R4XHvk8zHQ7zkmSxM6dO6lSqQomJiaYmppSoWwFNm/enKkLI0EQhLSQ7GLhyyYWkydP5ubNm5QpU4ZGjRrx4YPujXm+bGLx8uVL9uzZg4+PD2vWrMHR0fG7wyfl06dPhIQEoZDn09kuk5miNHDgyZMn330tAwMDTp06xe7du6lZqwBWOR7glDeQ0T+P4P79u2k6qFCj0SBHmegKhHJiixa1Wp1mmdLCuHHj6NixI+H3wulp2Yuelr1Q+ajp3r07P/74oygYBEEQvkOyZ0PoaxOL5DI3N0culyNJwTrbJUmLVgr5z0UwvpZcLqddu3a0a9cuRc73rapUqcLChQsJk7/FXJawIPsg3cTB3jHVi7W0dOnSJWbPnk178w40Mmscd7yGSU3OKs/w22+/0bx5c7HL3v89efKEdevW8fjxYywsLOjQoQONGzcWywALQjJ9emlHtPL7dhoOU+neSjy9SVax8GUTi3/O4UzOJhYHDhzA1taWzp078/PPPyf6wyk6OjreJhohISEAqFQqVCrVV2U1NDSkRYuWnDlzGyN5FZAZYGwc25FibCxHrfFBo4qmffv2X33OjKB58+bkzZOfl4E7KS0NRiH7e8bGR+k+wdxiwo/j0Wq1CWZofLkPGe1+rF69mnzZ8tPQshH/7lCpa1SPq4orrFm9hjp16nzXdTLq/fmnuXPnMn36dKyMTSmZzZrn0ZHs3r2b8uXKsWfv3u/amjsz3J/UJO5P0lLy/oh7nPJkUjL6Z9+9e4ejoyOXL1+Ot1rU6NGjOXfuHFeuXEnwnqJFi/Ly5Uu6dOnC4MGD4zaxGDZsWKLrUk+ZMoWpU6cmOL5t2zZMTU11vEMQBEEQYkVERNC5c2eCg4NTrPf4n0JCQrCysuJ6m36Yp0DPQsV9a1Ita0pJ9UWZvmUTi7Fjx+Lh4RH375CQEJycnGjYsGGyb+bJkyfp128AQUGBWFrmYtWq+fTu3Zt69RqwZs0qzMzMvuvzS69evXrFqlWr2LdnP2HhYTg7F6Fvv9506NABAwPd/+0qlQpPT09cXV0z1F73tWvWRvHYgF6WvXS2bw3ZymenQK5cT1jMJkdGvT8QOwDUpXIVcoZFMb9qwwTt59+/wsP7JGfPnqV8+fLfdI2MfH/+TaPR8PHjR5RKJTly5EiRc2am+5MaUvL+fOmNFlJOsoqFtNrEwsjISOeOW0qlMtlfRM2aNeP586fs27cvbgtPLy8vSpUqlazzZDSFChVi7ty5zJ07N9nv/Zb7rE/N3Jrxy+RfaGvQFgt5/GIyQhuBd+hlPNw8Uuxzymj3B2KLx5t/3WZZjSYo1An3KallnQtTmZyjR4/GW+DlW2TE+/NFTEwMCxYsYPmyJfi+eQdAxfLlGPXzGDp06JAi18jI9yctpMT9Efc35SVrNoQ+N7H4HsbGxnTu3JmJEycCsY9GhMyjX79+mFmYsSRkCf7qvwvZAE0AS0OXoDRWMnDgQD0m1L8vY4DMDHR/zynkckyVhvHGCmU1KpWKNq1bMWnieOrnV7N3aFF+71+YHKqXuLu7M2PGDH1HzJSCgoKYPXs2lSvH9mhVrVqRuXPnit6BdCbZjyE8PDzo0aMHFStWpHLlyixatCjBJhaOjo7MmjULiN3EYunSpQwfPpyhQ4fy5MkTZs6cybBhw1L2MxGyrJw5c3Ly1EmaN23O+A9jyW9cABkyXkQ9xzqHNccPHyd37tz6jqlXefLkIbuVFeffv6KqXcJ78TQ4EN/gz9/8CCIz2LBhA8eOH+fQj0VpWCp73PFOLrZM3f+aCRMm0KZNG4oVK6bHlJnLu3fvqFu3Fq9fv6Ste+zjnqIl3jNhwhg2blzH2bPnyZkzp55TCvAN6yy4u7szb948Jk2aRNmyZbl9+3aCTSz+ueDPl00srl27RunSpRk2bBjDhw/XOc1SEL5VhQoVeP7yORs2bKCWe01qdKjOmrVreOX7KtFer6zE2NiYvv37s+PFA+58iv8YMVKtYvrti9jnzEmrVq30EzAdWLVyOc3K5IhXKHwxpnlucloZs3r1aj0ky7z69etDWPgbvG86sHhZ7Eyc31ZYc+m6Ax8/vWDQoAF6Tih88U0DHIcMGfL/PRES8vLySnDsyyYWgpCaTExM6NmzJz179tR3lHRp8uTJXDh/nq5n/6CJU0Eq2ebCLyKMfa8fE6SO4eixY2n2aDA9evDwEV1aO+hsM1LKqVHYlAf3de8BIyTfs2fPOHr0OMvX2pC/oBL1P2Y7Fi5iyNiJFvw07CC+vr44OTnpL6gAZPK9IQRB+JuZmRmnz5xh+qyZ3JfFMOHaWTa8uE/Dtq25dv06tWvX1ndEvTIzNeFDSOLz8/1DNJhbWKRZHkmSCA8Pz3SrrX7xZap985a6Z6S5tTJDq9Vy7dq1tIwlJEIUC4KQhZiamjJq1CiePH+OWq0mNCyMDRs2ULx4cX1H07u27Tqw2TuQiOiEs0Xu+oZz6XEwbdq0SfUc4eHhTJ8+nbx5HDE3N8fExJgOHdpz48aNVL92WvoyQy46SvdSP1H/P57YVG8hbYliQRCyKIVCkegeIhD7l+358+dZvnw5Gzdu/O4dWtO7ESNGEBQp0WbJY576x+5aKkkSFx+H0GbJE4o4F0r15dzDwsKoX68OM6ZPoVHFCDZPs2fWD9m5c+0I1aq5cOzYsVS9flqqU6cOSqUBO7eF6WzftT0MY2NDatSokcbJBF1EySYIQgLXr1+nR7euPHjkg4FCjlqjRWlgQL/+/Vm4cGGmHNtQtGhRDh85Sof27Sg25hYlnCyJiNbw4kM4ZUqV5ODhIzrXf0lJ06dP596925xf7UiFYn8v1T6kQ3baj/Gja9dO+Pq+yxQr2drZ2dG1azdmTdtMiZKG1Kwde28lJE4ei2DuzBB69eqfYotiCd9HFAuCIMTz6NEj6terSyFLI/7oXJMaeWwJilLx++0XzFq1ipDgYDZv2aLvmKmibt26vPZ9w65du7h27RpKpZImTZrQoEED5PLU7YiNiYlh7ZpV9G9lEa9QADBUyljoYY1zm5fs2rUr0wziXbJkCb6+r2jd7AyVq8Qwbiw0qRfA9auBNGnSiAULFug7ovB/olgQBCGeGdOnk81Axj736lgYxa6El93EkOEuRbA2NWT41q2M/vnnTLsKqomJCT169KBHjx5xx3x8fHj58iXW1taUL18+VQqHt2/f8ikwiIZVde8IW8DRkCL5zLhz506KX1tfzMzMOH78JMeOHWPbtq0AFC7YiGlTutGoUaNUL9CEryf+JwRBiBMdHR37l2uZvHGFwj+5l8yLrYUpWzJpz8K/Xb9+nRrVq1G0aFEaN25MpUqVKFbUmT179qT4tUxMTAAIDEk4wBJAq5UIClVjbGyssz2jUigUNG/enE2bfgdg06ZNNGnSRBQK6Yz43xAEIU5oaCgxKhUFcpjrbFcq5OSxMiMgICCNk6W9mzdvUqd2LcLe3mP7YGeezauA5+gSFDb9TPv27dm8eXOKXs/e3p7KlSqw/mAYujYDPnIpHL+P0bRs2TJFrysIX0MUC0ICJ06cYNeuXdwXC9BkOVZWVliYm3HHL0hne3iMmqefQsiTJ0/aBtODkT95UMDGgPNji9Oukg15rI2oU8yK/cOL0MnFlh+HDyUyMjJFrzlm7HhOXw3jp4UBhITF9jBIksTpqxH0nf6RunVqUbly5RS9piB8DVEsCEDshmBz5swBoEOHDri7u1OyZEmqV6vBgwcP9JxOSCtKpZJu3Xuw6a9XvAtN+Itw5bWnhETFxHuenxm9ePGCs17nGNXYHlMjRbw2mUzGxBa5CfwczKFDh1L0uq1bt2bx4sUs3R2CU/NX1Bv4juId3tBwyBuci5Zj9559SU53FYTUIooFAYCffvqJmTNmAtCVmQxmHc0ZwZOrr6lRvSbPnz/Xc0IhrYwfPx7TbNlpsuU8m24953VQODffBTL86A1mnr/PmDFjyJ8/v75jpipfX18AyuXTvbpgYXsTLE0Nef36dYpfe9iwYbx69ZrRYyaRq4gbdRt3x9PTkwsXL2NtbZ3i1xOEryFmQwg8e/aMxYsXU9849q/FbDIHNDJwpgpOmhJsCxvDL7/8woYNG/ScVEgLuXLl4sKlywwbOoSfDh+Je35un9OWhQsXMnz4cD0nTH22trYAPPWPoqhDwjUN3n2OITQyJu51Kc3R0ZGJEyemyrkF4VuIYkFg8+bNGMvNKEm9BG0mMnNKqRuwfdsOVqxYkelGYgu65c2blwMHD+Hr68ujR48wNTWlcuXKKJUJZ0hkRkWLFqV8uTIsPPGSJqWzo5DH7/pfeOItpiYmWXqXTiFrEY8hBN69e0d2uT1Kme5V+axxIjomiqCgoLQNJuidk5MTrq6uVK9ePcsUChA7LmHW7DlcfBxKuyU+3HoVO0Ph9adoPLa9YNGJ94yfMBErKyt9RxWENCF6FgQcHBwIkvxRSTFAwp6DT7zBUGlEtmzZ0jxbZhMVFcWuXbu4ePEiMpmMevXq0bp160y5fHJG17BhQ/bt28cPgwdSecqduGWvLczNmD17NqNHj9Z3REFIM6JYEOjWrRvTpk3jvvIsdYg/hztKCuOuwSk6duqYIR9BREZGsnPnTry8vJAkidq1a9OxY0e9rK1/5coVWrq1wD/gA4UtHdFKEqtXr8bJMTdHjh3NtCsiZmQtW7akWbNmnDhxIm4Fx+bNm2NurnsdCkHIrESxIFCoUCF++OEHNqzfwA+0JFjyx1Cy4jV38VbsRmamZuLECfqOmWzXrl3DrZkb/gH+FDAuAMjY/Ptmfh71MwcPH8TFxSXNsrx584ZGDRvhJMvOnDIe5Da2AeBFhB+/vtyLa/0GPHj0UGyakw4ZGBjQrFkzfccQBL0SxYIAwG+//RY3snszY4gkdo595XJVWLfhCIUKFdJnvGTz9/enkWsjckRZM8z6R+wM7AAIMA9gQ9g6mjRqwv2H93F01L0Of0pbvnw56sgYZpTuhrmBSdzx/Kb2zCjUjS535rF+/XpGjhyZJnkEQRCSQwxwFACQy+WMGzcOgO3bt7Nt2zZu377NlWt/UrJkST2nS741a9YQERbBEMuhcYUCgK3CliEWw4iJjGHVqlVplmf/nn3UyVYyXqHwhbWhJS5WRdm3Z2+a5REEQUgOUSwICTRt2pROnTpRpkwZfUf5Zvv27KesshwWcosEbaZyU8obVGDfnn1pliciIgIrpe4FfgCyGZgRER6eZnkEQRCSQxQLQqYUGRGBmSzxX87mcnMiI1J2Xf+klCxdipthz3S2aSUtN8OfUyoDF2eC/gQEBDBt2jSKFS2MvZ0N1VyqsH79emJiYvQdTchERLEgZEplK5TlofaBzt37JEnivuY+ZcuXTbM8gwYP4lGIL8cDbiRo2+d3mTfhAQwcNDDN8giZw5MnTyhXtjS/zv6Fqs4fGNwarOQP6Nu3D00aN0zxja6ErEsMcBQypcGDB7Njxw48IzxpaNYwXptX5FneRPuyYfD6NMvTrFkz+vTpw9x16/AOekTt7CXRoOVs4F2ufH7EyJEjqV69eprlETI+SZLo0L4tFkbB/LknD7ls//5xfv5mBE1/vMjEiROZN2+eHlMKmYUoFoRMqWbNmowaNYq5c+dyX32PSoaVkCHjesx17kbdYdiwYdSvXz/N8shkMtasWUPlypVZvHARMx7tBKBcmbJs/m0zXbp0SbMsQuZw8eJFbv91lxNLHeMVCgC1ypsyzN2SlWtXMXXqVMzMEn8kJwhfQzyGEDKtX3/9le3bt2NW0pSNIRvYELIew2JKNm/ezKJFi9J8q1+ZTEb//v259+A+nz9/JigoiJu3b9G1a1ex7XAW8OWRWPt2bbG3syGPUy4GDx7Mw4cPv+l8ly9fxtJcSb2KuhcYa1PXguDgMLHFfCa0bNky8uXLh7GxMVWqVOHq1auJvnbjxo3IZLJ4H9+ywF6WKBY0Gg3Hjx9n8eLFAKmyrayQ/shkMjp27MiVa1eIjIwkIiKC6zev6/2Xs0wmI1u2bGJfgSxEkiTGjh0LwMc33gxsCe1qRfHHnvWUK1eWI0eOJPucCoUCjVZCq9XdHqOW4l4nZB47d+7Ew8ODyZMnc/PmTcqUKUOjRo348OFDou+xtLTk/fv3cR+vXr1K9nUzfbHg7e1NgQKFaNKkCVOnzACgVKlSdOnSlYiICD2nE9KKsbExJiYJ1zgQhLSwZ88eVqxYAcDp5Q5M6mfNvB9tebbficYuRnTo0I6PHz8m65z169cnPELNoQthOtu3nwjBLqdNhlwnRUjcggUL6NevH7169aJ48eKsXLkSU1NT1q9PfAyWTCbD3t4+7sPOzi7R1yYmU49ZePDgAfXrNSA6WgYo0GijAZBhzvbtOwkNDeXAgT9EF7AgCKnqt8ULqVUu4X4SRoZyVo/LSZ7mL1m/fn2yNqcqV64cdevUYtj8KxTMbUjpwkZAbC/G9hOhrNoXwtSpv4hNylLRu1cOmBl835454eqor35tTEwMN27ciOulgtgF9Ro0aIC3t3ei7wsLCyNv3rxotVrKly/PzJkzKVGiRLJyZupiYdKkyURGxSDDGCODhpgaFgFAIXdCkgI4dOgg165do3LlynpOKghCZiVJEn9eucoCj1w6222yKahV3pjLly8n+9zbtu+koWt9ynV5QP3K5uS1l3Plvpr7zyLo0qUzY8aM+d74QhoJCQmJ928jIyOMjIziHfv48SMajSZBz4CdnR2PHj3Sed4iRYqwfv16SpcuTXBwMPPmzaNatWrcv3+f3Llzf3W+TPsYQqVSsX//PsAAU8NBGBrUQi53AMDY0B2loiYgY/Xq1XrNKQhC5ieXy1GpE6758YVK9W1jC+zt7bl67QYbN27EIJsLd98VpGTF5pw6dYrNm7eki/EKERERrFu3jlatWtK4cUN+/vlnnj3TvUBZVubk5ISVlVXcx6xZs1LkvC4uLnTv3p2yZctSu3Zt9u3bh62tbbKXu8+0PQvBwcFotRKGiirI5Ql38jMyqItK482NGwkXyREEQUgpMpmMBvXrs/v0NcbUStj+2k/F+VsRLO3T4JvOb2xsTI8ePejRo8d3Jk15Pj4+NGxYH1/ft9SobUq2bLBmrRfz5s3jt99+44cfftB3xHTD19cXS0vLuH//u1cBwMbGBoVCgb+/f7zj/v7+2Nvbf9V1lEol5cqV4+nTp8nKl6l7FkBCLs+js10mM0EusxXjFQRBSHUjPH7ir8exA6pVqr97GPw/qek0/gPW1tnp2rWrvuKliujoaJo0aYip2Sdu3MvNoRN2bN5px4Pnueg/2JwhQ4bg6emp75jphqWlZbwPXcWCoaEhFSpU4PTp03HHtFotp0+fxsXF5auuo9FouHv3Lg4ODsnKl2l7FqysrJDJZEjSZ53tkqRBKwVTqZJbGicTBCGradCgAbNnzwagVKc31CqjJSRcy9FLEVhYWnLs2HEsLBJuepaR7du3jxcvXuN9y5EChZRxx01M5Myal4Orf6qZP38urq6uekyZ8Xh4eNCjRw8qVqxI5cqVWbRoEeHh4fTq1QuA7t274+joGPcYY9q0aVStWpVChQoRFBTE3LlzefXqFX379k3WdTNtz4KpqSlNmjRFpfFGklQJ2tXaO0AEAwYMSPtwgiBkOYMGDQKgZdsePPlUhCCpHDNm/oqPz1MqVaqk53Qp7/jx45Qtb0qx4glnY8hkMtw7G3Py5CnUarUe0mVc7u7uzJs3j0mTJlG2bFlu377N8ePH4wY9vn79mvfv38e9/vPnz/Tr149ixYrRtGlTQkJCuHz5MsWLF0/WdTNtzwLAL79M45RnNaJUmzA0aArEjvxUqa8Trf6D1q3bUL58ef2GFIR0ICYmhiNHjvD06VOyZctGq1atsLW11XesTGnu3Lkolcr/fmEGFxMTg2kSq0ybmcuRJAmNRoOBQab+VZTihgwZwpAhQ3S2eXl5xfv3woULWbhw4XdfM9P2LACUL1+eY8ePYm0bQUTMEqLUsRuqxGiO0KlTB7Zu3aLnhIKgf4cOHSKvkxNt2rRh+sRJDBo4kNyOjowcORKNRqPveEIGValSJa79GUXAB91fQ0cPRVG6dAmdz+aF9CfTl3P16tXD1/cVR44ciZuH+tdff1GoUCE9JxME/Tt79iytW7emln0eVjfqiHM2az5HR7H96V0WLliARqP5pr9KPn/+jL+/P9bW1qKHIovq2bMnEyeOx2PoJ9ZttsXQ8O/B5H/sDefY4TBWrRqux4RCcmTqnoUvlEolrVq14qeffgIgb968ek4kCOnDhPHjKZUjJ0uqNcY5mzUA2Y2MGVyiEj+WqsKSJUt49+5dss7Zo0cPcua0pVixYtjZ2dGkcSOuXbuWGvGFdCxHjhxs376TE0djqFTSj5nTPrP8t2BaN/1Az84f6NSpI3369OHjx49MmjSJkiWLAVC6dAmmTp1KYGCgnj8D4Z+yRLEgCEJCr1+/5rK3N90KlcJAnvBHQaeCJTGQydi9e/dXne9Lz92Nc6eYVqcEh7vWZlGTcry+fY1aNWty7ty5FM0vpH8tWrTg6tVr1K3bkTXLtfwyKZyoiBJs3ryZzZu38ubNGypVKs/ChbOoUz92BcPqtYKYO3c6VapUSHahKqQeUSwIQhb15S+3PGaWOtstDI3IbmzKp0+fvup8o0eOBOBwp5oMqFQYFycbupbJj2f32lSwt6Jv715oE9siUci0ypQpw4YNGwgMDCYiIorLl6/QtWtX5HI5ffv2Qit9wPuWAzPnxvZs/brAmks37ImIfM/Agf31nF74QhQLgpBF5c6dG4VCwV+B/jrb34WH8iE8lPz58//nuZ4+fcq5CxcAsDKJP1XO2EDB+FrFePr8RYKR2kLW9fjxYzw9zzBxmiVOeeIPn8uXX8nYSRYcPnyUly9f6iegEI8oFgQhi7KxsaFVy5ZsenqXz9Hxd76TJIml969hZmpG+/bt//NcT548SbK9sqM1Crmcx48ff1fmlPT06VOGDh1K7lz2ZM9mSY1qLmzevFnMAEkjX8axNG5mqrO9aXNTJEkSS/KnE5l+NoSQuTx69Ijff/8dPz8/HBwc6NGjB87OzvqOlWHN/vVXXKpUoePZffQtXJbytva8Cw9jy9O7nHv3knXr1mFunnBr5X+zsrJKst0/PAqNVhtv7Xt9unDhAk2bNMbUQEvnqtnJaZGdM4986N69Owf+2M+OnbvE3P9U9mXr7IhwLRYWCf9uDQvTxnudoF/iu0HIEDQaDUOGDGHlypVYKC2wM7DDX+3PzJkzGTx4MEuWLEGuY5CekLRChQpxydubESNGMOnYMSQpdt+C4kWKsmfPHtq2bftV56lcuTK5cyW+1vzaG88wNTGmadOmKZL7e0RGRtK2TSsq5jFk/7AimBvH7sw4qhkcvBlIh+UHWLJkCSNGjNBz0sytbt26GBkp2b4ljB9HZkvQvmNrGKamxtSsWTPtwwkJiGJByBAmT57M6lWr6WTRmVomtVHKlKgkFecivVixfAW2trZMmTJF3zEzJGdnZ44cOcLbt2958eIFVlZWlCxZMlmbrBkYGPDz2HEATPe6x5AK+bAxNSIkWsX6m89Z5P2YcePGkS1btlT6LL7erl27CPgYyMpR5eMKhS9alM+Be2Vrli5ZzPDhw0UBmopsbGzo2bM3s39ZS6HCSho1je1BkJA4sC+c+bNDGDRoaLr4mhFEsSBkAKGhoSxauIhGJo2pb/r3Nr5KmZIGpq4EagJZOH8ho0aNwswsifVlhSQ5Ojri6Oj4ze/v3r07R48eZfNdX1b9+RBHK3P8QyOI1mgZMWIE06ZNS8G03+7KlSuUzGNJwZzGOttblc/BtmU+fPz4kZw5c6Zxuqxl0aJFvH3rS9cORyldRsW0qVDX5QP37n6mdeuWzJkzR98Rhf8TxYKQ7p0+fZrwiHBq2dTW2V7bpA4nP53Ay8uLZs2apXE64d8e+fiwa9cufH19yZkzJx07diR37tz6jhVHoVAQrUp8Cmfk/9vEmIXUZ2xszMGDhzl79ixbt24FoGqVtixd0pVatWolq3dLSF3iu0FI9yIiIgCwkOnewtdCbhHvdYJ+5ciRg6FDh+o7RqIaNWrE0qVLufo8lMoFEn5NbfvzExXKlyV79ux6SJf1yGQy6tWrh5OTEw8ePGDMmDEULFhQ37GEfxEP5ICPHz8yZ84cGjRwpU6dekyYMIHXr1/rO5bwfyVLlgTgQcx9ne33Y+4BUKJEiTTLJKQ/wcHB+Pr6Eh0dneTrmjRpQrGizvRc+5wnfpFxx1VqLTMP+nLiTiAjR/0s/qpNI5cuXaJmzWqUKVMGgFKlSlGnTk2uXLmi52TCP2X5YuHChQvkz1+QsWMncM7rLZcuBPDr7AUUKlSYnTt36jueAJQuXZqqVapyMOoAYdqweG2h2lAORR2kRrUayd6fXcgc/vzzT5o3a0r27NnJkycPtjbWDBkyBH9/3YtNKRQKDh0+itrImhLjbtNo7gO6rXpMoZ//YvJ+XyZPnkzHjh3T+LPIms6ePUvdurUJi7jB8rU2ACxdZUNg0FVq167JpUuX9JxQ+CJLP4b48OEDTZs2JzrKFhNlR+Sy2PnkkhRNtPoAXbp0pWjRonEVr6A/69avo1aNWkwLnkJNZS0cDRx5q37LedU5FOYK1qxbo++Igh4cO3aMli1bUNTBhKXd8pPH2gjvp6Gs+n0tx44e5tLlP7G3t0/wvoIFC3L33gO2b9/Ovr17eRceSkv30gwYMEB8v6cRSZLo2bMbFSsbcOC4A3KZMRdPQcs2ZjRr6UBzVz969uzG48fPRC9POpClexbWrl1LREQkRopOcYUCgExmhJFBW+RySxYvXqzHhMIXxYsX5+r1q7Tq2ooT6uMsD17GSc0J2nRrw7Ub1yhatKi+IwppLCYmhl49u9OguCV/TixB/7r2NC6dnalt8vDnpBKEf/ZnzJifE32/mZkZffv25eixY5w7f5Hly5eLQiENXbp0idev3zJucvZ421cDGBvLGTMhG0+fvhArOKYTWbpYOHbsOHKKIJMlnG4nkymQaUty5MhxPSQTdClQoADr1q0jOCSYgIAAgoKDWLt2Lfny5dN3NEEPDhw4gP+Hj/zaIQ+GBvF/lOWzMeZHVzt27NhBUFCQfgIKSTp+PPZna8XKRjrbK1aJPe7p6ZlmmYTEZeliQaVSk/STGCUatTqt4ghfydDQEBsbG7EMbBb34MED7LObUCyX7r0F6hSzIjo6hufPn6dxMuFrREbGDi599VL3z9gvx7+8TtCvLF0sVK/uAvKnSJIqQZskSSB/iEu1qnpIJmRVYWFh+Pv7oxZF6n8yNzcnJEJFZIzujZ/8g2PiXiekP7Vq1UKhgBW/hehsX/5bCAoDqFGjRhonE3TJ0sXCwIED0WojiVYfRpL+XqRFkiRiNOeJUb1j2LD0O19cyDwuX75M0yZNsbS0xN7enpw2ORk1apToQk9Cq1atiIzRsPlSQII2SZJY7fWBUiWLU7hwYT2kE/5L48aNMTExZdP6UH72+MT797FF37u3GkYO+8jOrWFYmFtSr149PScV4BuLhWXLlpEvXz6MjY2pUqUKV69e/ar37dixA5lMRqtWrb7lsimucOHCrFmzGrX2GjHaxUSrPIlWnyVGu4IY9XEmTJiAq6urvmMKmdyBAweoXas2jy/+xbC8bvzi3I0GJiVY8dsyqrtUIzAwUN8R06WCBQvSpXMnRu58zeZLH1CpYwv+T2EqRmx7wdG/ApkwcbIYSZ9OGRkZMXfufAA2rAmhatk3AFQt94bfN4YCsHDhYrGSZjqR7P+FnTt34uHhwcqVK6lSpQqLFi2iUaNG+Pj4JLmO+suXLxk5cmS620Gsd+/elChRgoULF3LihCcajYbq1asxfPhqGjdurO94QiYXERFBzx49qWLlzKSCnTCQx25sVC17MZrkrMjwR6uZPHkyS5Ys0XPS9Gn1mrXExMTQe+0eft79BodsRvi8C0OSyVmyZAkdOnTQd0QhCQMHDkSlUjF+/BjU6tgdTyUJjI3M+G3xfHr27KnfgEKcZBcLCxYsoF+/fvTq1QuAlStXcuTIEdavX8+YMWN0vkej0dClSxemTp3KhQsX0l3XapUqVdixY4e+YwhZ0O7duwkOCWZg6b5xhcIXeU1y0sKmMps2bOTXX3/F1FT3QD59efHiBTt37iQwMJB8+fLRvn37NM9gYmLCzl27mXD3Ljt37iQoKIieBQvStWtXbG1t0zyPkHxDhw6lV69eHDhwAIB169bRsmXLdPf1ntUlq1iIiYnhxo0bjB07Nu6YXC6nQYMGeHt7J/q+adOmkTNnTvr06cOFCxf+8zrR0dHxlmwNCYkdAKNSqVCpEg5G/Fpf3vs958jMxP1JWmrcn0ePHlHQxgkHSxskHe0VchZl3+crvHr1ikKFCqXYdb+HWq1m1KhRbNiwATNDJTbmxrwJCmPG9OksX7FCL18/RYsWZfLkyfGOpbevY/H9lTgjIyNat26Np6cnLVu2RKlUpsjPeiHlJKtY+PjxIxqNBjs7u3jH7ezsePTokc73XLx4kXXr1nH79u2vvs6sWbOYOnVqguMnT55MkWpTzNtNmrg/SUvJ+1O1alWqVq1KWCLtBSjKdhrz+PFjHj9+nGLX/V6urq6JjucRXz9JE/cnaSlxf8SmcikvVUeOhIaG0q1bN9asWYONjc1Xv2/s2LF4eHjE/TskJAQnJycaNmyIpaXlN+dRqVR4enri6uqKUqn85vNkVuL+JC017s+9e/eoXr06P+VvTR3r0vHaJEliwpPNGBTIxtlzXomeQ6PRcOrUKfbt20dwcDAFChSge/fuqbKqpb+/P8WLF+MnlyIMqhx/loFKpuB6hfbMnP4LFy5dFgML/0V8fyUtJe/Pl95oIeUkq1iwsbFBoVAk2KDF399f5/rrz5494+XLl7i5ucUd02r/3ivex8dH51akRkZGGBklXNVLqVSmyDdZSp0nsxL3J2kpeX/KlStHg/oNWHhiPwoVVM9eHIVMTrAqnA1vPLny4QEHVh9I9HqBgYE0a9qUP69coWgOW+yNzTh3/ATz5s1j7NixzJgxI0V/aR8+fJjIiAi6l8iFgeZfXb3/H3Jx9/4DfHx8KFWqVIpdNzMR319JS4n7I+5vyktWsWBoaEiFChU4ffp03PRHrVbL6dOnGTJkSILXFy1alLt378Y7NmHCBEJDQ1m8eDFOTk7fnlxIt549e8aqVau4dfMWRsZGuLm50aVLF7E4TiK2bttKh/YdmHpiG7Ym2chhaMGLMD9kChmrVq2iRYsWib63U8eOPL5zj811W1MpZy4AYjQaNj3+i1mzZpEvXz769++fYllDQ0MxM1RiZZz06pniLztByFyS/RjCw8ODHj16ULFiRSpXrsyiRYsIDw+Pmx3RvXt3HB0dmTVrFsbGxpQsWTLe+7NlywaQ4LiQOaxcuZIffvgBY5kZjppiRMsiOXp0MFMnT8Pz9ElKlCih74jpjoWFBceOH+Pq1avs3r2bkJAQ+jk706NHjyQf392+fZuTnp4sqtYorlAAMFQo6FesPA+DPjJ39q/07dsXuTxl1l9zdnYmODKae/5BlLTLpvM1crmcAgUKpMj1BCE9e/XaDhO5yXedI1KbMZazTnax4O7uTkBAAJMmTcLPz4+yZcty/PjxuEGPr1+/TrEfTELGcubMGQYNGkRZGlGTzihlsY+SgqUPHPo4n0aujXn6/AnGxsZ6Tpo+Va5cmcqVK3/1648ePYqlkTH1HfPrbG+dryj9zh/iyZMnFClSJEUyNm3alFz2dvxy/gFb2lRFqfj7e/1jeFTsa5o0wcHBIUWuJwhC+vBNAxyHDBmi87EDgJeXV5Lv3bhx47dcUsgA5s2dh70iP3U1PeM9J7eS5aSZZjgb3nuwa9cuunfvrseUqePZs2dcuXIFhUJB7dq1dY7hSWkxMTEYGShR/mt9hi/MlbGPCv45Dfl7KZVK1q7fQMsWLWi0+Rx9y+cnXzYzbr7/zKb7fiyo3ZOZs2al2PUEQUgfskwXgJ+fH5cuXQJiR48LKUur1XLy5EmKamrqHFCXXZYLR4Vz3La0mYWfnx/NmjajUKFCdOnShY4dO+KU24lePXsSHh6eqtcuX748AeGh3A9MuDcCgNe7l1iam+scRPw9mjRpwlkvL2yLlWXokRu4bT3PjAuPqNW4KQB58+ZN0esJgqB/mb5YePPmDW3atMXRMTdNm8b+MCtRohQrV66M3VlSSBGSJKHRajAg8YFvCq1RplosJTg4mNo1a3H17CVGF2jHwQqT2Ft+HP0dG7Fr206aN2ueqoVp06ZNyZvbiRl/XSRMFROv7V7gB7Y+u0evPn0wMzNL8WtXr14dz9On8ff35+HDh3wICGD1mjUpfh1BENKHTL1Dx/v376lSxYWAD+Eo5c0wM4x9bvvxgzWDBg0iICCAiRMn6jll5qBQKChXpjzP796ktNQgQXukFMI7uQ+VKnXVQ7rUsWrVKl6+eMmakkPJbfz3QMS2DtXJb2rHqHPrOXz4MC1btkyV6xsYGLBj9y4aubrS7MQOWud1xsHUgpsf33P8zTNKly3LL7/8kirX/iJnzpxxe8J8ayGo1Wo5c+YMjx8/xsLCgmbNmpEjR46UjCkIwnfK1D0LM2bM4MOHIAwVAzA0cEEmj/2BbqRsg6GiLlOmTMHX11fPKTOPYT8O5bn2Jg+li/GOayQ1p2XrMVAq6N27t57SpbxN6zdSM3uJeIXCF+WtClHU0inVx+hUrVqV6zdv0rpbF3a8ecLk617cl8UwbcYMznp5YWFhkarX/17nz5/HuVBBXF1dGT5saOxsqly5GDNmjHhcKAjpSKbtWYiJiWHDhk3IpUrIZVYJ2g0NaqFRe/P7778zfvx4PSTMfLp3746XlxebNi3lvtyLfJqyRBPBY4OLhPKZ3Tt2JWslz/TOz98PF/NKibbnNbTF7937VM9RuHBhVqxYwYoVK5AkKcOsnHj9+nUaNWxIeTsrlnarQyXHHHyMiGbdjefMnTOH8PBwsdumIKQTmbZn4fPnz0REhKGQ59bZLpMZY6DIycuXL9M2WCYml8vZsGED27dvJ3dlK64b78PH8ixunZtw/fq1uIW8MotcDrl4Humns02SJF5EfyBXbsc0zZRRCgWAKZMnkz+bCbvdq1E5tzUymQxbM2PG1CrO5LolWb58Oa9evdJ3TEEQyMTFgqWlJQqFAVrpk852SdKglYIy1V+66YFMJqNjx45cunyR8MhwPgcHsmnTRsqUKaPvaCmuV9/eXPj8gJcR/gnargY/5nHom0z12CUlffr0iaPHjtGvXH6MDRJO/exZrgCmSgO2b9+uh3SCkL4tW7aMfPnyYWxsTJUqVbh69epXvW/Hjh3IZLJv+sMt0xYLJiYmtGnTGq3sGpIUk6BdrbmFShVC586d9ZBOyAz69etHkSLOjHyynoP+fxKoCsU/Oohtb72Y9mw7jRo2onHjxvqOmS4FBgYiSRIFcuheAtzc0AB7S1MCAnRPCxWErGrnzp14eHgwefJkbt68SZkyZWjUqBEfPnxI8n0vX75k5MiR1KxZ85uum2mLBYCJEydiYBBOtGYjGu0r+P9USZX6MjHaA3Ts2ElsdiN8MwsLC86e86Jes4YseX2Y9jdn0fn2HLZ+OEfPvr3Z/8d+FArdCyZlNLdv36ZXr144OeYil70dbdu0+c8F2JJiZ2eHUmnAHb8gne2fIqLxDQojT54833wNQciMFixYQL9+/ejVqxfFixdn5cqVmJqasn79+kTfo9Fo6NKlC1OnTv3mpdgzdbFQqlQpTp3yJJcjRMSsJFI9GwC1dIY+fXqxceMGPSfMWp4/f86VK1d4+/atvqOkGFtbW/bs2cPLly/Zu3cvBw4c4M27t6xYsQITk+9bMz692LZtGxUrVuTUH3tonceCzgVz8ODSWerWrcuMGTO+6ZyWlpa0a9uO1TdfEBiRcIXJxd4+SMhEz5+QZYSEhMT70LXyakxMDDdu3KBBg7+np8vlcho0aIC3t3ei5542bRo5c+akT58+35wv086G+KJatWo8f/6U06dP8+DBAwAePLgvdrxMQ2fPnmXsmHFcufpn3LGGrg2ZO28upUuX1mOylOPk5JQpv6ZevHhBjx7daV88N4ublsfg//u+jK1VnHmXHjFhwgSqVatG3bp1k33uX6ZPp+rJkzTecp4RVZ2pkdeG96FRrLv5jD33fZkzZw62trYp/SkJQrr0758fkydPZsqUKfGOffz4EY1GE7cX0xd2dnY8evRI53kvXrzIunXruH379nfly9Q9C1/I5XJcXV0ZPHgwQJqs2y/EOnbsGA1dG/LmeiDN+ZFu/EojBnLrzEOqu1T/7i9gIXWtXLkSc0MlcxuVjSsUIHYg68jqRSlml52l3zi9sWDBglzy9qZg+coMOXKdssuP02SzF1eDtaxZs4ZRo0al0GchpGfv379n5MiRFCgQu0x4oUL5+fnnn/H3TzhwODPz9fUlODg47mPs2LHffc7Q0FC6devGmjVrvnswf6bvWRD0R6PR0L/vAJy0JWkpjUIui31+b0teCmuqsit6MkOHDOPCxfN6Tiok5vLFCzTIZ4upMuGPCplMhlthezZe+Pb/P2dnZ06c9OTFixc8efIECwsLKleunGnGeghJe/78ObVqVSci4hPdemUHwK21ilWrFrJjx1YuXLicZcatWFpaYmlpmeRrbGxsUCgUCQopf39/nX8EP3v2jJcvX+Lm5hZ3TKvVArErwPr4+Hz13jFZomdB0A9PT0/evPPFRWofVyh8YSgzppKmJRcvXeDx48d6Sij8F4XCgJj//3DRJUajTZFf7Pnz56dhw4a4uLiIQiEL6dOnJ0bGQXjfsmfStNglvqfOyMHlm/Yg+8iAAf30nDB9MTQ0pEKFCpw+fTrumFar5fTp07i4uCR4fdGiRbl79y63b9+O+2jRogV169bl9u3byXp0KooFIdU8f/4cuUyBHbpH3zrgHPc6IX2q7+rKqecfCIpMOP1Yo5XY7/MO14aN9JBMyOgePHiAl9cFJk6zwN4hfs+VY24Dxk6y4Pjxkzx79kxPCdMnDw8P1qxZw6ZNm3j48CGDBg0iPDycXr16AbEr6X55hGFsbEzJkiXjfWTLlg0LCwtKliyJoWHiG//9mygWMplbt24xcOBAatSoRdOmTVm/fj0RERF6yZI9e3a0koYwAnW2hxA7h15sGpR+9evXD7lSSb9D1wiO+rtgiFJr+OnELXyDwhk2fLgeEwoZ1a1btwBwbWyqs71Rk9jjYlxTfO7u7sybN49JkyZRtmxZbt++zfHjx+MGPb5+/Zr371N+mXlRLGQSkiQxfvx4ypcvz5Z1e3h2WcW1E6/o26cvJUuU1suy1s2aNcPMxIybHNWZ9yZHyZ+3ABUrVkzzbMLXsbe3548DB7nqF0LJZcfpvf9PBh26RqnlJ9h29zXr16+nQoUK+o6Zrp05c4aWLdxwcopd+rtTR3fOnDmj51T6Z2RkBEBoiO7HXCHB2nivE/42ZMgQXr16RXR0NFeuXKFKlSpxbV5eXkluYLdx40b++OOPZF9TFAuZxJYtW5g5cyaFZe1w0f5KafkAystGUU0+g4A3YTRr6hY3sCWtWFpaMnb8WG5whIvSDiKkEABCpAA8Wc1TrjFj1nTkcvFlmJ7Vr1+fx0+e8vP4CQRa58XXzJ6eAwbx8OFDevTooe946dq8efOoX78+r3zOMLx9bJev75Pz1K9fnzlz5ug5nX7Vq1cPY2NDtmwK1dm+5fcwzM1NqVWrVhonE3QRsyEyAUmS+HX2XHLKy5Jf1ixem5nMgWLaPlx7OBNPT08aNUrb58vjxo1DpVIxa+ZsbqgPYaIwJ1wdgrmZOWsWraFTp05pmkf4Ng4ODkyaNIlJkybpO0qGce3aNUaNGsXYnjn4ZZA1asmY435wbrUDv6yW+Pnnn6lbty6VKiW+c2lmliNHDvr1G8DcmcvIl19JyzaxxZRGK7F7SyiL5obg4THyP2cICGlDFAuZwIcPH7j/4C6l5YN1tmejEObKnJw8eTLNiwWZTMaUKVMYOnQoe/fuJSAggDx58tCmTRvMzMzSNIsgpKXly5eR39GYqQNid9QkdrX52O+J/tZsPxnBkiW/0bp1Gzw9PdFoNFStWhV3d3dMTXU/x89s5s2bh7//e/r12MO8mWp+/RVqVvzA48ef6dq1yzevECqkPFEsZAJqtRoAOUqd7TKZDAXKuNfpg7W1Nf3799fb9QUhrV29cplm1Y1RKBJuG65QyKheRsme3TvZvHkLxQuYYqiUsWbNakaP/ol9+w5884Y/GYmhoSE7duxixIgrbN26FYBGjbqyZUu3LNvjkl6Jh8WZgL29PY65nAiQbupsD5PeEax6G28QjCAIqcvAQElktO5xQqHhWg6eCyd3ThnXfs/D3R25ubHZkcf78lEqn4qmTRtnmSnFMpmMqlWrsmDBAgDmz58vCoV0SBQLmUBkZCQNXOvxnssESH/Fa1NLkfjIfsfW1o62bdvqKaEgZD2NGjdj39lIwiMTFgzrDwYTFqHl6OJclC9qHHe8gKMhf8yzx1ip5rfffkvLuIKQJFEsZGAajYZJkyZhb+fApk2b0EpabmkXcUM7lxfaozzSbueyfAzRxu/44499YgqSIKShwYMHE61W0HG8H4HBmrjjQaEaZm0MpEEVUwo4JlwUx9xUTudGpuzftzst4wpCkkSxkIENHTqU6dNnYBtZkxryX6ktW0xuWT2CpGc8lfYRZf0XA37oxV93blOtWjV9xxWELCVfvnzs2/cH525pyOP2ks4T/AAo3uE1wWESObMnvqx1zuwKvS2mJgi6iAGOGdSjR49YsWIFRWSdySt3jT0og+J0o5DUmqvyybRo5caiRYv0mlMQsrJGjRrx/PlL1q1bx6WLFwAYNXo8Dx8+5MyJXajVEgYGCQdAnroaTYkSZdM4rSAkTvQsZFCbN2/G2MACJ1mdBG2GMnMcNLXYsmUrMTEJ1/QXBCF1BQYGcuvWLZ49e4atrS1jx45l/x8HAPjpp5/48ccfeeMfxZzfEy6Fvud0KF43whg46Ie0ji0IiRLFQgb1/v17TLFDLtM9XdJc5khUVCQhISFpnEwQsq43b97QpUtn7O3tKF++PIUKFaJC+bIcOHAg3uvKlSvH5MmTmbjyE42HvWPz0RB2eYbSeYIfncb70bGjOx06dNDTZyEICYnHEBmUg4MDEfijlVQ6C4Yw6S3GRsZi9TNBSCNv376lmksVNDGfmDU4OzXLmfA2QM3yPc9o1aoV69evj7dp2pQpUyhWrBjz582h55TYac/OhQuyaNF0Bg8eLJZBF9IV8dWYQXXv3p0odShvpHMJ2mKkMN4rztOla5dkbUEqCMK3mzBhAuroT/y5PhcjumSnYnFjWtY25/hvuejlZsXo0SMTvMfd3Z2r124QFBTEx48feeTzhKFDh6JQJD74URD0QRQLGVSRIkUYOHAgPmznsXYXEdIH1FIk/tJ1bspnY2whY/z48fqOKQhZQmhoKDt2bGNIewscc8bv6ZPJZEwdkIOoqKhE329lZYW19f+XhRaEdEg8hsjAli5dio2NDQsXLOJlxLG44y6Vq7Fu/Vry58+vx3SCkHW8ffuWqKgYqpU21tnumFNJ3lwmaZxKEFKOKBYyMIVCwS+//MLo0aM5e/YsERERlChRglKlSuk7mpBKnjx5wsqVK/nr1i2MTUxwa9GCLl26YG5uru9oWVq2bNkAeO2ve/+VyCgtAZ9VaZhIEFKWeAyRCVhYWNCiRQs6duwoCoVMbMmSJRQpUoQNK1aifPqazzfvMnjQIIoVKcKDBw/0HS9Ls7e3p3atGizfHYJGIyVo33QkhNAwUSwIGZfoWRCEDODEiRMMGzaMHs5l8ChdFSNF7Lfum7AQBl8+RtPGjfF58iTBkt4hISH4+vpiZWVF7ty59RE9y5g8ZRqurg1wH+fHzMHWOOc1JDxSy8ZDwYxc/InuPXrpO6KQwh4FmGAk+77txKMT1pbpkuhZEIQMYN7cuZS2sWdM2epxhQJAbnNLFlZ15ZWvL3v27Ik7/vbtW3r26EFOW1tKliyJk5MTLlWrcuLECX3EzxLq1q3L7t17OH9HQbH2L3Fq/hq7Ri/4ccEnunbryaJFi/UdURC+mehZEIR0TqPRcPrMGcaXq6FztHxByxyUtLHn+PHjdOnShXfv3lGtSlUig4IYUrQCFWwd8IsIY9uz+zRp0oStW7fSqVMnPXwmmV/r1q1p0qQJ+/fv5/Hjx1haWtKmTRvy5s2LSiUeQwgZlygWBCGd02g0SJKEiSLxb1cThQK1OnZw3bixY4kMCmJ3vbbYm/498LGxUyFGXTnFoAEDaNGiBWZmZqmePSsyNjZO18XY58+f2bRpE5cuXUIul9OgQQM6d+4svh6EJInHEIKQzhkaGlKmVGlOv3+ls/1jVAS3P/pRuXJlQkJC2LFjBz0KlopXKADIZTI8SlUhJCyMXbt2pUV0IZ05efIkefM6MXr0T/h/PIrvu8MMHDiAAgXy8r/27jsqquNt4Ph3d9llAWmKgig2FCvGghoLVqxJjMbYe68xirEXxJKoPzUaGzbsLTGJxogVRaMSsceuKCiKYENAaVvu+wevJIQS0YWlzOccjmfv3PLsuOXZuVPOnTtn7PCEXEwkC4KQB4wa/RXHH4fw+4M7qbYn6XTMvHAClakp/fr1IywsjMSkJGoVLZ7ueUpYWFHCyoa7d+/mRNhCLnL37l06dGhP/YZw/V5J9h2y54C/PZdulqB02Tjatm3F8+fPjR2mkEuJ2xCCkAcMGDCAP06e5JstW/gp9BaN7Z2ISUrkt7C7vExKYPfPP2Nra8ubN28AiIx7ne55ErRaouLj8t2aIZIkcfr0aW7cuIGFhQVt27ZNtQ6DkDz01qKQxKaddpiZ/f07sXQZJdt3F6Va+cf4+voyYcIEI0Yp5FYFpmUhNDSUI0eOAIhlm4U8Ry6Xs2HjRrZv347SuRQ+wVf4JTKUNp07ce78eT799FMASpYsycf16rH9/nX0UtoxWb+G3iJOk0Tnzp1z+ilkm3PnzlG9WlXc3d0ZNmwovXr1ooRjccaNG5fSj0OA/fv30qmLOlWi8FbRYgpat1Ozb9+enA9MyBPyfbIQEhJCmzZtKVu2LF9++SUAFStWZvHixUjpfJgWNJIk8fLlS6Kjo40divAf5HI53bt3549Tp4h5/ZqnL57j6+ubZiKumd7enH8azoSzR3n8JnmJ8gStlh3B15h35TR9evfG2dnZGE/B4G7cuEGL5s1QJzzm0PgqJKyrz+Olbkxsa88PS5cwfPhwY4eYayQmJmJlnfFHvpW1jMTEjNevEAq2fJ0shIWF8XG9+hzzP4/a5EssTMcCEBtdmnHjxhXohZb0ej0rV66kkktlihQpgo2NDe6NGgOIJCqPa926Ndu2beOPl09ouX8rHge20XDfRmZdPEm3Hj1YvWaNsUM0mNmzZlHUAo6Mr0zzKjbI5TKKWamY9rkTi3uUZt26ddy+fdvYYeYKNWvW5vCBxHTf3xqNhP9hDTVr1jFCZEJekK+ThTlz5hAVFY9KMQSlSW1kMmsATJWfoTJpxbx58wgNDTVukEag1+vp26cvo0aOQnavMJ/wNW0ZRcz15A+R2bNnGzlC4UN1796dx0+esG79enqPHM4075ncvXuXjZs2pZnlMa+Ki4vj519+ZlhTOwqp0y7p3N/dnsKWpmzdutUI0eU+I0aM4sqleHzXxKbaLkkS8+dE8SQ8kREjRhgpOiG3y7cdHJOSkti8eQsyGiCXWaYpVykaopf+YPPmzcyYMcMIERrPr7/+ytZtW2nHaCrRAP5/np9qUiMAFi1aRPv27alTR/zKyMssLCzo3z//TjEcHR2NRqPFxSH91RzVSjml7dQ8ffo0hyPLndq0acPo0aMZN/oHfvs1gfYd1Wg0Ert3JXA+KI758+fz0UcfGTtMIZfKty0LUVFRJCTEI5c5plsuk6lQKIoSFhaWw5EZ36qVPpRUVKaSrEG65TYmRVm1alUORyUIWWNra4uZ2pQrD9+kW/46QUdwRBxOTk45HFnuJJPJWLJkCTt27ECTWI1vvn7J1AmvsLWuj5+fnxgFIWQq37YsWFlZYWKiRJLSHzcsSVp0+pcUK1YshyMzvqt/XcVZ557SovBvjtrK/HX5as4GJQhZpFar6d6jJz6/7mBQU3uKWalSlf9wOJw3iTr69OljpAhzH5lMRrdu3ejWrRs6nQ6ZTIZcnm9/MwoGlG9fJWZmZnTu3Bk9QUhSYppyje4CWu1revXqZYTojMvc3Jw4YjIsj5fFYFFITP0q5H5eXl5IqkI0+e4mm0495dHLRC6EvmbYxnt4/RrGpEmTKFWqlLHDzJUUCoVIFIR3lq9fKTNmTEdlmkSibj1aXTBIegCStCdI0u2jf//+VK5c2SixXbt2jSFDhlCyRCkc7B3p2KEjx44dy5Frf9mlE3cVgSRKcemWP+QqX3bulCOxCMKHKFWqFKdOB+JcvQGD1gdTdtwFPvb+i99v6vj++++ZM2eOsUMUhHwh396GAKhUqRIBAcfo3bsvt26th0RzYDuS7DSjR4/if//7n1Hi2r17N92790CFJUV1dTBFxfH9F9iztwVeXl7MnDkzW68/atQoVq9azW/xC/HQD8FW5gDAcykMqEDRosVE0y3JCzj5+fkRGBiIQqGgZcuWxg5JSIezszMHDx0mJCSEmzdvYmFhQf369VGpVP99sCAI7yRfJwsAbm5u3LhxjTNnznDjxg0A7ty5jb29vVHiefToET169KSovjZVGYhcnvxf4KzvSKjMD29vb+rXr0/r1q2zLYbSpUtz8PBBPm/fgQ0vxuBgUhYdWl7znM/ZwW+/78Xa2jrbrp8XXL58mS86dCTkQSjFzG3R6nUsWrSIHTt28PjxY8qUKWPsEIV/KVu2LGXLljV2GMJ70ul0QPLQbiH3yde3Id6SyWQ0bNiQfv36ARh1zvg1a9Yg0yuoTB/ksr9zNZlMRhlZO2xNyrJ06Q/ZHkeDBg14GPaAjRs30r5/SzoN/IQtW7YAULFixWy/fm72+PFjWjRrgeqllpVVR7DDdTw/Vp/ILJfk/i3tP/2M+Ph4I0cpCPnDw4cPGTFiBKVKlQSgVCknvvrqKx49emTkyIR/KhDJQm7yxx+nsNFVxUSWdmy4TCajiK4Wp0+dyZFYzMzM6Nu3L6tXr2bVqlW0b98+R66b2y1fvpykuATmufSjYqHkDzCZTEZNq+QpkoPv32Pnzp3GDFEQ8oXbt29Tp04tfv5lPQOGKgHoO1DOzl1rqFu3Nvfu3TNyhMJbIlnIYQqFAmS6DMsltKKHspHt2r6T5jauWJmYp2zT6LWceJk8nNTSxJyZM2dy9aoYXioIH2LgwH7Y2L7hzAUHxk+yAWDiVFtOn7fHzDyGoUMHGTdAIYX4VsphrVq15IXsGklSbJoySdLzTHGOlq1aGCEy4a3omGjsVH/32XieFMPwaytYeP8XAFwLlSbmyQuqV6/O9OnTxVoagvAerl69yunTfzJtlhV2RVNP123vYMLkGZb4+wdw584dI0WYe61YsYIyZcqgVqupV68eQUFBGe77yy+/4Obmho2NDRYWFtSoUSPllnNWiGQhhw0YMAAzMzXXZD5opL9nntNLGm5J24jVPWHs2LFGjFBwcXHh2psHQPK8+V53tvJal8CSKkMAmFy+CztrTGRAyVbMmTPnvd54BVlkZCTe3t64Vq1C2VJOtG3Tmj179oiObQXMlStXAGjRMv3puj1aJW8XLXip7dq1C09PT7y8vLh48SIfffQRrVu3znBa88KFCzN16lQCAwP566+/6N+/P/379+fQoUNZuu57JQtZyWrWrl2Lu7s7tra22Nra4uHhken++Z2dnR2/799HgjqMU4zjL/1KrunXcUo+nseyAHx8fKhfv76xwyzQhg4fRlDUbc5H3+VqbCi33jzim3Jf4GxePGUfpdyEniWa0rBwFRbMmy9aF97RlStXcK1alf99NxdXRRyfl7Tg+fWLdOzYkT69e6f0iBfyPzOz5GQg6mX6SeLLF8nb1Wp1jsWUFyxevJjBgwfTv39/qlSpgo+PD+bm5vj6+qa7f9OmTenYsSOVK1fG2dmZr7/+murVq3Pq1KksXTfLyUJWs5qAgAC6d+/O8ePHCQwMxMnJiVatWvH48eOsXjrfaNKkCXeD7zDDexpl6ylxrJXEkBF9uX79OkOGDDF2eAVez549adO6DdPubmHlg/0UVhaitlX5dPdtWaQG12/eKNCv53el1Wrp0P4zHFUSF4e1ZvmnbsxoWo1DvZuw7vO67Ni5gx9+yP6RQELu0KJFC8zN1WzekPaWLMDmDbFYWVnQpEmTHI7MOGJiYlL9JSamnXk4KSmJCxcu4OHhkbJNLpfj4eFBYGDgf15DkiT8/f25ffs2jRs3zlJ8WU4WsprVbNu2jREjRlCjRg0qVarEunXr0Ov1+Pv7Z/XS+YqDgwPTpk3jTOBpzp0PYunSpVSqVMnYYQmAUqlk7297mTJtKo+kKExkCmSy9BfSMJMnL/eclJSUkyHmSfv27SP0YRhL29bEzjz1MtkdqzjxZZVSLFu6RNyOKCBsbGwYMWIUi+fHsGl9DBptcutckkZi/eoYln0fw+jRYylUqJCRI80ZTk5OWFtbp/x99913afZ5/vw5Op0uzTxB9vb2REREZHju6OhoChUqhEql4pNPPmHZsmVZnmQuS5Myvc1qJk+enLItK1kNJK9Br9FoMp3rIDExMVVWFROTvI6BRqNBo9FkJeRU3h77IefIz0T9/E0mkzF16lQqVKjA4MGDeaB7jpMqeaZLSfV3jh0UH0ypkk44ODgU+Hr7r9fPmTNnqFzSnsqORdGmU/65axn27QkiLCwMR8f0V4vNy8T7K61Zs2bx6lUUk8ZtZ8XSaBbMhyb1XvEoLI6hQ4cxderU96qvvFjHYWFhWFlZpTw2NTXNZO+ssbS05PLly7x+/Rp/f388PT0pV64cTZs2fedzyKQs3GwNDw+nRIkSnDlzJtV99QkTJnDixAnOnj37n+cYMWIEhw4d4vr16xnei5o5cybe3t5ptm/fvh1zc/N0jhAEQRCEZHFxcfTo0YPo6OhUX8CGEhMTg7W1NSPxxVT2Yd9JiVIcKxjwTrEmJSVhbm7O7t276dChQ8r2vn378urVK/bu3ftO1xw0aBBhYWFZ6uSYo9M9z5s3j507dxIQEJBpp5XJkyfj6emZ8jgmJialr8OH/MdrNBqOHDlCy5YtUSqV732e/ErUT/r+/PNPOn3RCSulOYtWLeXE9O1ceRHM2Ve3cW/szu7duw2+DsHx48fp2aMHklZLo2IlUcoUnHr2mDeaJFasXEG3bt0Mej1D+K/Xz6FDh+jSpQt7ejSmRnHbNOVf7b/AzSQl5y9eyvC2T14m3l+ZM2T9vG2Nzm9UKhW1a9fG398/JVl4e1t/1KhR73wevV6fbp+IzGQpWbCzs0OhUBAZGZlqe2RkJA4ODpkeu3DhQubNm8fRo0epXr16pvuampqm2wSjVCoN8iYz1HnyK1E/qbm7u3P6zGmWLVsGwMaww5RyKsXC6QsZMGCAwROF8PBwvujYkdo2RVnUuCWWquT3QoJWy+yLJ+nfvz/VqlWjZs2aBr2uoWT0+mnbti2lSpZg9L6z/NS5PiWskn+RSZLEliuh/HjpLitXrsz3C0CJ91fmDFE/+bl+PT096du3L25ubtStW5clS5bw5s0b+vfvD0CfPn0oUaJESp+H7777Djc3N5ydnUlMTMTPz48tW7awatWqLF03S8nC+2Y1CxYsYO7cuRw6dAg3N7csBSgIuUGFChVYtGgRfn5+RD59mq0fRmvWrEHSallU7+9EAUBtYoK3W1P+fB7O0qVL2bhxY7bFkB0UCgV79/2OR/Nm1PY5TKvyDjhYmPJH2EvuPHvF0KFDGTZsmLHDFLLJs2fP2LRpE9evX8fCwoKOHTvSvHnzfNmKlJ26du3Ks2fPmDFjBhEREdSoUYODBw+mdHp8+PBhqlmA37x5w4gRI3j06BFmZmZUqlSJrVu30rVr1yxdN8u3IbKa1cyfP58ZM2awfft2ypQpk9Jjs1ChQgWml6sgZMXRw0doal8qVaLwlolcTtsS5Thw+LARIvtwFStW5Or1G2zYsIHdP/5IWGwMNZq2ZNWwYTRr1kx8ceRTmzZtYujQIYCO6jXUPH+mY8WKFdSvX5e9e3+naNGixg4xTxk1alSGP9ADAgJSPZ4zZw5z5sz54GtmOVnIalazatUqkpKS+PLLL1Odx8vLi5kzZ35Y9IKQD+l0OkwyWR9EKVfk6cmLbGxsGDt2rJiptIA4evQo/fv3p0cfC2Z9W5gidgokSeLEsQQG97tMhw6fcerUu42mE4znvTo4ZiWrCQ0NfZ9LCEKB1dC9EetXrCJBq0VtkvotKkkSh5+E0Kh5U+MEJxRYkiTx559/curUKWQyGc2aNaN27dr/edx3382hlpuaZT52yOXJLUcymYymLczwWW9Lp8/OcuLECRo2bJjdT0H4AGJtCEHIZYYPH85rTRLeF0+g/ccERZIksexaEPeiXvDV6NFGjFAoaEJCQqhXz40GDRowe/YUZs6cjJubG40bN8x09tLY2FiOHTtB3wEWKYnCPzVvaUap0mr27NmTjdELhpCjQycFQfhvzs7ObNi4gX79+nH2+RPaliiHUi7nSHgo9169YN68eVmeqlXIPlqtlpMnT/LixQtKly5NnTp18lXfi6ioKJo3b4JM/oyf9trTopUZej0c8otjwtgLeHg04/z5S1hYWKQ5Nj4+HoDCRdL/XSqTybAtLE/ZT8i9RMuCIORCvXr14vz587Tq1JFDMZHsffGImi2acuLECSZOnGjs8IT/t2nTJsqUdqJFixZ06dKFevXqUd21KidOnDB2aAazbt06wsMfs/egHS3bmCOXyzAxkfFJewt++d2OO3eC2bp1a7rHFilSBAeHohw/mn4yEPFEy/WrCVSrVi07n4JgAAWiZeHly5ds3ryZ27dv06ZNG06fPk2TJk3yVfYv5D81atRgw4YNxg5DyMDatWsZMmQIXVtZ4vltKco7KTl3I4E56x/SqlVL/P2P0ahRI2OH+cF27NhC+47mlCqddrhwxcoqPFqZs2PHVoYOHZqmXKFQMGTIcP73v7l0752AW92/J+PT6SSmTYxCpVLRu3fvbH0O2eWmPAGTD/we0UoJkAeWQ8n3LQtbt27F0bEE48aNZ+eOYwC0a9eOhg0b8fz5cyNHJwhCXhQXF8fEid/Q7zMrts12wK2KGhtLBS3rWXBkhSM1XZRMGD/O2GEaxMuXLyhVWpFheekycl6+zPizdOLEidSs6canLZ/y9fDn7Pn5DWtXxdC0fiS/7o7D13cjNjY22RC5YEj5Olk4duwYffr0Qa+tgplyIkr5QADMlL04d+4q7dt/ThaWxsg1bt68ybRp0xg6dChz587l0aNHxg5JEAqUffv2ERUVw5T+hdO0UKqUMr7pbU3gn0Hcvn3bSBEaTrly5TkXlN7SX8mdbs8FaSlXrkKGx5ubm3PkyDGmTPHi6CEL+vV4yoSxLylVsinHjwdkeXIgwTjydbIwZ863KE1KYmrSCbns7wmgFIryKGWdCAw8wx9//GHECLNGo9GkLA2+aP4P/LThCN5ecyldujReXl55MvERhLwoPDwcC3MTnEumPzW1q7Npyn553aBBQ/kj4A0B/mn7HezbG8fli/EMHDg403OYm5szffp0Hj58TFRUFHFxcfz+ux/u7u7ZFbZgYPm2z0JsbCzHj/tjatIRmSxtTqSQu6BSFubXX3/NMz3Lx40bx5bNW6ks60MJfSPkMiVaKZ5Q6RCzZs2iaNGiWVpMRBCE9+Pg4MCbOC2h4RrKOKa9l38jJCllv7yuS5cubN68ka4djzF0ZCE6dLJAr5fYvesN63xe06lTRz755JN3OpdcLhe3HPKofNuy8HYojkyWdjhP8nYZMpkFcXFxORnWe3v27Bk+q1ZTVvocJ3kz5LLkDygTmRnl5R1wlDVi7pzv0GrTby4UBMFw2rdvj5VVIeZvepmmTKOVWLjlFXXcalG5cmUjRGdYJiYm7NnzG19/PY7NvnqaNwzHw/0Ju3cqmDx5Kjt27Eo1a6+QP+Xb/+EiRYpQpEhRdPrgdMv1UiwazROqVq2aw5G9Hz8/PzTaJErKmqZbXlLWlIjIcIKCgnIyLEEokCwsLPj223ms+TWa/t4RXLuXSEKinj8uxfHJ1+EE3Uhk/oKFxg7TYNRqNfPnz+fx4wiCgoI4d+4cYWHhzJo1C71ez4kTJzhw4AAPHjwwdqhCNsm3yYJCoWDEiGHouYRO/68OgJKeJO0BlCqTPDNk5/Xr18hlCpSk31JiinXKfoIgZL+RI0eyevVqDgYp+aj7Ayzcg2k69BEPo+zx8ztAs2bNjB2iwZmbm1OnTh3c3NwwNTVl4cKFlCpVgqZNm9KuXTvKli3Lp5+2E0lDPpRvkwV4O2SnOom6tSRo9qDV3QQgUb8erf4Kvr7rsbW1NXKU76Zq1aroJR1R3Em3/IV0HZlMli+aPQUhrxgyZAhhj8Lx8/Nj8+bNnDx5klu379KyZUtjh5btJkyYwPjx4/n08yROnHXkWrATS1cV4eq1YzRqVD/TaaCFvCdfJwsWFhYEBBxn6tRJWNuGkKDZBUDDhhU5dsyfHj16GDnCd9ekSRPKO1fgvuxntFJiqrJEKZqHCj/atm2Hk5OTkSIUhIJJpVLRtm1bevfujbu7e4G4f3/v3j0WLlzIzLm2LF5ux0c1TCnpZEKf/pYcCihGfELytORC/pHvX9UWFhZ4e3sTERHO/fv3Adi791eaNm1q3MCySCaTsWXrZhJU4QTJZxKqP8Qz6TL39HsIks/EorCC5cuXGTtMQRAKgI0bN2Jrq2ToSKs0ZcUdTeg/yIxNmzaIDtf5SL5PFt66e/cup06dAsizi5Z8/PHHnA36k3ZfNOaefDeX9EsJNz1C7wFdOHf+LGXLln3nc0VHRxMREYFOp8vGiAVByI/CwsKoUFGFmVn6XyGuNUyJjX1DTExMDkcmZJd8nyzcunULd/fGVK5cmT59+gBQvrwLc+bMQa/PAxNy/0u1atXYtWsXMTHRhIeHE/XqJatXr37n2w+HDh2iSeOm2NjYULx4cRzsHZkxY0aeGUIqCILxFStWjNAQDRpN+hPB3burQa1WYWlpmcORCdklXycLISEhNGzYiLNn76BWdqeQ6QQAEuOrMH36DMaNy7tzt5ubm1O8eHFMTU3f+Zj169fTpk0brp0Jp6psADXkozF7WY3v5i6gRXOPPNviIghCzurVqxdPI5PYuS3t6KvoaD0b1sbRrVsPlMq0E1YJeVO+ThZmz55NbIwOU/lglIrqIDMHwFTZBlOTNixdupR79+4ZOcqc8fTpU4YPH0FJWRNqS5MoIXenmKwmleW9qcV4zp+7wLJlos+DIAj/rXr16vTu3QvPUS9ZNP8VL57r0Osljh2Jo33rp8TGqJg8ebKxwxQMKN8mC4mJiWzfvgMZddKdxVGp+BiFwowtW7ZkeI7z588zbNgwWrTwoEuXLvz8889oNJrsDDvbbNiwAUkHFWRfppn+2kbmjL30MevW+hopOkEQ8pr1630ZOnQE8+e8xrnEQ4qYh/LFp5FIunIcO3YCFxcXY4coGFC+XRvi1atXJCYmYKZMf252mUyFQm6X7lhgSZIYPXo0y5cvR6m0RdKVRCa/w08//UTNmrU4fPgQdnZ22f0UDOrGjRtYyUujlAqlW16EKtx9ei6HoxIEIa9SKpUsW7aMGTNmcOjQIeLi4qhWrRr169dPsxKnkPfl22TB2toapVKFTnqKCVXSlEuSBp3+RboLvfzwww8sX74cU5PPUMo/RqZI/iWulD/g6tVtdO3aDX//o9n+HAzJwsICjSwWSS+l+0ZOJKZAjA8XBMGwihYtSq9evVIeP3jwAF9fX+7cuYOlpSWdO3emRYsW4vMlj8u3/3tqtZpu3bohEYQkpe24p9EFodW+STPds06nY/78/6FU1EZl0iBVk71CXhoT2WccO+bPlStXsv05GNIXX3xBrCaCl9xMU6aXdEQo/qBly1ZGiEwQhPxi4cKFlCtXjiVLvuVxxG8cD9hCq1ataNy4IS9fpl10S8g78m2yADBjxnTMzCUS9evQ6m6AlNzfIEnjT5LOj2HDhqW5r3bz5k2ePHmMibxmuuc0kVdBoVBz8ODBbI/fkJo3b07dOh9zQ76G59JVJCl5yFOCFMU11vBaH864cZ5GjlIQhLxq165djB8/nq/GWnIjpAT7Dtlz7qoDew84cPPWBbp2/dLYIQofIF8nC+XLl+fUqZO4ujoSr9nC68S5AChUF5k8eRLLly9Pc8zbDowymSqDs8qRy5R5rqOjXC7n9/2/UcOtKhf1izmjmMA5uTenpG+IUV9n14+7qFevnrHDFAQhD5IkiXnz5tKqjQUz59pSqFDyV4tMJqNJczOWrrLl6NHjnD9/3siRCu8r3/ZZeMvV1ZULF85x6dIlrl+/DkBw8J0MF5BycXHBwsISTcJNFPK0Ex3ppYdotLHUrVs3W+PODkWLFuX0mVP88ccf7Nmzh/j4eFxdXenVqxdWVla5LgEKDQ3Fx8eHwwcPo9fpadSkESNGjKBKlbR9UARBMJ5Hjx5x+fJVNu8qlm6fqHafmlPETsVvv/2Gm5tbuudITExe8yYpKUnMz5AL5euWhX+qWbMmXbt2BaBQofRHBEByR8BBgwagIxCdPixVmSTFoZV+p1y58nh4eGRrvNlFJpPRuHFjFi9ezKpVqxgxYgRWVmnndze233//ncoVK7N80XLMbptjfc+abWu24erqiq+vGOIpCLlJQkICADY26X+lKBQyrKwUKfv9U3BwMH379sHJqSQApUqVpH///oSEhGRfwEKW5fuWhfcxZ84cAgP/5Ny51ZjIqyKXlUIvRSHJrlCokJKff94nevZmo4cPH9K5U2cqy6swyGYwprLkWSq1kpYdsdsZPHgwH330EbVr1zZypIIgADg5OWFra4X/4XgaNzVLU373dhIh9+OpUaNGqu1Xr16laVN3zC0SGDO+MAAjx6hZ57OD/ft/4+TJ01SqVCknnoLwH8Q3XjoKFSpEQMBxvv9+Ec4VtKA4ik3hYL76ajBXrlxO84IXDGv16tXI9XIGWg5KSRQATGQm9LTsRRGTIvzwww9GjFDIy6KiooiMjBSLqBmQWq1mwIDBrF/9hsuXElOVJSTomTTuFUWLFqZTp06pygYPHkBxxyROnbNn1NfWAHztacPp8/bYFo5j6NBBOfYchMyJZCEDZmZmfP3119y8eZ2EhHiePo1g8eLFlCpVytih5XvHjhzD1aQ6ark6TZlcJqe2iRv+h/2NEJmQl+3du5eGDT6mcOHCODg4UKa0E3Pnzk25Vy58GC8vLypXrk6bppGMHv6cndtiWbLwFQ1qRXL6Dw3btu1MtZbN5cuXOXv2PFNnWmJjq0h1rsJFFEyeYcnJk6e5eTPtcG8h54lkQch19JIeORnPACdDljL0UxDexdKlS+nQoQPKV7fxHVSen7+qRCtnPbO8vfjs009ISkoydoh5nqWlJceOnWDq1JkcP1KIYQOe8633a+rV7cCffwbRsmXLVPtfu3YNgKYt0t62AGj2/9tv3LiRvYEL70T0WRByncZNG+Nz2YckKQnVv4aw6iU9l3SXaNqsiZGiE/KakJAQPD09GdvakfldS6f01m9fqzDdP7aj7aLj+Pj4MHr0aCNHmrtoNBrOnTtHfHw8VapUoXjx4v95TKFChZg2bRpTp04lISEBlUqFQqFId18Li+Q1e5491VG6TNrfrc+eJt8mMjc3/4BnIRiKaFkQcp1hw4aRSCKbYzehlbQp2/WSnp9f7yYi8Yn4YBfe2bp167A0M8Gro1OaYX1NK1vTsXZhfFauMFJ0uY8kSSxZsoTSpUvSsGFDPDw8cHIqSefOnQgPD3+nc8hkMszMzDJMFAA8PDwoVMicjeti0y3fsC4WW1srmjQRPwxyA9GyIHwQjUbDvn37OH/+PCqVirZt21K3bt0PWkjG2dmZzVs207tXb26/ukUtRW1MZCZc0l3iaWIkS5YsoX79+gZ8FkJ+duPGDeo7W2Bhmv4XV/Mq1vy08Q56vV6McgImTZrEggUL6DOgEH0HOGJrK+fY0XgWzf+dRo3O8+ef5yhWrNgHX8fS0pIxYzz59tu5FLNX0Lt/8uJ88fF6Ni6PZtWyGGbNmi1aFnIJkSwI7y0wMJAvv+hMeMRjbJRF0UiJeHt7496oMbt//umDPlC6deuGq6sry5cv5/CBw+h0Olo3bcWor0blyQmxBOOxsLDgQUzGIx+eRidhZqYWKyUCd+/eZcGCBcyca8uYb2xStpcrr6RVWzMa133CggULWLhwoUGuN3PmTF68eMHkb1bxwyItq1ZBHdcIIiJiGDNmDFOmTDHIdYQPJ5IF4b0EBwfTqmVrbBJK0Jv5FNWWRi/pCeES/n+uo3XLNpy7EISJyfu/xKpWrcqqVasMGLVQEHXs2JFt27ZxPuQ1bmVTT8iWqNGz6cxLOnXqJJIFYMOGDdgWVjJsVNqJ2kqVVtK7vzm+vmtZsGCBQVphFAoFK1euZMyYMWzfvh2AYcM86dWrF87Ozh98fsFwRJub8F4WL16MLNGEDrqJFJWVBpKHNTrLavOp1pPLf11i3759Ro5SEKB9+/a4VqtC5xV3OXErOmUkzYPnCXRdeYfHrzR88814I0eZOzx8+JDKVVWo1el/NdSopSIqKobXr18b9LouLi5MnToVgClTpohEIRcSyYLwXnZu30UlbWNUsrTDnhxlFXBQOLNr1y4jRCYIqSmVSg4cPEyxUi54zL9OxUl/UXvmNVwmXuJ0iJZff93DRx99ZOwwcwU7OzsehGjR6dIfmnwvWINabSr6ERjZihUrKFOmDGq1mnr16hEUFJThvmvXrsXd3R1bW1tsbW3x8PDIdP+MFMhkQa/Xc/bsWfz8/MSEH+8p9nUMlhTOsNxCV5jo6OgcjEgQMlaiRAnOnb/IkSNHaN99EA3a9sDHZzWPHofTtm1bY4eXa/Ts2ZPHjxL55ac3acqio/VsWh9Pt27dP+j2ovBhdu3ahaenJ15eXly8eJGPPvqI1q1b8/Tp03T3DwgIoHv37hw/fpzAwECcnJxo1aoVjx8/ztJ1C+T/ePXqNbhz51bK43r1PmbZsh+oU6eOEaPKW8o7V+Dx3VvUoHWaMp2kJdIkmE9cxIgFIfeQy+V4eHjk2UXgckKdOnXo1KkjXw39jaeROnr1s8TKSsbJgARmTo3mdaySyZMnGzvMAm3x4sUMHjyY/v37A+Dj48P+/fvx9fVl0qRJafbftm1bqsfr1q3j559/xt/fnz59+rzzdQtUy8LbSosIN8NMNQQL00molT25eOERjRs34cKFC0aOMO8YOnwIwQQRLt1JU3aB/bzWRjFkyBAjRJb3SJJEVFQUcXFxxg5FENi6dTs9e/bDa0o0ZewfYG/1kM/bRJAYX4pjx07g4uJi7BDzpZiYmFR/6U1DnpSUxIULF1IlvG+T4MDAwHe6TlxcHBqNhsKFM24ZTk+BaVmIi4tj4sTJrFnjg6lJVyRt8j05ucIaE8mFRO1qxo37hoCA40aONG8YNmwYu3/6mV/OfourrgXlqI2GeK7LTnKXs0yePJmqVasaO8xcLTExMXmp8BUrCXv8CACPFh5MmjyJFi1aGDk6oaBSq9WsW7eOWbNmceDAAeLj43F1daVx48ZixMi/BCkjkcnSrmGTFZKUAInJK3f+k5eXFzNnzky17fnz5+h0Ouzt7VNtt7e359atW7yLiRMn4ujomOUWtgKTLPz222/Exv7/PXSZDPi7A49MpkIha8SJEz8SEhJC2bJljRNkHqJWqzl85BDe3t6sWb2WC9H7AahQzoV1k9cxYMAAI0eYuyUmJtK2dRtOnTpFi8If0b+8OzHaOA6eu0jLli1Zv359SjOjIBiDo6MjAwcONHYYBUZYWBhWVn8PWf3noluGMm/ePHbu3ElAQABqddaSnAKTLISFhWFiknEPXrmsBACPHj0SycI7Mjc3Z/78+Xh7exMaGopKpaJs2bLi18c7+OGHHzh16hQLXPpT3erv19snxerwfegehg0dRrt27dL8gvhQGo0GvV6fLR9EgiC8Pysrq1TJQnrs7OxQKBRERkam2h4ZGYmDg0Omxy5cuJB58+Zx9OhRqlevnuX4CkyfhaJFi6LTJWRYrpeeAxhkGtOCRq1WU6lSJcqVKycShXcgSRIrl6+gaWHXVIkCJM9VMdipDTK9xIYNGwx2zT179uDeqBEqlQq1Wo1brVps3rxZrN4pCHmISqWidu3a+Pv7p2zT6/X4+/tnOgX+ggULmD17NgcPHsTNze29rl1gkoWOHTtm+GtKknTopFPUrFmbihUr5nBkQkETFxdH6MMHuFlVSLfcysScSoWcUpbw/VCzZs2iY8eOJN17gLdbU+bWaUahyCj69u3LyJEjRcIgCHmIp6cna9euZdOmTdy8eZPhw4fz5s2blNuWffr0STViZf78+UyfPh1fX1/KlClDREQEERERWZ5Yq8DchrC2tmbSpIkAJGoOoJfqIsMGvRSORncUnfSQBQvWGDlKoSBQqVTI5XKitWnHskNyy0O0Lg4zs7QTXmXV+fPn8fLyYnS1uoyo+vfQ4E7lqvDjvevMWLWKTz/9lHbt2n3wtQRByH5du3bl2bNnzJgxg4iICGrUqMHBgwdTblk+fPgw1VTcq1atIikpiS+//DLVedLrQJmZApMsAIwZM4YDBw6gUl/n+esAILmjo6NjSVav3iPGXws5QqlU8km7TzgYcJ4O9h+jkKVeDfHa6weEvo6gY8eOH3ytlStX4mhpzdDKtdOUdS5XhR9Db7Ji+QqRLAhCHjJq1ChGjRqVbllAQECqx6GhoQa5ZoFKFt7eTw8OvsuhQ4d48eIF5cqVw8PDI9N11wXB0CZNnkRjv8bMu7+b4aXaUVhpiSRJXI0NZW7Ij9Sonjwr24e6cukSDYuWQJHOoj8ymQz3Yk78dvnSB1/n33Q6HVevXiU+Ph4XFxeKFCli8GsIgpBzClSy8Ja5uTldunQxdhhCAdagQQO279hO/779OHn5Gi6WJYnVxhP25im1atTkd7/9BklgzczNiX4em2F5dFJClodQ/ZcNGzbw3dw5hD4MA0ClVNK1a1cWLlokOhALQh5VYDo4CkJu06VLFx6FP+Z/ixZS74vmfNqnEwcPHuTchfMUL17cINdo//nnBDx5wLP4tP0j3miS8Ht0nw5ffGGQa701ZswY3Cxl7O3RmD8GejDVvRIH9/yCe8MGvHjx4p3PEx0dTXBwMFFRUQaNTxCErBPJgiAYka2tLWPGjMHX15eVK1fSunXrVJ2TPtTAgQOxtrFm+JkDhMa+StkeEfear84cQiuXMXLkSINc6+29Uc8GlVjdvg6NShelSjFrRtVzwa+nOxGPHrFgwYL/PM/t27fp2qULdnZFqFChAnZ2dnT4vD1//fWXQeIUBCHrCuRtCEEoKIoUKcKhI0f4tF072vhto3rR4pjIZFx+9gRrKyv27f/dYJOQbd26lVq1ajHYzZl/zpAKUK5wIXq4OuG7bh3fffddhgnRtWvXaNyoEVYKPd5NqlLV3po7z2NZG3iSBvU/5qj/MT7++GODxCsIwrsTyYKQa2g0Gvbu3cvZs2cxMTGhVatWNG3aVEz09IFq1qxJ8P377Nq1i2PHjqHX6xnUsCG9evXC0tLSYNd58OABtWrVwkxpAjpNmvLajoXxORfM69evM5ypbsSwYTiYyvDr2QwrtRIA99LF6OZami92nWbwwAH8de26eE0IQg4TyYKQKwQFBfFFhy94/OQx9mp7NHoN8+bNo9ZHtdizb0+aRVaErDEzM6Nfv37069cv265ha2sLgD6DSZ4evHqDqUqFuXn6067fvHmTP06fxrdDvZRE4S0LlQmTG1Wi085TBAYG0qBBA8MGLwhCpkSfBcHoQkNDaeXRCrMoM7wKezPX+jvm2/yPcbbjCbsZRotmHiQkZDxVt5A7dO7cGYCDd8PTlL1O0rLpr4d06dIFE5P0f6PcuZO83HmDUnbpljcsVRRI7tMgCELOKjDJwoULF9ixYweQvG64kHv88MMP6BP0jLYcg5MyuQVBJpNRWVWZUZajuXvvDj/++KORoxT+y9s558cfvsLGS/eJ02iRJIlzj1/Q5cczRCXpmPSPaWj/7e0tkYjX6SeGEa/jU+0nCELOea9kYcWKFZQpUwa1Wk29evUICgrKdP+ffvqJSpUqoVarcXV1xc/P772CfR9//fUXtWq54ebmxrBhwwBwqVCRKVOmoNPpciwOIWM/7vyResqPMZenbZ4uYVKCSupK/LhLJAu53dt+BJ+0/5xvDl3GecnvOC/dT5vNATxTmHPo8BGqVKmS4fGNGjWimF0RfC/eS7d8/YX7WBayMMhkVYIgZE2Wk4Vdu3bh6emJl5cXFy9e5KOPkmeae/r0abr7nzlzhu7duzNw4EAuXbpEhw4d6NChg8EWycnM3bt3cXdvwrVrTzBT9qGQ6VQAdJrazJs3P8PpMoWc9fr1a2zkNhmWW2NDTLRoDcor1q5bz71791i4+HumzJyFn58fd4Lv/Wc/A5VKxdTpM9h8OZS5J67zKj4JgNhEDUsCb7M86C7jvhkvWhYEwQiy3MFx8eLFDB48OGWFKx8fH/bv34+vry+TJk1Ks//SpUtp06YN48ePB2D27NkcOXKE5cuX4+Pj84HhZ2727DnEx8kwVQxCJjMDWXJupFK2QKUwxcfHh7Fjx+Li4pKtcQiZc3Fx4e6NO7ShbZoyvaQnWB9Mp6qGnThIyF5ly5blq6++yvJxX331Fa9evWLO7NmsOn+PktYWhMfEEa/R4unpyfTp07MhWkEQ/kuWkoWkpCQuXLiQavlLuVyOh4cHgYGB6R4TGBiIp6dnqm2tW7dmz549GV4nMTGRxMTElMdv+xhoNBo0mrRDsjI6x969ezE3c0dlYgGAWi3/+1+pHgm6QLZt28a0adPe6Zz53du6fdc6NpThI4czauQobsluUdm0UqqygLgA4hRvGDRoUI7H9W/Gqp+8wlD1M3nyZAYMGMBPP/1EeHg4xYoVo0uXLjg6OqLT6fLs7UPx+smcIetH1LHhyaQsLGYfHh5OiRIlOHPmDPXr10/ZPmHCBE6cOMHZs2fTHKNSqdi0aRPdu3dP2bZy5Uq8vb2JjIxM9zozZ87E29s7zfbt27dnOOxKEARBEADi4uLo0aMH0dHRGc7p8SFiYmKwtramkKkXMtmHra0iSQm8TvTOtlgNJVfOszB58uRUrRExMTE4OTnRqlWrd67MpKQkSpZ0QtLVR2XSBEhuUVi2qgJfDb9LQnwCCbolfPPN6FQtJQWZRqPhyJEjtGzZEqVS+d8HGFBSUhLff/8969esJ/J5chJZwdmFr8eOplevXrliEh5j1k9eIOonc6J+MmfI+hEj3gwvS8mCnZ0dCoUiTYtAZGQkDg4O6R7j4OCQpf0BTE1NMTU1TbNdqVS+84tIqVTyxRcd2bL5F7SKWshlFillCQl6Yl6fIUn3kp49e4o37r9kpZ4Nec1p06YxadIkwsLCMDExoWTJkrkiSfg3Y9RPXiLqJ3OifjJniPoR9Wt4WRoNoVKpqF27Nv7+/inb9Ho9/v7+qW5L/FP9+vVT7Q9w5MiRDPc3pOnTp2NpZUKSbg0a3RUkKXnlvUTNARK1BxgzZgzOzs7ZHofw7kxMTChbtixOTk65MlEQBEEoiLI8dNLT05O1a9eyadMmbt68yfDhw3nz5k3K6Ig+ffqkatb/+uuvOXjwIIsWLeLWrVvMnDmT8+fP58iwxTJlyhAYeJqP61cmQbOTN4n/A0Btfou5c+eycOHCbI9BEARBEPK6LPdZ6Nq1K8+ePWPGjBlERERQo0YNDh48iL29PQAPHz5MtaJcgwYN2L59O9OmTWPKlClUqFCBPXv2UK1aNcM9i0y4uLhw8mQAt2/f5saNGwAEB98RY7UFQRAE4R29VwfHUaNGZdgyEBAQkGZb586dU+aNN5aKFStSrlw5/Pz8UKs/rPeqIAiCIBQkBWZtCEEQBEEQ3o9IFgRBEARByJRIFgRBEARByJRIFgRBEARByJRIFgRBEARByJRIFgRBEARByJRIFgRBEARByJRIFgRBEARByJRIFgRBEARByFSuXKL63yRJAj582VGNRkNcXBwxMTFiVbJ0iPrJnKifzIn6yZyon8wZsn7efle8/e7ILhKJ8IGXkEg0TDDZLE8kC7GxsQA4OTkZORJBEAQhr4iNjcXa2trg51WpVDg4OBARMc8g53NwcEClUhnkXNlFJmV36mUAer2e8PBwLC0tP2jZ4piYGJycnAgLC8PKysqAEeYPon4yJ+onc6J+MifqJ3OGrB9JkoiNjcXR0THVwoaGlJCQQFJSkkHOpVKpcv2aRXmiZUEul1OyZEmDnc/Kykq8WTMh6idzon4yJ+onc6J+Mmeo+smOFoV/UqvVuf4L3pBEB0dBEARBEDIlkgVBEARBEDJVoJIFU1NTvLy8MDU1NXYouZKon8yJ+smcqJ/MifrJnKif3C1PdHAUBEEQBMF4ClTLgiAIgiAIWSeSBUEQBEEQMiWSBUEQBEEQMiWSBUEQBEEQMpXvkoUVK1ZQpkwZ1Go19erVIygoKNP9f/rpJypVqoRarcbV1RU/P78citQ4slI/a9euxd3dHVtbW2xtbfHw8PjP+szrsvr6eWvnzp3IZDI6dOiQvQEaWVbr59WrV4wcOZLixYtjamqKi4tLvn6PZbV+lixZQsWKFTEzM8PJyYmxY8eSkJCQQ9HmrJMnT/LZZ5/h6OiITCZjz549/3lMQEAAtWrVwtTUlPLly7Nx48Zsj1PIgJSP7Ny5U1KpVJKvr690/fp1afDgwZKNjY0UGRmZ7v6nT5+WFAqFtGDBAunGjRvStGnTJKVSKV29ejWHI88ZWa2fHj16SCtWrJAuXbok3bx5U+rXr59kbW0tPXr0KIcjzxlZrZ+3QkJCpBIlSkju7u7S559/njPBGkFW6ycxMVFyc3OT2rVrJ506dUoKCQmRAgICpMuXL+dw5Dkjq/Wzbds2ydTUVNq2bZsUEhIiHTp0SCpevLg0duzYHI48Z/j5+UlTp06VfvnlFwmQfv3110z3v3//vmRubi55enpKN27ckJYtWyYpFArp4MGDOROwkEq+Shbq1q0rjRw5MuWxTqeTHB0dpe+++y7d/bt06SJ98sknqbbVq1dPGjp0aLbGaSxZrZ9/02q1kqWlpbRp06bsCtGo3qd+tFqt1KBBA2ndunVS375983WykNX6WbVqlVSuXDkpKSkpp0I0qqzWz8iRI6XmzZun2ubp6Sk1bNgwW+PMDd4lWZgwYYJUtWrVVNu6du0qtW7dOhsjEzKSb25DJCUlceHCBTw8PFK2yeVyPDw8CAwMTPeYwMDAVPsDtG7dOsP987L3qZ9/i4uLQ6PRULhw4ewK02jet35mzZpFsWLFGDhwYE6EaTTvUz+//fYb9evXZ+TIkdjb21OtWjW+/fZbdDpdToWdY96nfho0aMCFCxdSblXcv38fPz8/2rVrlyMx53YF6fM5L8gTC0m9i+fPn6PT6bC3t0+13d7enlu3bqV7TERERLr7R0REZFucxvI+9fNvEydOxNHRMc0bOD94n/o5deoU69ev5/LlyzkQoXG9T/3cv3+fY8eO0bNnT/z8/AgODmbEiBFoNBq8vLxyIuwc8z7106NHD54/f06jRo2QJAmtVsuwYcOYMmVKToSc62X0+RwTE0N8fDxmZmZGiqxgyjctC0L2mjdvHjt37uTXX38tUCutZSQ2NpbevXuzdu1a7OzsjB1OrqTX6ylWrBhr1qyhdu3adO3alalTp+Lj42Ps0HKFgIAAvv32W1auXMnFixf55Zdf2L9/P7NnzzZ2aIKQRr5pWbCzs0OhUBAZGZlqe2RkJA4ODuke4+DgkKX987L3qZ+3Fi5cyLx58zh69CjVq1fPzjCNJqv1c+/ePUJDQ/nss89Stun1egBMTEy4ffs2zs7O2Rt0Dnqf10/x4sVRKpUoFIqUbZUrVyYiIoKkpCRUKlW2xpyT3qd+pk+fTu/evRk0aBAArq6uvHnzhiFDhjB16lTk8oL9Wy6jz2crKyvRqmAE+ebVqFKpqF27Nv7+/inb9Ho9/v7+1K9fP91j6tevn2p/gCNHjmS4f172PvUDsGDBAmbPns3Bgwdxc3PLiVCNIqv1U6lSJa5evcrly5dT/tq3b0+zZs24fPkyTk5OORl+tnuf10/Dhg0JDg5OSaIA7ty5Q/HixfNVogDvVz9xcXFpEoK3iZUkluwpUJ/PeYKxe1ga0s6dOyVTU1Np48aN0o0bN6QhQ4ZINjY2UkREhCRJktS7d29p0qRJKfufPn1aMjExkRYuXCjdvHlT8vLyyvdDJ7NSP/PmzZNUKpW0e/du6cmTJyl/sbGxxnoK2Sqr9fNv+X00RFbr5+HDh5KlpaU0atQo6fbt29Lvv/8uFStWTJozZ46xnkK2ymr9eHl5SZaWltKOHTuk+/fvS4cPH5acnZ2lLl26GOspZKvY2Fjp0qVL0qVLlyRAWrx4sXTp0iXpwYMHkiRJ0qRJk6TevXun7P926OT48eOlmzdvSitWrBBDJ40oXyULkiRJy5Ytk0qVKiWpVCqpbt260p9//plS1qRJE6lv376p9v/xxx8lFxcXSaVSSVWrVpX279+fwxHnrKzUT+nSpSUgzZ+Xl1fOB55Dsvr6+af8nixIUtbr58yZM1K9evUkU1NTqVy5ctLcuXMlrVabw1HnnKzUj0ajkWbOnCk5OztLarVacnJykkaMGCFFRUXlfOA54Pjx4+l+nrytk759+0pNmjRJc0yNGjUklUollStXTtqwYUOOxy0kE0tUC4IgCIKQqXzTZ0EQBEEQhOwhkgVBEARBEDIlkgVBEARBEDIlkgVBEARBEDIlkgVBEARBEDIlkgVBEARBEDIlkgVBEARBEDIlkgVBEARBEDIlkgVBEARBEDIlkgVBEARBEDIlkgVBEARBEDIlkgVBEARBEDL1f3wBWuKrWSvdAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -332,15 +332,15 @@ ], "source": [ "plt.figure(1)\n", - "plt.scatter(coordinates_list[0][:,0], coordinates_list[0][:,1], c=solution_list[0][:,0], label = \"collocation points\", cmap=plt.get_cmap('plasma', 10))\n", - "plt.scatter(coordinates_list[1][:,0], coordinates_list[1][:,1], c=solution_list[1], label = \"boundary points\", cmap=plt.get_cmap('plasma', 10))\n", + "plt.scatter(coordinates_list[0][:,0], coordinates_list[0][:,1], c=solution_list[0][:,0], label = \"collocation points\", cmap=plt.get_cmap('plasma', 10), edgecolors='k')\n", + "plt.scatter(coordinates_list[1][:,0], coordinates_list[1][:,1], c=solution_list[1], label = \"boundary points\", cmap=plt.get_cmap('plasma', 10),edgecolors='k')\n", "plt.colorbar()\n", "plt.grid('minor')" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -349,13 +349,13 @@ "Text(0, 0.5, 'Loss')" ] }, - "execution_count": 19, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA33klEQVR4nO3de3RU1f338c/MJDNJgFwwkEAYjIiACCQQIAR/3kqUWqq29JJalti0pY8CPtpoq9QWtFaDN35UpcRiEWproVpvj0UsRsCqKZFAFBBRFEgEkhAgFwIkkDnPHyEjU0ADnJmdTN6vtWZVzuwz851dWz7ru/c5x2FZliUAAIAw4TRdAAAAgJ0INwAAIKwQbgAAQFgh3AAAgLBCuAEAAGGFcAMAAMIK4QYAAISVCNMFhJrP59OuXbvUrVs3ORwO0+UAAIA2sCxL9fX16t27t5zOL+/NdLpws2vXLnm9XtNlAACAM1BeXq4+ffp86ZhOF266desmqWVyYmNjDVcDAADaoq6uTl6v1//3+JfpdOGmdSkqNjaWcAMAQAfTli0lbCgGAABhhXADAADCCuEGAACEFcINAAAIK4QbAAAQVgg3AAAgrBBuAABAWDEebubNm6fU1FRFRUUpMzNTxcXFXzq+pqZG06ZNU69eveTxeDRgwAAtW7YsRNUCAID2zuhN/JYuXaq8vDwVFBQoMzNTc+fO1fjx47Vlyxb17NnzhPFNTU268sor1bNnTz3//PNKSUnRjh07FB8fH/riAQBAu+SwLMsy9eWZmZkaNWqUnnjiCUktD7X0er265ZZbdNddd50wvqCgQA8//LA++ugjRUZGntF31tXVKS4uTrW1tdyhGACADuJ0/v42tizV1NSkkpISZWdnf1GM06ns7GwVFRWd9JxXXnlFWVlZmjZtmpKSkjRkyBA98MADam5uPuX3NDY2qq6uLuAFAADCl7FwU11drebmZiUlJQUcT0pKUkVFxUnP+eyzz/T888+rublZy5Yt029+8xs9+uij+t3vfnfK78nPz1dcXJz/xRPBAQAIb8Y3FJ8On8+nnj176o9//KMyMjKUk5Oju+++WwUFBac8Z8aMGaqtrfW/ysvLg1Jb49Fm7aw5pN21h4Ly+QAAoG2MbShOTEyUy+VSZWVlwPHKykolJyef9JxevXopMjJSLpfLf+zCCy9URUWFmpqa5Ha7TzjH4/HI4/HYW/xJbNxZq+/ML1Lf7jF665dXBP37AADAyRnr3LjdbmVkZKiwsNB/zOfzqbCwUFlZWSc95+KLL9bWrVvl8/n8xz7++GP16tXrpMEmlJzHHsHuM7c/GwAAyPCyVF5enhYsWKDFixdr8+bNuvnmm9XQ0KDc3FxJ0uTJkzVjxgz/+Jtvvln79u3Trbfeqo8//lj//Oc/9cADD2jatGmmfoKfP9z4CDcAAJhk9D43OTk52rNnj2bOnKmKigqlp6dr+fLl/k3GZWVlcjq/yF9er1evv/66fv7zn2vYsGFKSUnRrbfeqjvvvNPUT/BzOVvCTTOdGwAAjDJ6nxsTgnWfmw931ekbj/1biV09Wvvr7K8+AQAAtFmHuM9NuGnt3HSyrAgAQLtDuLHJsWzDshQAAIYRbmzibN1zw4ZiAACMItzYxMXVUgAAtAuEG5u07rkh2wAAYBbhxiZOLgUHAKBdINzYpHVDMctSAACYRbixSeueGzo3AACYRbixidN/nxvudQMAgEmEG5u0dm4kNhUDAGAS4cYmzuPCDfe6AQDAHMKNTY57vqd8LEsBAGAM4cYmrfe5kejcAABgEuHGJs6APTeEGwAATCHc2CQg3PgMFgIAQCdHuLFJwLIUnRsAAIwh3NjkuGzDnhsAAAwi3NjE4XD4Aw438QMAwBzCjY1cPDwTAADjCDc2crQ+X4plKQAAjCHc2Kj1EQxcLQUAgDmEGxu1LktxnxsAAMwh3NiodUMxe24AADCHcGMjZ2vnhj03AAAYQ7ixUeueGzo3AACYQ7ix0RedG8OFAADQiRFubOS/WorODQAAxhBubOS/iR97bgAAMIZwYyMHV0sBAGAc4cZGrZ0bni0FAIA5hBsb+a+WYkMxAADGEG5s5GTPDQAAxhFubNR6h2KulgIAwBzCjY2cXAoOAIBxhBsbcSk4AADmEW5sxFPBAQAwj3BjIydXSwEAYBzhxkZsKAYAwDzCjY38y1LsuQEAwBjCjY38y1J0bgAAMIZwYyOulgIAwDzCjY24zw0AAOYRbmzk9O+5MVwIAACdGOHGRq5jV0ux5wYAAHMINzbiaikAAMwj3NjIwdVSAAAY1y7Czbx585SamqqoqChlZmaquLj4lGMXLVokh8MR8IqKigphtafm8m8oNlwIAACdmPFws3TpUuXl5WnWrFlat26d0tLSNH78eFVVVZ3ynNjYWO3evdv/2rFjRwgrPjWWpQAAMM94uJkzZ46mTJmi3NxcDR48WAUFBYqJidHChQtPeY7D4VBycrL/lZSUdMqxjY2NqqurC3gFi5P73AAAYJzRcNPU1KSSkhJlZ2f7jzmdTmVnZ6uoqOiU5x04cEDnnnuuvF6vrrvuOm3atOmUY/Pz8xUXF+d/eb1eW3/D8Vw8WwoAAOOMhpvq6mo1Nzef0HlJSkpSRUXFSc8ZOHCgFi5cqJdffll/+ctf5PP5NHbsWH3++ecnHT9jxgzV1tb6X+Xl5bb/jlbcxA8AAPMiTBdwurKyspSVleX/89ixY3XhhRfqySef1H333XfCeI/HI4/HE5LavliWCsnXAQCAkzDauUlMTJTL5VJlZWXA8crKSiUnJ7fpMyIjIzV8+HBt3bo1GCWeFhedGwAAjDMabtxutzIyMlRYWOg/5vP5VFhYGNCd+TLNzc3asGGDevXqFawy24wNxQAAmGd8WSovL0833nijRo4cqdGjR2vu3LlqaGhQbm6uJGny5MlKSUlRfn6+JOm3v/2txowZo/79+6umpkYPP/ywduzYoZ/+9Kcmf4YkycmGYgAAjDMebnJycrRnzx7NnDlTFRUVSk9P1/Lly/2bjMvKyuR0ftFg2r9/v6ZMmaKKigolJCQoIyND7777rgYPHmzqJ/hxnxsAAMxzWFbnajPU1dUpLi5OtbW1io2NtfWz73llkxa9u13Trjhfvxg/yNbPBgCgMzudv7+N38QvnLi4WgoAAOMINzZqDTedrBkGAEC7Qrix0bErwblaCgAAgwg3Nmq9z00znRsAAIwh3NiIq6UAADCPcGMjJ50bAACMI9zYKIKrpQAAMI5wYyOXqzXckG4AADCFcGOj1s7NUfbcAABgDOHGRq5jj4k42ky4AQDAFMKNjSJ4KjgAAMYRbmwU4WpdlmLPDQAAphBubETnBgAA8wg3NvLvuSHcAABgDOHGRv6rpdhQDACAMYQbG7mc7LkBAMA0wo2N2HMDAIB5hBsbubiJHwAAxhFubBTpaplOOjcAAJhDuLGRiw3FAAAYR7ixUQQbigEAMI5wYyP23AAAYB7hxkatj19gzw0AAOYQbmzEU8EBADCPcGMj7nMDAIB5hBsb8VRwAADMI9zYKIINxQAAGEe4sVHrnptm9twAAGAM4cZGdG4AADCPcGMjFxuKAQAwjnBjI+5QDACAeYQbG0Uce3Cmz5J8dG8AADCCcGOj1mUpiX03AACYQrixUcRx4YZ9NwAAmEG4sVFg54Z9NwAAmEC4sRGdGwAAzCPc2Oj4zs0RbuQHAIARhBsbORwOHp4JAIBhhBububjXDQAARhFubEbnBgAAswg3NnPxfCkAAIwi3Nis9S7FdG4AADCDcGOz1s7NkWb23AAAYALhxmbsuQEAwCzCjc0iXK2dG8INAAAmtItwM2/ePKWmpioqKkqZmZkqLi5u03lLliyRw+HQt771reAWeBoij+25YVkKAAAzjIebpUuXKi8vT7NmzdK6deuUlpam8ePHq6qq6kvP2759u+644w5dcsklIaq0bdyEGwAAjDIebubMmaMpU6YoNzdXgwcPVkFBgWJiYrRw4cJTntPc3KxJkybp3nvvVb9+/UJY7VdzR7RMadNRwg0AACYYDTdNTU0qKSlRdna2/5jT6VR2draKiopOed5vf/tb9ezZUz/5yU++8jsaGxtVV1cX8AomOjcAAJhlNNxUV1erublZSUlJAceTkpJUUVFx0nPefvtt/elPf9KCBQva9B35+fmKi4vzv7xe71nX/WVa99w00rkBAMAI48tSp6O+vl433HCDFixYoMTExDadM2PGDNXW1vpf5eXlQa2xdVmKq6UAADAjwuSXJyYmyuVyqbKyMuB4ZWWlkpOTTxj/6aefavv27brmmmv8x3zHHlAZERGhLVu26Pzzzw84x+PxyOPxBKH6k2vt3LDnBgAAM4x2btxutzIyMlRYWOg/5vP5VFhYqKysrBPGDxo0SBs2bFBpaan/de211+qKK65QaWlp0Jec2sITwZ4bAABMMtq5kaS8vDzdeOONGjlypEaPHq25c+eqoaFBubm5kqTJkycrJSVF+fn5ioqK0pAhQwLOj4+Pl6QTjpsSeewmfnRuAAAww3i4ycnJ0Z49ezRz5kxVVFQoPT1dy5cv928yLisrk9PZcbYG+S8Fp3MDAIARxsONJE2fPl3Tp08/6XurVq360nMXLVpkf0FngT03AACY1XFaIh2Emz03AAAYRbixGXcoBgDALMKNzbhDMQAAZhFubNYabthQDACAGYQbm0X6l6W4QzEAACYQbmxG5wYAALMINzZr7dwcYUMxAABGEG5s5qFzAwCAUYQbm0VGtDx+gaulAAAwg3BjM7fLJUlqZFkKAAAjCDc2i4psmdLGI82GKwEAoHMi3Ngs2t3SuTlEuAEAwAjCjc2iI1vCzcEmwg0AACYQbmzW2rk5TOcGAAAjCDc2a+3cHKJzAwCAEYQbm/nDzZFmWRaPYAAAINQINzZrXZbyWdzIDwAAEwg3Nos61rmRpMNNhBsAAEKNcGOzSJdTka6WuxQfPHLUcDUAAHQ+hJsgiGJTMQAAxhBuguD4TcUAACC0CDdBEMO9bgAAMIZwEwRfLEuxoRgAgFAj3ARBa+emoYkNxQAAhBrhJgi6RUVKkuoPE24AAAg1wk0QxEa3hJu6Q0cMVwIAQOdDuAmCblERkujcAABgAuEmCFrDTd1hOjcAAIQa4SYIYv17bgg3AACEGuEmCGJbOzeHWJYCACDUCDdB0LqhuL6Rzg0AAKFGuAmCbnRuAAAwhnATBOy5AQDAHMJNELTexK+OS8EBAAg5wk0QfHGfmyOyLMtwNQAAdC6EmyCIO7ah+EizpUM8GRwAgJAi3ARBjNulSJdDklRzkH03AACEEuEmCBwOh+Jj3JKk/QebDFcDAEDnQrgJkoSYlqUpOjcAAIQW4SZI4qNbOjeEGwAAQuuMwk15ebk+//xz/5+Li4t122236Y9//KNthXV08cc6NyxLAQAQWmcUbn74wx9q5cqVkqSKigpdeeWVKi4u1t13363f/va3thbYUSXEtHZuCDcAAITSGYWbjRs3avTo0ZKkv//97xoyZIjeffdd/fWvf9WiRYvsrK/D+qJzw7IUAAChdEbh5siRI/J4PJKkN954Q9dee60kadCgQdq9e7d91XVg8THsuQEAwIQzCjcXXXSRCgoK9O9//1srVqzQ17/+dUnSrl27dM4559haYEf1xdVSLEsBABBKZxRuHnzwQT355JO6/PLLdf311ystLU2S9Morr/iXqzo7NhQDAGDGGYWbyy+/XNXV1aqurtbChQv9x3/2s5+poKDgtD9v3rx5Sk1NVVRUlDIzM1VcXHzKsS+88IJGjhyp+Ph4denSRenp6XrmmWfO5GcElX9Z6hDLUgAAhNIZhZtDhw6psbFRCQkJkqQdO3Zo7ty52rJli3r27Hlan7V06VLl5eVp1qxZWrdundLS0jR+/HhVVVWddHz37t119913q6ioSB988IFyc3OVm5ur119//Ux+StAksOcGAAAjHNYZPLb6qquu0sSJE3XTTTeppqZGgwYNUmRkpKqrqzVnzhzdfPPNbf6szMxMjRo1Sk888YQkyefzyev16pZbbtFdd93Vps8YMWKEJkyYoPvuu++E9xobG9XY2Oj/c11dnbxer2praxUbG9vmOk9XVd1hjX6gUE6HtPX+b8jpdATtuwAACHd1dXWKi4tr09/fZ9S5WbdunS655BJJ0vPPP6+kpCTt2LFDf/7zn/XYY4+1+XOamppUUlKi7OzsLwpyOpWdna2ioqKvPN+yLBUWFmrLli269NJLTzomPz9fcXFx/pfX621zfWcj7tieG58l1TceDcl3AgCAMww3Bw8eVLdu3SRJ//rXvzRx4kQ5nU6NGTNGO3bsaPPnVFdXq7m5WUlJSQHHk5KSVFFRccrzamtr1bVrV7ndbk2YMEGPP/64rrzyypOOnTFjhmpra/2v8vLyNtd3NjwRLsW4XZK4YgoAgFA6o3DTv39/vfTSSyovL9frr7+uq666SpJUVVUV1KWeVt26dVNpaanee+893X///crLy9OqVatOOtbj8Sg2NjbgFSoJ/ieDs+8GAIBQiTiTk2bOnKkf/vCH+vnPf66vfe1rysrKktTSxRk+fHibPycxMVEul0uVlZUBxysrK5WcnHzK85xOp/r37y9JSk9P1+bNm5Wfn6/LL7/89H9MEMVFR2pnzSE6NwAAhNAZdW6++93vqqysTGvXrg24SmncuHH63//93zZ/jtvtVkZGhgoLC/3HfD6fCgsL/YGpLXw+X8Cm4fYioUvrjfzo3AAAECpn1LmRpOTkZCUnJ/ufDt6nT58zuoFfXl6ebrzxRo0cOVKjR4/W3Llz1dDQoNzcXEnS5MmTlZKSovz8fEktG4RHjhyp888/X42NjVq2bJmeeeYZzZ8//0x/StDE+5el6NwAABAqZxRufD6ffve73+nRRx/VgQMHJLXsg7n99tt19913y+lse0MoJydHe/bs0cyZM1VRUaH09HQtX77cv8m4rKws4PMaGho0depUff7554qOjtagQYP0l7/8RTk5OWfyU4IqPprODQAAoXZG97mZMWOG/vSnP+nee+/VxRdfLEl6++23dc8992jKlCm6//77bS/ULqdznfzZeuT1LXpi5VbdmHWu7r1uSFC/CwCAcHY6f3+fUedm8eLFeuqpp/xPA5ekYcOGKSUlRVOnTm3X4SaUvni+FJ0bAABC5Yw2FO/bt0+DBg064figQYO0b9++sy4qXCSw5wYAgJA7o3CTlpbmf1zC8Z544gkNGzbsrIsKF62dm1oengkAQMic0bLUQw89pAkTJuiNN97wX7JdVFSk8vJyLVu2zNYCOzKulgIAIPTOqHNz2WWX6eOPP9a3v/1t1dTUqKamRhMnTtSmTZv0zDPP2F1jh5VwrHNT00DnBgCAUDmjq6VO5f3339eIESPU3Nxs10faLpRXS+1raNKI+1ZIkj65/2pFus4oSwIA0OkF/angaJu46Eg5HC3/zL4bAABCg3ATRC6nQ7FRrTfyY98NAAChQLgJstYrprhLMQAAoXFaV0tNnDjxS9+vqak5m1rCUnyMWzv2HuRGfgAAhMhphZu4uLivfH/y5MlnVVC4SfDfpZhlKQAAQuG0ws3TTz8drDrCVutdimvp3AAAEBLsuQmyuGg6NwAAhBLhJsi+eL4UnRsAAEKBcBNkCV1any9F5wYAgFAg3ASZf1mKRzAAABAShJsgS+DhmQAAhBThJshaww038QMAIDQIN0HWvWtLuNnX0CQbn1EKAABOgXATZOd0aQk3Tc0+1R0+argaAADCH+EmyKIiXermablX4t4DjYarAQAg/BFuQuCcY0tTexvYVAwAQLARbkLgnK4eSVJ1PZ0bAACCjXATAonHOjfVdG4AAAg6wk0I0LkBACB0CDchkHgs3OxtINwAABBshJsQaF2W2nuAZSkAAIKNcBMC53Q5tizFpeAAAAQd4SYE6NwAABA6hJsQ8G8opnMDAEDQEW5CoLVzU3f4qBqPNhuuBgCA8Ea4CYG46EhFOB2SWh6gCQAAgodwEwIOh8P/CIbqesINAADBRLgJEf8VU9zrBgCAoCLchEhit2M38uOKKQAAgopwEyKJXVqWparqDxuuBACA8Ea4CZGesVGSpKo6lqUAAAgmwk2IJMW2LEvRuQEAILgINyGSROcGAICQINyESGvnppLODQAAQUW4CZGe3Vo6N5V1jbIsy3A1AACEL8JNiPQ81rlpOupT7aEjhqsBACB8EW5CxBPhUkJMpKSW7g0AAAgOwk0IfbE0xb4bAACChXATQq1LU4QbAACCp12Em3nz5ik1NVVRUVHKzMxUcXHxKccuWLBAl1xyiRISEpSQkKDs7OwvHd+e+C8Hr2dZCgCAYDEebpYuXaq8vDzNmjVL69atU1pamsaPH6+qqqqTjl+1apWuv/56rVy5UkVFRfJ6vbrqqqu0c+fOEFd++pLo3AAAEHTGw82cOXM0ZcoU5ebmavDgwSooKFBMTIwWLlx40vF//etfNXXqVKWnp2vQoEF66qmn5PP5VFhYGOLKT19r54ZwAwBA8BgNN01NTSopKVF2drb/mNPpVHZ2toqKitr0GQcPHtSRI0fUvXv3k77f2Niourq6gJcpx9/rBgAABIfRcFNdXa3m5mYlJSUFHE9KSlJFRUWbPuPOO+9U7969AwLS8fLz8xUXF+d/eb3es677TPmfL0XnBgCAoDG+LHU2Zs+erSVLlujFF19UVFTUScfMmDFDtbW1/ld5eXmIq/zC8RuKm33cpRgAgGCIMPnliYmJcrlcqqysDDheWVmp5OTkLz33kUce0ezZs/XGG29o2LBhpxzn8Xjk8Xhsqfds9ezmkcvp0FGfpar6w+oVF226JAAAwo7Rzo3b7VZGRkbAZuDWzcFZWVmnPO+hhx7Sfffdp+XLl2vkyJGhKNUWES6nko91b3bVHDJcDQAA4cn4slReXp4WLFigxYsXa/Pmzbr55pvV0NCg3NxcSdLkyZM1Y8YM//gHH3xQv/nNb7Rw4UKlpqaqoqJCFRUVOnDggKmfcFpS4lu6NZ/vJ9wAABAMRpelJCknJ0d79uzRzJkzVVFRofT0dC1fvty/ybisrExO5xcZbP78+WpqatJ3v/vdgM+ZNWuW7rnnnlCWfkZSEqKl7dJOOjcAAASF8XAjSdOnT9f06dNP+t6qVasC/rx9+/bgFxRErZ0blqUAAAgO48tSnU1KQku42cmyFAAAQUG4CbHexzo3LEsBABAchJsQa12W2rn/kCyLe90AAGA3wk2ItYabhqZm1R06argaAADCD+EmxKLdLp3TxS1J+rzmoOFqAAAIP4QbA3rHs6kYAIBgIdwY0CeBG/kBABAshBsD+p4TI0nasbfBcCUAAIQfwo0B553TRZK0bS97bgAAsBvhxoDUxJZws72azg0AAHYj3Bhw3rFw8/n+g2o66jNcDQAA4YVwY0DPbh5FR7rks1oCDgAAsA/hxgCHw6Fzj20q3s6mYgAAbEW4MaR1aWpbNZ0bAADsRLgxpHVTMZeDAwBgL8KNIf7LwbliCgAAWxFuDDm/Z0u42Vp1wHAlAACEF8KNIRckdZMk7a49rNpDRwxXAwBA+CDcGBIbFanecVGSpI8r6w1XAwBA+CDcGDQguaV7s6WCcAMAgF0INwYNPLY0RecGAAD7EG4MGpBE5wYAALsRbgwamPxF58ayLMPVAAAQHgg3BvXv2VVOh7T/4BFV1TeaLgcAgLBAuDEoKtKl83t0lSRt+LzWcDUAAIQHwo1hw/rES5I++LzGaB0AAIQLwo1had44SdL7dG4AALAF4caw4zs3bCoGAODsEW4Mu7BXN0W6HNp/8Ig+33/IdDkAAHR4hBvDPBEuDUqOlSSVlteYLQYAgDBAuGkHMs5NkCS9t32f4UoAAOj4CDftwJh+3SVJaz4j3AAAcLYIN+3A6PPOkSRtqazXvoYmw9UAANCxEW7age5d3P6HaBZv22u4GgAAOjbCTTuReWxp6j8sTQEAcFYIN+1EVr+Wpam3PtljuBIAADo2wk07cfEFiYpwOvTZngZtr24wXQ4AAB0W4aadiI2K1KjUlqWpNz+qMlwNAAAdF+GmHRl3YU9JhBsAAM4G4aYd+dqglnCzZtte1R0+YrgaAAA6JsJNO9KvR1f179lVR5otvb6xwnQ5AAB0SISbdubatN6SpFfe32W4EgAAOibCTTvTGm7e/XSv9tQ3Gq4GAICOh3DTzqQmdlFanzg1+ywt27DbdDkAAHQ4hJt26Nr0FEnScyXlhisBAKDjIdy0Q98eniK3y6mNO+v0wec1pssBAKBDMR5u5s2bp9TUVEVFRSkzM1PFxcWnHLtp0yZ95zvfUWpqqhwOh+bOnRu6QkOoexe3rh6aLEl6dk2Z4WoAAOhYjIabpUuXKi8vT7NmzdK6deuUlpam8ePHq6rq5DexO3jwoPr166fZs2crOTk5xNWG1g9H95XUctVUPfe8AQCgzYyGmzlz5mjKlCnKzc3V4MGDVVBQoJiYGC1cuPCk40eNGqWHH35YP/jBD+TxeNr0HY2Njaqrqwt4dQSjz+uu83t00cGmZr24fqfpcgAA6DCMhZumpiaVlJQoOzv7i2KcTmVnZ6uoqMi278nPz1dcXJz/5fV6bfvsYHI4HJqclSpJWvj2NjX7LLMFAQDQQRgLN9XV1WpublZSUlLA8aSkJFVU2Hd33hkzZqi2ttb/Ki/vOFcgfTejj2KjIrR970G9sbnSdDkAAHQIxjcUB5vH41FsbGzAq6Po4onQpDHnSpKe+vdnhqsBAKBjMBZuEhMT5XK5VFkZ2JGorKwM+83Cp+NHY1MV6XLove37VVpeY7ocAADaPWPhxu12KyMjQ4WFhf5jPp9PhYWFysrKMlVWu5MUG6Vrjj2SYQHdGwAAvpLRZam8vDwtWLBAixcv1ubNm3XzzTeroaFBubm5kqTJkydrxowZ/vFNTU0qLS1VaWmpmpqatHPnTpWWlmrr1q2mfkJITLmknyTptQ27tb26wXA1AAC0b0bDTU5Ojh555BHNnDlT6enpKi0t1fLly/2bjMvKyrR79xfPV9q1a5eGDx+u4cOHa/fu3XrkkUc0fPhw/fSnPzX1E0Liwl6xumJgD/ksqWD1p6bLAQCgXXNYltWprjGuq6tTXFycamtrO9Tm4pId+/Sd+UWKdDm0+hdXqHd8tOmSAAAImdP5+zvsr5YKFxnndteYft11pNli7w0AAF+CcNOBTLuivyTpb8Vlqj7QaLgaAADaJ8JNB/I//ROV1idOh4/49PQ720yXAwBAu0S46UAcDoemHuve/PndHao9xAM1AQD4b4SbDubKC5M0IKmr6huP6i//2WG6HAAA2h3CTQfjdDo09fKW7s2f3t6mg01HDVcEAED7QrjpgL45rJf6do/RvoYmPbumzHQ5AAC0K4SbDijC5dTUy8+XJBWs/kyHmpoNVwQAQPtBuOmgJo7ooz4J0ao+0Khni+neAADQinDTQbkjnP773hSs/lSHj9C9AQBAItx0aN8Z0Ucp8dHaU9/I3hsAAI4h3HRgdG8AADgR4aaD+25GS/emqr5Rf2PvDQAAhJuOzh3h1NQrWq6cmr+K7g0AAISbMPC9DK96x0Wpqr5RS+jeAAA6OcJNGGjp3rTsvZnP3hsAQCdHuAkT3xvZR73iolRZR/cGANC5EW7ChCfC5e/ezFv1Kc+cAgB0WoSbMJIz0qu+3WO0p75RC9/eZrocAACMINyEEXeEU7dfNUCS9OTqz7S/oclwRQAAhB7hJsxcM6y3BveKVX3jUf1h1VbT5QAAEHKEmzDjdDr0y68PlCQtLtqhnTWHDFcEAEBoEW7C0GUDemhMv+5qOurT3BUfmy4HAICQItyEIYfDoTu/PkiS9I91n+vDXXWGKwIAIHQIN2FqeN8ETRjWSz5Luvf/bZJlWaZLAgAgJAg3YexX37hQUZFOrdm2T8s2VJguBwCAkCDchLGU+GjdfFnLjf3u/+eHOtTEYxkAAOGPcBPm/s9l/ZQSH61dtYc1f/WnpssBACDoCDdhLirSpbsnXChJKlj9qbZWHTBcEQAAwUW46QSuHpKsywf2UNNRn+76xwfy+dhcDAAIX4SbTsDhcOj+bw9VF7dLa3fs11/W7DBdEgAAQUO46SRS4qN119Ut97558LWP9Pn+g4YrAgAgOAg3ncikzHM1KjVBDU3Num1JqY42+0yXBACA7Qg3nYjT6dCj30tXN0+E1u7Yr8cKPzFdEgAAtiPcdDJ9z4nR/ROHSpIeX7lV735abbgiAADsRbjphK5N662ckV5ZlnTLs+vZfwMACCuEm05q1rWDdVHvWO1taNJPF6/VgcajpksCAMAWhJtOKsYdoQWTR6pHN48+qqjX//3beh1hgzEAIAwQbjqx3vHRWjB5pDwRTr35URVXUAEAwgLhppNL98ar4IYMRboc+ueG3br9uffp4AAAOjTCDXTFwJ564ocj5HI69HLpLv2EPTgAgA6McANJ0viLkrVgcoaiI1166+M9+u78d7WtusF0WQAAnDbCDfy+NihJS//PGCV2deujinp987F/6x8ln8uyeNAmAKDjINwgwLA+8Xr1lkuUeV53NTQ16/bn3tcNfyrW1qoDpksDAKBNCDc4QXJclJ6dMkZ3XDVA7gin3t5arfFz31Le30sJOQCAdq9dhJt58+YpNTVVUVFRyszMVHFx8ZeOf+655zRo0CBFRUVp6NChWrZsWYgq7TxcToemf+0CvfHzy5R9YZKafZZeWLdT2XNWK+fJIv19bblqDjaZLhMAgBM4LMMbKpYuXarJkyeroKBAmZmZmjt3rp577jlt2bJFPXv2PGH8u+++q0svvVT5+fn65je/qWeffVYPPvig1q1bpyFDhnzl99XV1SkuLk61tbWKjY0Nxk8KS++X12jeyq1asblSrf/GOBwty1hjzz9HQ3rH6aLeserbPUZOp8NssQCAsHM6f38bDzeZmZkaNWqUnnjiCUmSz+eT1+vVLbfcorvuuuuE8Tk5OWpoaNCrr77qPzZmzBilp6eroKDgK7+PcHN2dtUc0ovrd+qV0l3aUll/wvtul1O946OUkhCt5NhoxcdEKi665RUbHSFPhEtul1PuiONeLqecDoccjpbA5HQ45FDLP0uOE445jh0DJPHvAtAOuSOc6tktytbPPJ2/vyNs/ebT1NTUpJKSEs2YMcN/zOl0Kjs7W0VFRSc9p6ioSHl5eQHHxo8fr5deeumk4xsbG9XY2Oj/c11d3dkX3on1jo/WtCv6a9oV/VVRe1hvfbJH68v2a9OuOn1UUa+moz5t33tQ2/fyME4A6KxG9I3XC1MvNvb9RsNNdXW1mpublZSUFHA8KSlJH3300UnPqaioOOn4ioqKk47Pz8/Xvffea0/BCJAcF6Xvj/Tq+yO9kqSjzT7trj2snTWHtHP/IVXWH1btoSOqO3Tk2H8eVePRZjU1W2o66lPT0WY1NfvUdNQnn6Vjy13WsX+2ZEny+Vr+U5Za/mxZsizp2FF0ctylAGifIl1mt/QaDTehMGPGjIBOT11dnbxer8GKwleEyylv9xh5u8eYLgUA0IkZDTeJiYlyuVyqrKwMOF5ZWank5OSTnpOcnHxa4z0ejzwejz0FAwCAds9o38jtdisjI0OFhYX+Yz6fT4WFhcrKyjrpOVlZWQHjJWnFihWnHA8AADoX48tSeXl5uvHGGzVy5EiNHj1ac+fOVUNDg3JzcyVJkydPVkpKivLz8yVJt956qy677DI9+uijmjBhgpYsWaK1a9fqj3/8o8mfAQAA2gnj4SYnJ0d79uzRzJkzVVFRofT0dC1fvty/abisrExO5xcNprFjx+rZZ5/Vr3/9a/3qV7/SBRdcoJdeeqlN97gBAADhz/h9bkKN+9wAANDxnM7f3+3i8QsAAAB2IdwAAICwQrgBAABhhXADAADCCuEGAACEFcINAAAIK4QbAAAQVgg3AAAgrBBuAABAWDH++IVQa70hc11dneFKAABAW7X+vd2WByt0unBTX18vSfJ6vYYrAQAAp6u+vl5xcXFfOqbTPVvK5/Np165d6tatmxwOh62fXVdXJ6/Xq/Lycp5bFUTMc2gwz6HBPIcOcx0awZpny7JUX1+v3r17BzxQ+2Q6XefG6XSqT58+Qf2O2NhY/ocTAsxzaDDPocE8hw5zHRrBmOev6ti0YkMxAAAIK4QbAAAQVgg3NvJ4PJo1a5Y8Ho/pUsIa8xwazHNoMM+hw1yHRnuY5063oRgAAIQ3OjcAACCsEG4AAEBYIdwAAICwQrgBAABhhXBjk3nz5ik1NVVRUVHKzMxUcXGx6ZLatbfeekvXXHONevfuLYfDoZdeeingfcuyNHPmTPXq1UvR0dHKzs7WJ598EjBm3759mjRpkmJjYxUfH6+f/OQnOnDgQMCYDz74QJdccomioqLk9Xr10EMPBfuntSv5+fkaNWqUunXrpp49e+pb3/qWtmzZEjDm8OHDmjZtms455xx17dpV3/nOd1RZWRkwpqysTBMmTFBMTIx69uypX/ziFzp69GjAmFWrVmnEiBHyeDzq37+/Fi1aFOyf127Mnz9fw4YN89+0LCsrS6+99pr/feY4OGbPni2Hw6HbbrvNf4y5Pnv33HOPHA5HwGvQoEH+9zvEHFs4a0uWLLHcbre1cOFCa9OmTdaUKVOs+Ph4q7Ky0nRp7dayZcusu+++23rhhRcsSdaLL74Y8P7s2bOtuLg466WXXrLef/9969prr7XOO+8869ChQ/4xX//61620tDTrP//5j/Xvf//b6t+/v3X99df736+trbWSkpKsSZMmWRs3brT+9re/WdHR0daTTz4Zqp9p3Pjx462nn37a2rhxo1VaWmp94xvfsPr27WsdOHDAP+amm26yvF6vVVhYaK1du9YaM2aMNXbsWP/7R48etYYMGWJlZ2db69evt5YtW2YlJiZaM2bM8I/57LPPrJiYGCsvL8/68MMPrccff9xyuVzW8uXLQ/p7TXnllVesf/7zn9bHH39sbdmyxfrVr35lRUZGWhs3brQsizkOhuLiYis1NdUaNmyYdeutt/qPM9dnb9asWdZFF11k7d692//as2eP//2OMMeEGxuMHj3amjZtmv/Pzc3NVu/eva38/HyDVXUc/x1ufD6flZycbD388MP+YzU1NZbH47H+9re/WZZlWR9++KElyXrvvff8Y1577TXL4XBYO3futCzLsv7whz9YCQkJVmNjo3/MnXfeaQ0cODDIv6j9qqqqsiRZq1evtiyrZV4jIyOt5557zj9m8+bNliSrqKjIsqyWIOp0Oq2Kigr/mPnz51uxsbH+uf3lL39pXXTRRQHflZOTY40fPz7YP6ndSkhIsJ566inmOAjq6+utCy64wFqxYoV12WWX+cMNc22PWbNmWWlpaSd9r6PMMctSZ6mpqUklJSXKzs72H3M6ncrOzlZRUZHByjqubdu2qaKiImBO4+LilJmZ6Z/ToqIixcfHa+TIkf4x2dnZcjqdWrNmjX/MpZdeKrfb7R8zfvx4bdmyRfv37w/Rr2lfamtrJUndu3eXJJWUlOjIkSMBcz1o0CD17ds3YK6HDh2qpKQk/5jx48errq5OmzZt8o85/jNax3TG/w00NzdryZIlamhoUFZWFnMcBNOmTdOECRNOmA/m2j6ffPKJevfurX79+mnSpEkqKyuT1HHmmHBzlqqrq9Xc3BzwX6IkJSUlqaKiwlBVHVvrvH3ZnFZUVKhnz54B70dERKh79+4BY072Gcd/R2fi8/l022236eKLL9aQIUMktcyD2+1WfHx8wNj/nuuvmsdTjamrq9OhQ4eC8XPanQ0bNqhr167yeDy66aab9OKLL2rw4MHMsc2WLFmidevWKT8//4T3mGt7ZGZmatGiRVq+fLnmz5+vbdu26ZJLLlF9fX2HmeNO91RwoLOaNm2aNm7cqLffftt0KWFp4MCBKi0tVW1trZ5//nndeOONWr16temywkp5ebluvfVWrVixQlFRUabLCVtXX321/5+HDRumzMxMnXvuufr73/+u6Ohog5W1HZ2bs5SYmCiXy3XCTvHKykolJycbqqpja523L5vT5ORkVVVVBbx/9OhR7du3L2DMyT7j+O/oLKZPn65XX31VK1euVJ8+ffzHk5OT1dTUpJqamoDx/z3XXzWPpxoTGxvbYf7P8Gy53W71799fGRkZys/PV1pamn7/+98zxzYqKSlRVVWVRowYoYiICEVERGj16tV67LHHFBERoaSkJOY6COLj4zVgwABt3bq1w/z7TLg5S263WxkZGSosLPQf8/l8KiwsVFZWlsHKOq7zzjtPycnJAXNaV1enNWvW+Oc0KytLNTU1Kikp8Y9588035fP5lJmZ6R/z1ltv6ciRI/4xK1as0MCBA5WQkBCiX2OWZVmaPn26XnzxRb355ps677zzAt7PyMhQZGRkwFxv2bJFZWVlAXO9YcOGgDC5YsUKxcbGavDgwf4xx39G65jO/L8Bn8+nxsZG5thG48aN04YNG1RaWup/jRw5UpMmTfL/M3NtvwMHDujTTz9Vr169Os6/z7ZsS+7klixZYnk8HmvRokXWhx9+aP3sZz+z4uPjA3aKI1B9fb21fv16a/369ZYka86cOdb69eutHTt2WJbVcil4fHy89fLLL1sffPCBdd111530UvDhw4dba9assd5++23rggsuCLgUvKamxkpKSrJuuOEGa+PGjdaSJUusmJiYTnUp+M0332zFxcVZq1atCris8+DBg/4xN910k9W3b1/rzTfftNauXWtlZWVZWVlZ/vdbL+u86qqrrNLSUmv58uVWjx49TnpZ5y9+8Qtr8+bN1rx58zrVpbN33XWXtXr1amvbtm3WBx98YN11112Ww+Gw/vWvf1mWxRwH0/FXS1kWc22H22+/3Vq1apW1bds265133rGys7OtxMREq6qqyrKsjjHHhBubPP7441bfvn0tt9ttjR492vrPf/5juqR2beXKlZakE1433nijZVktl4P/5je/sZKSkiyPx2ONGzfO2rJlS8Bn7N2717r++uutrl27WrGxsVZubq5VX18fMOb999+3/ud//sfyeDxWSkqKNXv27FD9xHbhZHMsyXr66af9Yw4dOmRNnTrVSkhIsGJiYqxvf/vb1u7duwM+Z/v27dbVV19tRUdHW4mJidbtt99uHTlyJGDMypUrrfT0dMvtdlv9+vUL+I5w9+Mf/9g699xzLbfbbfXo0cMaN26cP9hYFnMcTP8dbpjrs5eTk2P16tXLcrvdVkpKipWTk2Nt3brV/35HmGOHZVmWPT0gAAAA89hzAwAAwgrhBgAAhBXCDQAACCuEGwAAEFYINwAAIKwQbgAAQFgh3AAAgLBCuAEAAGGFcAOgU0hNTdXcuXNNlwEgBAg3AGz3ox/9SN/61rckSZdffrluu+22kH33okWLFB8ff8Lx9957Tz/72c9CVgcAcyJMFwAAbdHU1CS3233G5/fo0cPGagC0Z3RuAATNj370I61evVq///3v5XA45HA4tH37dknSxo0bdfXVV6tr165KSkrSDTfcoOrqav+5l19+uaZPn67bbrtNiYmJGj9+vCRpzpw5Gjp0qLp06SKv16upU6fqwIEDkqRVq1YpNzdXtbW1/u+75557JJ24LFVWVqbrrrtOXbt2VWxsrL7//e+rsrLS//4999yj9PR0PfPMM0pNTVVcXJx+8IMfqL6+3j/m+eef19ChQxUdHa1zzjlH2dnZamhoCNJsAmgrwg2AoPn973+vrKwsTZkyRbt379bu3bvl9XpVU1Ojr33taxo+fLjWrl2r5cuXq7KyUt///vcDzl+8eLHcbrfeeecdFRQUSJKcTqcee+wxbdq0SYsXL9abb76pX/7yl5KksWPHau7cuYqNjfV/3x133HFCXT6fT9ddd5327dun1atXa8WKFfrss8+Uk5MTMO7TTz/VSy+9pFdffVWvvvqqVq9erdmzZ0uSdu/ereuvv14//vGPtXnzZq1atUoTJ04UzyIGzGNZCkDQxMXFye12KyYmRsnJyf7jTzzxhIYPH64HHnjAf2zhwoXyer36+OOPNWDAAEnSBRdcoIceeijgM4/fv5Oamqrf/e53uummm/SHP/xBbrdbcXFxcjgcAd/33woLC7VhwwZt27ZNXq9XkvTnP/9ZF110kd577z2NGjVKUksIWrRokbp16yZJuuGGG1RYWKj7779fu3fv1tGjRzVx4kSde+65kqShQ4eexWwBsAudGwAh9/7772vlypXq2rWr/zVo0CBJLd2SVhkZGSec+8Ybb2jcuHFKSUlRt27ddMMNN2jv3r06ePBgm79/8+bN8nq9/mAjSYMHD1Z8fLw2b97sP5aamuoPNpLUq1cvVVVVSZLS0tI0btw4DR06VN/73ve0YMEC7d+/v+2TACBoCDcAQu7AgQO65pprVFpaGvD65JNPdOmll/rHdenSJeC87du365vf/KaGDRumf/zjHyopKdG8efMktWw4tltkZGTAnx0Oh3w+nyTJ5XJpxYoVeu211zR48GA9/vjjGjhwoLZt22Z7HQBOD+EGQFC53W41NzcHHBsxYoQ2bdqk1NRU9e/fP+D134HmeCUlJfL5fHr00Uc1ZswYDRgwQLt27frK7/tvF154ocrLy1VeXu4/9uGHH6qmpkaDBw9u829zOBy6+OKLde+992r9+vVyu9168cUX23w+gOAg3AAIqtTUVK1Zs0bbt29XdXW1fD6fpk2bpn379un666/Xe++9p08//VSvv/66cnNzvzSY9O/fX0eOHNHjjz+uzz77TM8884x/o/Hx33fgwAEVFhaqurr6pMtV2dnZGjp0qCZNmqR169apuLhYkydP1mWXXaaRI0e26XetWbNGDzzwgNauXauysjK98MIL2rNnjy688MLTmyAAtiPcAAiqO+64Qy6XS4MHD1aPHj1UVlam3r1765133lFzc7OuuuoqDR06VLfddpvi4+PldJ76/5bS0tI0Z84cPfjggxoyZIj++te/Kj8/P2DM2LFjddNNNyknJ0c9evQ4YUOy1NJxefnll5WQkKBLL71U2dnZ6tevn5YuXdrm3xUbG6u33npL3/jGNzRgwAD9+te/1qOPPqqrr7667ZMDICgcFtctAgCAMELnBgAAhBXCDQAACCuEGwAAEFYINwAAIKwQbgAAQFgh3AAAgLBCuAEAAGGFcAMAAMIK4QYAAIQVwg0AAAgrhBsAABBW/j+1p6yYP/V39wAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGwCAYAAACzXI8XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA2PUlEQVR4nO3deXxU9b3/8fdMkpkkJDNhTYiExSIGZFFRIW6lEs2l1qLQW8rl4VYf9aLRn0jtwm3r0g2qj7oD9rYUqg8pVW/BpYrFKLFaQIiibI0bmFiSsJlMEshkme/vj2QOmbAImeXMhNfz8ZhHMuecOeczX7nN+36/3/M9DmOMEQAAQAJy2l0AAABAdxFkAABAwiLIAACAhEWQAQAACYsgAwAAEhZBBgAAJCyCDAAASFjJdhcQbYFAQLt371ZmZqYcDofd5QAAgBNgjFF9fb1yc3PldB6736XHB5ndu3crLy/P7jIAAEA3VFZWatCgQcfc3+ODTGZmpqT2hvB4PDZXAwAAToTP51NeXp71d/xYenyQCQ4neTweggwAAAnmy6aFMNkXAAAkLIIMAABIWAQZAACQsAgyAAAgYRFkAABAwiLIAACAhEWQAQAACYsgAwAAEhZBBgAAJCyCDAAASFgEGQAAkLAIMgAAIGH1+IdGRkvdoRb5DrUoMzVZWekuu8sBAOCURI9MN/3qb9t1yf1v6OkNFXaXAgDAKYsg002pKUmSpKaWNpsrAQDg1EWQ6SaCDAAA9iPIdFNqcnvT+VsDNlcCAMCpiyDTTW56ZAAAsB1BppsODy3RIwMAgF0IMt2UmtLedPTIAABgH4JMN7mTO3pkmCMDAIBtCDLdRI8MAAD2I8h0U2pHj4yfIAMAgG0IMt3EZF8AAOxHkOkma2iplR4ZAADsQpDppmCPjJ8eGQAAbEOQ6SZ6ZAAAsB9Bppus26+Z7AsAgG0IMt3UebKvMcbmagAAODURZLrJnXK46XhwJAAA9iDIdFNwHRmJCb8AANiFINNNKUkOOR3tvzPhFwAAexBkusnhcHSaJ0OQAQDADgSZMLC6LwAA9iLIhCE1ub35/AwtAQBgC4JMGOiRAQDAXgSZMLiZIwMAgK0IMmGwHlNAkAEAwBYEmTC4k4PPW2JoCQAAOxBkwsDt1wAA2IsgE4bg6r5+ggwAALYgyITh8BwZhpYAALADQSYMDC0BAGAvgkwYgkGGp18DAGAPgkwY3Nx+DQCArQgyYQhO9uXp1wAA2IMgEwYeUQAAgL0IMmGwFsRjaAkAAFsQZMJAjwwAAPYiyIQhuI6MnzkyAADYgiATBtaRAQDAXrYGmXvvvVcOhyPklZ+fb+1vampScXGx+vbtq4yMDE2fPl01NTU2VhyKlX0BALCX7T0yZ511lqqqqqzXW2+9Ze2788479eKLL+rZZ59VaWmpdu/erWnTptlYbSjrWUsMLQEAYItk2wtITlZOTs4R2+vq6rRkyRItX75cl112mSRp6dKlGjlypNavX6+JEyfGutQjuJnsCwCArWzvkfnoo4+Um5ur008/XbNmzVJFRYUkqaysTC0tLSosLLSOzc/P1+DBg7Vu3bpjns/v98vn84W8oiWVlX0BALCVrUFmwoQJWrZsmVavXq3Fixdr586duuSSS1RfX6/q6mq5XC5lZWWFfCY7O1vV1dXHPOf8+fPl9XqtV15eXtTqZ7IvAAD2snVoacqUKdbvY8eO1YQJEzRkyBA988wzSktL69Y5582bp7lz51rvfT5f1MKMtSAeD40EAMAWtg8tdZaVlaURI0bo448/Vk5Ojpqbm1VbWxtyTE1NzVHn1AS53W55PJ6QV7QEe2SaWwMKBEzUrgMAAI4uroJMQ0ODPvnkEw0cOFDjx49XSkqKSkpKrP3l5eWqqKhQQUGBjVUeFgwykuSnVwYAgJizdWjprrvu0lVXXaUhQ4Zo9+7duueee5SUlKSZM2fK6/Xqpptu0ty5c9WnTx95PB7dfvvtKigoiIs7liQpNflwDmxqaVOaK+k4RwMAgEizNch8/vnnmjlzpvbv36/+/fvr4osv1vr169W/f39J0kMPPSSn06np06fL7/erqKhIixYtsrPkEMlJTiU7HWoNGDWxlgwAADHnMMb06MkdPp9PXq9XdXV1UZkvM/qeV9Xgb9XauyZpaL9eET8/AACnohP9+x1Xc2QSkbWWDD0yAADEHEEmTO5kVvcFAMAuBJkwuVndFwAA2xBkwpSazOq+AADYhSATpuAt1wwtAQAQewSZMKV3BJlDLa02VwIAwKmHIBOm4Oq+h5rpkQEAINYIMmFKCwYZ5sgAABBzBJkwBYMMk30BAIg9gkyYgpN9DzUTZAAAiDWCTJiCQeYgQQYAgJgjyISJOTIAANiHIBMm5sgAAGAfgkyYUpkjAwCAbQgyYUpnaAkAANsQZMJk3bVEkAEAIOYIMmGyJvsytAQAQMwRZMKUytASAAC2IciEiQXxAACwD0EmTMGnX3P7NQAAsUeQCRML4gEAYB+CTJg6z5ExxthcDQAApxaCTJiCc2SMkfytAZurAQDg1EKQCVNwaEliwi8AALFGkAlTktMhV3J7MzJPBgCA2CLIRAATfgEAsAdBJgJY3RcAAHsQZCKA5y0BAGAPgkwE0CMDAIA9CDIRQI8MAAD2IMhEQLBHhscUAAAQWwSZCAiu7nuQoSUAAGKKIBMBPAEbAAB7EGQiIJ11ZAAAsAVBJgKCPTLMkQEAILYIMhGQyu3XAADYgiATAcG7lg7SIwMAQEwRZCIgzdXejE30yAAAEFMEmQhIcyVLYrIvAACxRpCJAJ5+DQCAPQgyEcCzlgAAsAdBJgKCc2TokQEAILYIMhGQltIxR4YeGQAAYoogEwE8/RoAAHsQZCKAOTIAANiDIBMB6S6efg0AgB0IMhGQ3mloqS1gbK4GAIBTB0EmAnq5k63fmScDAEDsxE2QWbBggRwOh+bMmWNta2pqUnFxsfr27auMjAxNnz5dNTU19hV5DO5kp5yO9t8PNrfaWwwAAKeQuAgyGzdu1O9+9zuNHTs2ZPudd96pF198Uc8++6xKS0u1e/duTZs2zaYqj83hcKhXx2MKDvrpkQEAIFZsDzINDQ2aNWuWfv/736t3797W9rq6Oi1ZskQPPvigLrvsMo0fP15Lly7VP//5T61fv97Gio8u3d0+T6aRHhkAAGLG9iBTXFysK6+8UoWFhSHby8rK1NLSErI9Pz9fgwcP1rp16455Pr/fL5/PF/KKhfRgjwx3LgEAEDPJX35I9KxYsULvvvuuNm7ceMS+6upquVwuZWVlhWzPzs5WdXX1Mc85f/583XfffZEu9UsF71xq9NMjAwBArNjWI1NZWak77rhDTz/9tFJTUyN23nnz5qmurs56VVZWRuzcx9OLHhkAAGLOtiBTVlamPXv26Nxzz1VycrKSk5NVWlqqRx99VMnJycrOzlZzc7Nqa2tDPldTU6OcnJxjntftdsvj8YS8YiE4R4YgAwBA7Ng2tDR58mRt2bIlZNuNN96o/Px8/ehHP1JeXp5SUlJUUlKi6dOnS5LKy8tVUVGhgoICO0o+rsM9MgwtAQAQK7YFmczMTI0ePTpkW69evdS3b19r+0033aS5c+eqT58+8ng8uv3221VQUKCJEyfaUfJxHZ4jQ48MAACxYutk3y/z0EMPyel0avr06fL7/SoqKtKiRYvsLuuoDj9viR4ZAABiJa6CzNq1a0Pep6amauHChVq4cKE9BZ2E9I7HFNAjAwBA7Ni+jkxP0YseGQAAYo4gEyHBBfEauWsJAICYIchESK+O268P0SMDAEDMEGQiJM3FHBkAAGKNIBMhzJEBACD2CDIRwhwZAABijyATIcE5Mgd5aCQAADFDkIkQemQAAIg9gkyEBFf2PUSQAQAgZggyERJ8aGRzW0DNrQGbqwEA4NRAkImQtI4eGYleGQAAYoUgEyGuZKdcSe3N2cgt2AAAxARBJoLS3awlAwBALBFkIig9pT3IsLovAACxQZCJoHR38BZsemQAAIgFgkwE9eIWbAAAYoogE0EsigcAQGwRZCKIxxQAABBbBJkICvbINBBkAACICYJMBPXqmOx7kKElAABigiATQRkdQ0v0yAAAEBsEmQjKcKdIkuqbCDIAAMQCQSaCMlI77lqiRwYAgJggyERQppvJvgAAxBJBJoKCPTINDC0BABATBJkICt61VE+PDAAAMUGQiaAMN3NkAACIJYJMBGWmMkcGAIBYIshEULBHhjkyAADEBkEmgoJzZJrbAvK3srovAADRRpCJoGCPjCQ1+gkyAABEG0EmgpKcDqW7Oh5TwPASAABRR5CJsAzrFuwWmysBAKDnI8hEGBN+AQCIHYJMhFnPW2omyAAAEG0EmQizhpbokQEAIOoIMhGWwYMjAQCIGYJMhPHgSAAAYocgE2E8bwkAgNghyERYBk/ABgAgZggyEcbQEgAAsUOQibBMJvsCABAzBJkI60WQAQAgZggyEcbt1wAAxA5BJsKYIwMAQOwQZCIs050iiR4ZAABigSATYb3cSZIIMgAAxAJBJsIyUw/3yAQCxuZqAADo2WwNMosXL9bYsWPl8Xjk8XhUUFCgV155xdrf1NSk4uJi9e3bVxkZGZo+fbpqampsrPjLZXbMkTFGauAJ2AAARJWtQWbQoEFasGCBysrKtGnTJl122WWaOnWqtm3bJkm688479eKLL+rZZ59VaWmpdu/erWnTptlZ8pdKTUmSO7m9WX2HWmyuBgCAns1hjDnp8Y/Kyko5HA4NGjRIkvTOO+9o+fLlGjVqlG6++eawCurTp48eeOABfetb31L//v21fPlyfetb35Ik/etf/9LIkSO1bt06TZw48YTO5/P55PV6VVdXJ4/HE1ZtJ+r8X72mvfV+vfz/LtGo3NhcEwCAnuRE/353q0fmv/7rv/TGG29Ikqqrq3X55ZfrnXfe0U9+8hP9/Oc/71bBbW1tWrFihRobG1VQUKCysjK1tLSosLDQOiY/P1+DBw/WunXrjnkev98vn88X8oo1T8fwkq+JHhkAAKKpW0Fm69atuuCCCyRJzzzzjEaPHq1//vOfevrpp7Vs2bKTOteWLVuUkZEht9ut2bNna+XKlRo1apSqq6vlcrmUlZUVcnx2draqq6uPeb758+fL6/Var7y8vJP9emHzpLVP+GVoCQCA6OpWkGlpaZHb7ZYkvfbaa/rmN78pqb3HpKqq6qTOdeaZZ2rz5s3asGGDbrnlFl1//fXavn17d8qSJM2bN091dXXWq7Kystvn6i5Px51LPhbFAwAgqpK786GzzjpLTzzxhK688kqtWbNGv/jFLyRJu3fvVt++fU/qXC6XS8OHD5ckjR8/Xhs3btQjjzyiGTNmqLm5WbW1tSG9MjU1NcrJyTnm+dxutxWy7EKPDAAAsdGtHpnf/OY3+t3vfqdJkyZp5syZGjdunCTphRdesIacuisQCMjv92v8+PFKSUlRSUmJta+8vFwVFRUqKCgI6xrRxhwZAABio1s9MpMmTdK+ffvk8/nUu3dva/vNN9+s9PT0Ez7PvHnzNGXKFA0ePFj19fVavny51q5dq1dffVVer1c33XST5s6dqz59+sjj8ej2229XQUHBCd+xZJfDPTIMLQEAEE3dCjKHDh2SMcYKMZ999plWrlypkSNHqqio6ITPs2fPHl133XWqqqqS1+vV2LFj9eqrr+ryyy+XJD300ENyOp2aPn26/H6/ioqKtGjRou6UHFPBOTJ1DC0BABBV3QoyU6dO1bRp0zR79mzV1tZqwoQJSklJ0b59+/Tggw/qlltuOaHzLFmy5Lj7U1NTtXDhQi1cuLA7ZdrGk8bQEgAAsdCtOTLvvvuuLrnkEknSc889p+zsbH322Wd68skn9eijj0a0wERk3bVEjwwAAFHVrSBz8OBBZWZmSpL+/ve/a9q0aXI6nZo4caI+++yziBaYiKw5Mtx+DQBAVHUryAwfPlyrVq1SZWWlXn31VV1xxRWS2ue8xOoxAPHMumuJHhkAAKKqW0Hm7rvv1l133aWhQ4fqggsusG6H/vvf/65zzjknogUmosM9MgQZAACiqVuTfb/1rW/p4osvVlVVlbWGjCRNnjxZ11xzTcSKS1TBOTIN/lYFAkZOp8PmigAA6Jm6FWQkKScnRzk5Ofr8888lSYMGDQp7MbyeIrNjaMkYqd7fKm9HDw0AAIisbg0tBQIB/fznP5fX69WQIUM0ZMgQZWVl6Re/+IUCgUCka0w4qSlJcie3Ny3zZAAAiJ5u9cj85Cc/0ZIlS7RgwQJddNFFkqS33npL9957r5qamvSrX/0qokUmIk9aivbW+5knAwBAFHUryPzpT3/SH/7wB+up15I0duxYnXbaabr11lsJMmq/c2lvvZ/HFAAAEEXdGlo6cOCA8vPzj9ien5+vAwcOhF1UTxC8c4nHFAAAED3dCjLjxo3T448/fsT2xx9/XGPHjg27qJ7AWt2XoSUAAKKmW0NL999/v6688kq99tpr1hoy69atU2VlpV5++eWIFpioDj8BmyADAEC0dKtH5qtf/ao+/PBDXXPNNaqtrVVtba2mTZumbdu26amnnop0jQmJ1X0BAIi+bq8jk5ube8Sk3vfff19LlizR//7v/4ZdWKLLSmeODAAA0datHhl8ud7pLknSFwcJMgAARAtBJkqyrCDTbHMlAAD0XASZKMnqmOxbS48MAABRc1JzZKZNm3bc/bW1teHU0qP07tURZA7RIwMAQLScVJDxer1fuv+6664Lq6CeIji0VNtIjwwAANFyUkFm6dKl0aqjxwlO9q33t6qlLaCUJEbxAACINP66RklwHRmJeTIAAEQLQSZKkpOcVpipY54MAABRQZCJot69WEsGAIBoIshEkbWWTCM9MgAARANBJop6p7OWDAAA0USQiSJrUTzmyAAAEBUEmSjK4nlLAABEFUEmioJrydTyvCUAAKKCIBNFwccUfMHqvgAARAVBJoq8zJEBACCqCDJRdHhoiR4ZAACigSATRb2tyb70yAAAEA0EmSjK6lhH5ouDLTLG2FwNAAA9D0EmioKPKGhuDehQS5vN1QAA0PMQZKKolytJruT2Jt7fwPASAACRRpCJIofDoX4dvTL7ed4SAAARR5CJsr4ZbknS/ga/zZUAANDzEGSirG9GR48MQ0sAAEQcQSbK+vbq6JFhaAkAgIgjyERZP6tHhqElAAAijSATZdbQEj0yAABEHEEmyoJDS/vokQEAIOIIMlHGZF8AAKKHIBNl/YK3XzfSIwMAQKQRZKKsc48Mz1sCACCyCDJR1qdjZd/WgJHvUKvN1QAA0LMQZKLMnZykTHeyJGkfw0sAAEQUQSYGmPALAEB02Bpk5s+fr/PPP1+ZmZkaMGCArr76apWXl4cc09TUpOLiYvXt21cZGRmaPn26ampqbKq4e3jeEgAA0WFrkCktLVVxcbHWr1+vNWvWqKWlRVdccYUaGxutY+688069+OKLevbZZ1VaWqrdu3dr2rRpNlZ98vp2zJPZx6J4AABEVLKdF1+9enXI+2XLlmnAgAEqKyvTpZdeqrq6Oi1ZskTLly/XZZddJklaunSpRo4cqfXr12vixIl2lH3Sgj0yBxhaAgAgouJqjkxdXZ0kqU+fPpKksrIytbS0qLCw0DomPz9fgwcP1rp16456Dr/fL5/PF/KyW/B5S6zuCwBAZMVNkAkEApozZ44uuugijR49WpJUXV0tl8ulrKyskGOzs7NVXV191PPMnz9fXq/XeuXl5UW79C81ILO9R2ZPfZPNlQAA0LPETZApLi7W1q1btWLFirDOM2/ePNXV1VmvysrKCFXYfQM8qZKkGh89MgAARJKtc2SCbrvtNr300kt68803NWjQIGt7Tk6OmpubVVtbG9IrU1NTo5ycnKOey+12y+12R7vkk2L1yPjokQEAIJJs7ZExxui2227TypUr9frrr2vYsGEh+8ePH6+UlBSVlJRY28rLy1VRUaGCgoJYl9tt2R09Mnsb/AoEeEwBAACRYmuPTHFxsZYvX67nn39emZmZ1rwXr9ertLQ0eb1e3XTTTZo7d6769Okjj8ej22+/XQUFBQlzx5Ik9e/okWlpM/riYLN1FxMAAAiPrUFm8eLFkqRJkyaFbF+6dKluuOEGSdJDDz0kp9Op6dOny+/3q6ioSIsWLYpxpeFJSXKqby+X9jc2a0+9nyADAECE2BpkTuRp0KmpqVq4cKEWLlwYg4qiZ4AnVfsbm1Xja9LIgR67ywEAoEeIm7uWerrDE365cwkAgEghyMRItoe1ZAAAiDSCTIxks5YMAAARR5CJEVb3BQAg8ggyMcLqvgAARB5BJkZY3RcAgMgjyMQIq/sCABB5BJkY6bq6LwAACB9BJkZSkpxWmKmqY3gJAIBIIMjEUK63fXhpd+0hmysBAKBnIMjEUG5WmiSCDAAAkUKQiSEryDC0BABARBBkYigYZP5NjwwAABFBkImh07KYIwMAQCQRZGKIOTIAAEQWQSaGgkFmT71fza0Bm6sBACDxEWRiqG8vl1zJThkj1fCoAgAAwkaQiSGHw8FaMgAARBBBJsYO34JNkAEAIFwEmRg7POGXoSUAAMJFkImxYJD5/At6ZAAACBdBJsYGWUHmoM2VAACQ+AgyMTa4b7okqeIAQQYAgHARZGJsSEeQ+fcXh9TaxloyAACEgyATY9mZqXIlO9UaMKri4ZEAAISFIBNjTqdDeb3b58l8tp/hJQAAwkGQscGQvr0kSZ8daLS5EgAAEhtBxgaD+3RM+KVHBgCAsBBkbBCc8MvQEgAA4SHI2MDqkeEWbAAAwkKQscGQTmvJGGNsrgYAgMRFkLHBoN7pcjikBn+rDjQ2210OAAAJiyBjg9SUJA30pEqSdu3nziUAALqLIGOT0/tnSJI+2UOQAQCguwgyNhk+oCPI7G2wuRIAABIXQcYmX+nfvijex3sIMgAAdBdBxiZf6U+PDAAA4SLI2CQ4tFRx4KD8rW02VwMAQGIiyNikf6Zbme5kBYy0ax8L4wEA0B0EGZs4HA59hQm/AACEhSBjI2ueDBN+AQDoFoKMjb4yoOPOJXpkAADoFoKMjUYMyJQklVfX21wJAACJiSBjo/yB7UHm4z0Nam4N2FwNAACJhyBjo9Oy0uRJTVZrwLAwHgAA3UCQsZHD4VD+QI8kaUeVz+ZqAABIPAQZm40iyAAA0G0EGZuN7Jgns6OaIAMAwMmyNci8+eabuuqqq5SbmyuHw6FVq1aF7DfG6O6779bAgQOVlpamwsJCffTRR/YUGyUjrR6ZehljbK4GAIDEYmuQaWxs1Lhx47Rw4cKj7r///vv16KOP6oknntCGDRvUq1cvFRUVqampKcaVRs+I7Ew5HdKBxmbtrffbXQ4AAAkl2c6LT5kyRVOmTDnqPmOMHn74Yf30pz/V1KlTJUlPPvmksrOztWrVKn3nO9+JZalRk5qSpNP7Z+jjPQ3aurtOl3lS7S4JAICEEbdzZHbu3Knq6moVFhZa27xeryZMmKB169Yd83N+v18+ny/kFe/GDvJKkjZX1tlcCQAAiSVug0x1dbUkKTs7O2R7dna2te9o5s+fL6/Xa73y8vKiWmcknJOXJUl6v7LW1joAAEg0cRtkumvevHmqq6uzXpWVlXaX9KXGBYPM57VM+AUA4CTEbZDJycmRJNXU1IRsr6mpsfYdjdvtlsfjCXnFu/wcj1zJTtUebNFn+w/aXQ4AAAkjboPMsGHDlJOTo5KSEmubz+fThg0bVFBQYGNlkedKduqs3PbA9f7ntfYWAwBAArE1yDQ0NGjz5s3avHmzpPYJvps3b1ZFRYUcDofmzJmjX/7yl3rhhRe0ZcsWXXfddcrNzdXVV19tZ9lRMW5QliTpvYpaW+sAACCR2Hr79aZNm/S1r33Nej937lxJ0vXXX69ly5bphz/8oRobG3XzzTertrZWF198sVavXq3U1J53i/LZHfNkNjPhFwCAE+YwPXx2qc/nk9frVV1dXVzPl6nYf1CXPvCGUpIc+uCeIqW5kuwuCQAA25zo3++4nSNzqsnrk6aB3lS1tBm9W/GF3eUAAJAQCDJxwuFwaMKwPpKk9Z/ut7kaAAASA0Emjkw4va8kacOnB2yuBACAxECQiSMTO4LM5spaNbW02VwNAADxjyATR4b2TdeATLea2wLMkwEA4AQQZOKIw+GwemXWfcI8GQAAvgxBJs5cfEY/SVLph3ttrgQAgPhHkIkzk0b0lyR98Hmd9jX4ba4GAID4RpCJMwM8qdZzl96kVwYAgOMiyMShSWe298q8UU6QAQDgeAgycehrZw6QJP3jo71qC/ToJ0gAABAWgkwcOjsvS1npKao92KKNu1gcDwCAYyHIxKHkJKcuH5ktSXp5S5XN1QAAEL8IMnHq62MHSpJe2VrN8BIAAMdAkIlTF32lnzypydpb79cmhpcAADgqgkycciU7dfmoHEkMLwEAcCwEmTj2jXHtw0svflCl5taAzdUAABB/CDJx7JLh/TQg060Djc0q2VFjdzkAAMQdgkwcS05yavr4QZKkZzZV2lwNAADxhyAT5759Xp6k9odIVtc12VwNAADxhSAT54b166ULhvZRwEh/2UivDAAAnRFkEsCsiYMlSU+t36WmljabqwEAIH4QZBLA18cMVK43VfsamvXC+7vtLgcAgLhBkEkAKUlO3XDRUEnSkn/slDGs9AsAgESQSRgzzh+sXq4kldfU67Ude+wuBwCAuECQSRDetBRdd+FQSdKDaz5UgOcvAQBAkEkk/33p6cp0J2tHlU+vbK22uxwAAGxHkEkgWeku3XTJMEnSb9eU89gCAMApjyCTYG66eJj6Zbj06d5GLX17p93lAABgK4JMgslMTdGP/iNfkvRoyUes9gsAOKURZBLQ9HMH6dzBWWpsbtN9L27jdmwAwCmLIJOAnE6HfnH1aCU7HXpla7VWbf633SUBAGALgkyCOivXqzsmnyFJuvv5bfp37SGbKwIAIPYIMgnslklf0dl5WapvatWtT7/Lc5gAAKccgkwCS05y6tHvnKOs9BS9X1mrn67aynwZAMAphSCT4Ab3TdfjM8+V0yE9V/a5Fq39xO6SAACIGYJMD3DxGf30s2+MkiQ98Gq5nlq3y96CAACIEYJMD3HjRcN0+2XDJUk/e36bnlr/mc0VAQAQfQSZHmTu5SN040VDJUk/W7VVD675kDkzAIAejSDTgzgcDt39jVHWbdmPlnyk2//8nhr8rTZXBgBAdBBkehiHw6E7Lx+hX13TvmDeSx9U6ZuPv6Vtu+vsLg0AgIgjyPRQsyYM0V/+e6JyPKn6dG+jvvn427p/9b9YawYA0KMQZHqw8UP66G//72J9fUyO2gJGi9Z+osIHS/XXdz9XW4C5MwCAxOcwPXw2qM/nk9frVV1dnTwej93l2Gb11mrd88JW1fj8kqQR2Rn63iWn66pxuUpNSbK5OgAAQp3o32+CzCnkUHOblv5zpxav/UT1Te0TgPtluPSf5+Vp6tm5ys85tdsHABA/CDIdCDJHqjvYouXvVOjJdbtUVddkbR+RnaGis3J08fB+Omdwb7mSGXkEANiDINOBIHNsLW0Brdleo1Xv/Vtry/equS1g7evlStK5Q3pr3KAsjR3k1ZhBXuV4UuVwOGysGABwqiDIdCDInJi6Qy1as71Gb364V299vE8HGpuPOKaXK0nD+vfSsH4ZGtY3XTneNGV73Mr2pGpAplt9M9xKchJ0AADh61FBZuHChXrggQdUXV2tcePG6bHHHtMFF1xwQp8lyJy8QMBoe5VPmytr9cHntfrg8zp9WFOvL7vRyeGQMtzJ8qSmyJOWoszUjt9Tk+VOSVJqilPu5KP/TElyKsnpUJLToWSnQ86On+3vnUpySklOp7Ut+HI6HHJI7T8d7TUEf7e2ySFn5/ed9js79nf+bPCcwWMBALF3on+/k2NYU7f85S9/0dy5c/XEE09owoQJevjhh1VUVKTy8nINGDDA7vJ6JKfTodGneTX6NK+kIZIkf2ubKg8c1Kd7G7VzX6N27T+oPb4m1dQ3aY/Pr30NfgWMVN/UqvqmVv279pC9XyKCuoYgZ6dw5OgSmoLhSF3Ck7MjEDmdOkr4OnysOrY7nUe/RufgdURgs/YHtwX3dz0meP2Oa3Y5t9N59PpDQqEzGPaCNXa6pjqd7wTrd3YkR+uax2gf63wh1wg9T9fvdDiYHr32rt+xa12h1zsy9LbXHvreIYcczqN/Z6ejc7sRlIFwxX2PzIQJE3T++efr8ccflyQFAgHl5eXp9ttv149//OMv/Tw9MrHR2hbQgYPNqm9qle9QS/vPphb5DrWqvqlFTS0B+VvbrJ/+1oCaWg7/bG0zagsYtQYCajNSWyBgbWsLGLUZ0+kY074/YCQjBYyRUfvPgNER2+L7XzhOdV2DTeegfPQwFxpQu4bkzj2KoeHrOOfUiQW6I2p0Hj0cHxmij1Hzl4TLI2p0dqrtGDV3DrdWb2tHezjU8Uayrhfcp07HHH7v6HRs6Plkfa7rts49uh3X7DjJUa/Z+fNH2Rb8Lp3rOO41O7Ye+zsd2S7WVbvUaO3pVJdCPnN4f1a6SxnuyPaN9IgemebmZpWVlWnevHnWNqfTqcLCQq1bt+6on/H7/fL7/dZ7n88X9TohJSc5NSAzVQMy7a7k6ExHyLF+qj3gBINOMPiYQPu+QKd9pktQMtb2w59r60hQ7du6nNcc55yB49QT/FygU31WDcF62lPa4c+1/y7TqV6F1t31e3QNfV2vceT3Dx7T5Zo6XFNw+xHXVOg1Qr5X4Di1qus1j/Udjqyt6+e6fudA4Nj/jQOd6lSX953/e4QTmNv/6Ri1r7lN6kZi+vU1Y/RfEwbbcu24DjL79u1TW1ubsrOzQ7ZnZ2frX//611E/M3/+fN13332xKA8JxOFwKKnz/8sDREHXYHO04GQCXYJUl2B8tPft89MOnzsY+rqGuuP+DAnTXUP3kQH5iCDd5RzBABYwxw6AVo2B0BqOHzaPFaBPIlyGhP/2tus43PrvFNzXeZusbYeDaef3HadSxxmtbdZnO5+z4xpHnONErtmpRh1lW/B467Pm8PmOes1O23S8urtcs/OvnY89fK7DdSTZuFpHXAeZ7pg3b57mzp1rvff5fMrLy7OxIgCnimBgTiIwAzET10GmX79+SkpKUk1NTcj2mpoa5eTkHPUzbrdbbrc7FuUBAACbxfXSrS6XS+PHj1dJSYm1LRAIqKSkRAUFBTZWBgAA4kFc98hI0ty5c3X99dfrvPPO0wUXXKCHH35YjY2NuvHGG+0uDQAA2Czug8yMGTO0d+9e3X333aqurtbZZ5+t1atXHzEBGAAAnHrifh2ZcLGODAAAiedE/37H9RwZAACA4yHIAACAhEWQAQAACYsgAwAAEhZBBgAAJCyCDAAASFgEGQAAkLAIMgAAIGERZAAAQMKK+0cUhCu4cLHP57O5EgAAcKKCf7e/7AEEPT7I1NfXS5Ly8vJsrgQAAJys+vp6eb3eY+7v8c9aCgQC2r17tzIzM+VwOCJ2Xp/Pp7y8PFVWVvIMpyijrWODdo4N2jk2aOfYiGY7G2NUX1+v3NxcOZ3HngnT43tknE6nBg0aFLXzezwe/o8kRmjr2KCdY4N2jg3aOTai1c7H64kJYrIvAABIWAQZAACQsAgy3eR2u3XPPffI7XbbXUqPR1vHBu0cG7RzbNDOsREP7dzjJ/sCAICeix4ZAACQsAgyAAAgYRFkAABAwiLIAACAhEWQ6aaFCxdq6NChSk1N1YQJE/TOO+/YXVJce/PNN3XVVVcpNzdXDodDq1atCtlvjNHdd9+tgQMHKi0tTYWFhfroo49Cjjlw4IBmzZolj8ejrKws3XTTTWpoaAg55oMPPtAll1yi1NRU5eXl6f7774/2V4sb8+fP1/nnn6/MzEwNGDBAV199tcrLy0OOaWpqUnFxsfr27auMjAxNnz5dNTU1IcdUVFToyiuvVHp6ugYMGKAf/OAHam1tDTlm7dq1Ovfcc+V2uzV8+HAtW7Ys2l8vrixevFhjx461FgErKCjQK6+8Yu2nnSNvwYIFcjgcmjNnjrWNdo6Me++9Vw6HI+SVn59v7Y/7djY4aStWrDAul8v88Y9/NNu2bTPf+973TFZWlqmpqbG7tLj18ssvm5/85Cfmr3/9q5FkVq5cGbJ/wYIFxuv1mlWrVpn333/ffPOb3zTDhg0zhw4dso75j//4DzNu3Dizfv16849//MMMHz7czJw509pfV1dnsrOzzaxZs8zWrVvNn//8Z5OWlmZ+97vfxepr2qqoqMgsXbrUbN261WzevNl8/etfN4MHDzYNDQ3WMbNnzzZ5eXmmpKTEbNq0yUycONFceOGF1v7W1lYzevRoU1hYaN577z3z8ssvm379+pl58+ZZx3z66acmPT3dzJ0712zfvt089thjJikpyaxevTqm39dOL7zwgvnb3/5mPvzwQ1NeXm7+53/+x6SkpJitW7caY2jnSHvnnXfM0KFDzdixY80dd9xhbaedI+Oee+4xZ511lqmqqrJee/futfbHezsTZLrhggsuMMXFxdb7trY2k5uba+bPn29jVYmja5AJBAImJyfHPPDAA9a22tpa43a7zZ///GdjjDHbt283kszGjRutY1555RXjcDjMv//9b2OMMYsWLTK9e/c2fr/fOuZHP/qROfPMM6P8jeLTnj17jCRTWlpqjGlv05SUFPPss89ax+zYscNIMuvWrTPGtAdOp9NpqqurrWMWL15sPB6P1a4//OEPzVlnnRVyrRkzZpiioqJof6W41rt3b/OHP/yBdo6w+vp6c8YZZ5g1a9aYr371q1aQoZ0j55577jHjxo076r5EaGeGlk5Sc3OzysrKVFhYaG1zOp0qLCzUunXrbKwsce3cuVPV1dUhber1ejVhwgSrTdetW6esrCydd9551jGFhYVyOp3asGGDdcyll14ql8tlHVNUVKTy8nJ98cUXMfo28aOurk6S1KdPH0lSWVmZWlpaQto5Pz9fgwcPDmnnMWPGKDs72zqmqKhIPp9P27Zts47pfI7gMafqv/+2tjatWLFCjY2NKigooJ0jrLi4WFdeeeURbUE7R9ZHH32k3NxcnX766Zo1a5YqKiokJUY7E2RO0r59+9TW1hbyH0ySsrOzVV1dbVNViS3Ybsdr0+rqag0YMCBkf3Jysvr06RNyzNHO0fkap4pAIKA5c+booosu0ujRoyW1t4HL5VJWVlbIsV3b+cva8FjH+Hw+HTp0KBpfJy5t2bJFGRkZcrvdmj17tlauXKlRo0bRzhG0YsUKvfvuu5o/f/4R+2jnyJkwYYKWLVum1atXa/Hixdq5c6cuueQS1dfXJ0Q79/inXwOnouLiYm3dulVvvfWW3aX0WGeeeaY2b96suro6Pffcc7r++utVWlpqd1k9RmVlpe644w6tWbNGqampdpfTo02ZMsX6fezYsZowYYKGDBmiZ555RmlpaTZWdmLokTlJ/fr1U1JS0hEztmtqapSTk2NTVYkt2G7Ha9OcnBzt2bMnZH9ra6sOHDgQcszRztH5GqeC2267TS+99JLeeOMNDRo0yNqek5Oj5uZm1dbWhhzftZ2/rA2PdYzH40mI/9GLFJfLpeHDh2v8+PGaP3++xo0bp0ceeYR2jpCysjLt2bNH5557rpKTk5WcnKzS0lI9+uijSk5OVnZ2Nu0cJVlZWRoxYoQ+/vjjhPj3TJA5SS6XS+PHj1dJSYm1LRAIqKSkRAUFBTZWlriGDRumnJyckDb1+XzasGGD1aYFBQWqra1VWVmZdczrr7+uQCCgCRMmWMe8+eabamlpsY5Zs2aNzjzzTPXu3TtG38Y+xhjddtttWrlypV5//XUNGzYsZP/48eOVkpIS0s7l5eWqqKgIaectW7aEhMY1a9bI4/Fo1KhR1jGdzxE85lT/9x8IBOT3+2nnCJk8ebK2bNmizZs3W6/zzjtPs2bNsn6nnaOjoaFBn3zyiQYOHJgY/57Dni58ClqxYoVxu91m2bJlZvv27ebmm282WVlZITO2Eaq+vt6899575r333jOSzIMPPmjee+8989lnnxlj2m+/zsrKMs8//7z54IMPzNSpU496+/U555xjNmzYYN566y1zxhlnhNx+XVtba7Kzs821115rtm7dalasWGHS09NPmduvb7nlFuP1es3atWtDbqM8ePCgdczs2bPN4MGDzeuvv242bdpkCgoKTEFBgbU/eBvlFVdcYTZv3mxWr15t+vfvf9TbKH/wgx+YHTt2mIULF55yt6v++Mc/NqWlpWbnzp3mgw8+MD/+8Y+Nw+Ewf//7340xtHO0dL5ryRjaOVK+//3vm7Vr15qdO3eat99+2xQWFpp+/fqZPXv2GGPiv50JMt302GOPmcGDBxuXy2UuuOACs379ertLimtvvPGGkXTE6/rrrzfGtN+C/bOf/cxkZ2cbt9ttJk+ebMrLy0POsX//fjNz5kyTkZFhPB6PufHGG019fX3IMe+//765+OKLjdvtNqeddppZsGBBrL6i7Y7WvpLM0qVLrWMOHTpkbr31VtO7d2+Tnp5urrnmGlNVVRVynl27dpkpU6aYtLQ0069fP/P973/ftLS0hBzzxhtvmLPPPtu4XC5z+umnh1zjVPDd737XDBkyxLhcLtO/f38zefJkK8QYQztHS9cgQztHxowZM8zAgQONy+Uyp512mpkxY4b5+OOPrf3x3s4OY4wJv18HAAAg9pgjAwAAEhZBBgAAJCyCDAAASFgEGQAAkLAIMgAAIGERZAAAQMIiyAAAgIRFkAEAAAmLIAOgxxk6dKgefvhhu8sAEAMEGQBhueGGG3T11VdLkiZNmqQ5c+bE7NrLli1TVlbWEds3btyom2++OWZ1ALBPst0FAEBXzc3Ncrlc3f58//79I1gNgHhGjwyAiLjhhhtUWlqqRx55RA6HQw6HQ7t27ZIkbd26VVOmTFFGRoays7N17bXXat++fdZnJ02apNtuu01z5sxRv379VFRUJEl68MEHNWbMGPXq1Ut5eXm69dZb1dDQIElau3atbrzxRtXV1VnXu/feeyUdObRUUVGhqVOnKiMjQx6PR9/+9rdVU1Nj7b/33nt19tln66mnntLQoUPl9Xr1ne98R/X19dYxzz33nMaMGaO0tDT17dtXhYWFamxsjFJrAjhRBBkAEfHII4+ooKBA3/ve91RVVaWqqirl5eWptrZWl112mc455xxt2rRJq1evVk1Njb797W+HfP5Pf/qTXC6X3n77bT3xxBOSJKfTqUcffVTbtm3Tn/70J73++uv64Q9/KEm68MIL9fDDD8vj8VjXu+uuu46oKxAIaOrUqTpw4IBKS0u1Zs0affrpp5oxY0bIcZ988olWrVqll156SS+99JJKS0u1YMECSVJVVZVmzpyp7373u9qxY4fWrl2radOmiWfuAvZjaAlARHi9XrlcLqWnpysnJ8fa/vjjj+ucc87Rr3/9a2vbH//4R+Xl5enDDz/UiBEjJElnnHGG7r///pBzdp5vM3ToUP3yl7/U7NmztWjRIrlcLnm9XjkcjpDrdVVSUqItW7Zo586dysvLkyQ9+eSTOuuss7Rx40adf/75ktoDz7Jly5SZmSlJuvbaa1VSUqJf/epXqqqqUmtrq6ZNm6YhQ4ZIksaMGRNGawGIFHpkAETV+++/rzfeeEMZGRnWKz8/X1J7L0jQ+PHjj/jsa6+9psmTJ+u0005TZmamrr32Wu3fv18HDx484evv2LFDeXl5VoiRpFGjRikrK0s7duywtg0dOtQKMZI0cOBA7dmzR5I0btw4TZ48WWPGjNF//ud/6ve//72++OKLE28EAFFDkAEQVQ0NDbrqqqu0efPmkNdHH32kSy+91DquV69eIZ/btWuXvvGNb2js2LH6v//7P5WVlWnhwoWS2icDR1pKSkrIe4fDoUAgIElKSkrSmjVr9Morr2jUqFF67LHHdOaZZ2rnzp0RrwPAySHIAIgYl8ultra2kG3nnnuutm3bpqFDh2r48OEhr67hpbOysjIFAgH99re/1cSJEzVixAjt3r37S6/X1ciRI1VZWanKykpr2/bt21VbW6tRo0ad8HdzOBy66KKLdN999+m9996Ty+XSypUrT/jzAKKDIAMgYoYOHaoNGzZo165d2rdvnwKBgIqLi3XgwAHNnDlTGzdu1CeffKJXX31VN95443FDyPDhw9XS0qLHHntMn376qZ566ilrEnDn6zU0NKikpET79u076pBTYWGhxowZo1mzZundd9/VO++8o+uuu05f/epXdd55553Q99qwYYN+/etfa9OmTaqoqNBf//pX7d27VyNHjjy5BgIQcQQZABFz1113KSkpSaNGjVL//v1VUVGh3Nxcvf3222pra9MVV1yhMWPGaM6cOcrKypLTeez/CRo3bpwefPBB/eY3v9Ho0aP19NNPa/78+SHHXHjhhZo9e7ZmzJih/v37HzFZWGrvSXn++efVu3dvXXrppSosLNTpp5+uv/zlLyf8vTwej9588019/etf14gRI/TTn/5Uv/3tbzVlypQTbxwAUeEw3D8IAAASFD0yAAAgYRFkAABAwiLIAACAhEWQAQAACYsgAwAAEhZBBgAAJCyCDAAASFgEGQAAkLAIMgAAIGERZAAAQMIiyAAAgIT1/wG+zQm297K1vwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] diff --git a/docs_tutorial/contribution.html b/docs_tutorial/contribution.html index 511d321..bb64645 100644 --- a/docs_tutorial/contribution.html +++ b/docs_tutorial/contribution.html @@ -214,7 +214,11 @@ +

2D heat conduction

+
diff --git a/docs_tutorial/docs_contribution.html b/docs_tutorial/docs_contribution.html index 26eda00..b51ba00 100644 --- a/docs_tutorial/docs_contribution.html +++ b/docs_tutorial/docs_contribution.html @@ -214,7 +214,11 @@ +

2D heat conduction

+
diff --git a/docs_tutorial/installation.html b/docs_tutorial/installation.html index a80f683..1483bfc 100644 --- a/docs_tutorial/installation.html +++ b/docs_tutorial/installation.html @@ -214,7 +214,11 @@ +

2D heat conduction

+
diff --git a/genindex.html b/genindex.html index 1a2f9f0..11c90bb 100644 --- a/genindex.html +++ b/genindex.html @@ -213,7 +213,11 @@ +

2D heat conduction

+
diff --git a/intro.html b/intro.html index a406d83..6e2bc4a 100644 --- a/intro.html +++ b/intro.html @@ -215,7 +215,11 @@ +

2D heat conduction

+
diff --git a/objects.inv b/objects.inv index 33b79fa..5d4ad25 100644 Binary files a/objects.inv and b/objects.inv differ diff --git a/search.html b/search.html index 68f314a..7b3bb6c 100644 --- a/search.html +++ b/search.html @@ -215,7 +215,11 @@ +

2D heat conduction

+
diff --git a/searchindex.js b/searchindex.js index 8085902..a6333de 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["Tutorials/1. Geometry/Basic_domains", "Tutorials/1. Geometry/UKAEA SUT", "Tutorials/1. Geometry/different sampling", "Tutorials/1. Geometry/domain_creation", "Tutorials/1. Geometry/polygons_external_objects", "Tutorials/2. BC/1. dirichlet", "Tutorials/2. BC/2. pde", "Tutorials/3. Gradients/1. Gradients", "Tutorials/3. Gradients/2. higher derivative", "Tutorials/4. Dataset/1. basic", "Tutorials/5. FCNN/1. basic", "Tutorials/5. FCNN/2. test", "Tutorials/5. FCNN/3. model", "Tutorials/6. 2D heat conduction/1. model", "docs_tutorial/contribution", "docs_tutorial/docs_contribution", "docs_tutorial/installation", "intro"], "filenames": ["Tutorials/1. Geometry/Basic_domains.ipynb", "Tutorials/1. Geometry/UKAEA SUT.ipynb", "Tutorials/1. Geometry/different sampling.ipynb", "Tutorials/1. Geometry/domain_creation.ipynb", "Tutorials/1. Geometry/polygons_external_objects.ipynb", "Tutorials/2. BC/1. dirichlet.ipynb", "Tutorials/2. BC/2. pde.ipynb", "Tutorials/3. Gradients/1. Gradients.ipynb", "Tutorials/3. Gradients/2. higher derivative.ipynb", "Tutorials/4. Dataset/1. basic.ipynb", "Tutorials/5. FCNN/1. basic.ipynb", "Tutorials/5. FCNN/2. test.ipynb", "Tutorials/5. FCNN/3. model.ipynb", "Tutorials/6. 2D heat conduction/1. model.ipynb", "docs_tutorial/contribution.md", "docs_tutorial/docs_contribution.md", "docs_tutorial/installation.md", "intro.md"], "titles": ["Basic domain", "UKAEA SUT", "Basic sampling techniques", "Domain Basics", "Polygons and External Objects", "Dirichlet BC", "PDE constraint", "Gradient basics", "Gradients in DeepINN", "Training dataset", "Basics of network design", "Forward pass", "FCNN training", "FCNN training", "Contribution", "Documentation compilation", "Installation", "DeepINN"], "terms": {"thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16], "i": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17], "onli": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "valid": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "when": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "packag": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "instal": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "import": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15], "sy": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "path": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "append": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "two": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "folder": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "up": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "deepinn": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 16], "dp": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "us": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17], "default": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16], "backend": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "pytorch": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "2": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "0": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "1": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13], "cu117": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "t": [0, 3, 4, 7, 9, 10, 15], "space": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13], "r1": [0, 3, 9, 10, 12], "we": [0, 1, 3, 4, 7, 13], "need": [0, 2, 3, 4, 7, 13], "one": [0, 3, 4, 15, 16], "dimension": [0, 3], "interv": [0, 3, 9, 10, 12], "5": [0, 2, 3, 4, 7, 10, 11, 12, 13], "from": [1, 4, 7, 15], "geometri": [1, 2, 3, 4], "domain": [1, 2, 4, 5, 6, 7, 9, 10, 12, 13], "domain2d": [1, 3, 4], "shapely_polygon": [1, 4], "shapelypolygon": [1, 4], "polygon": 1, "creator": [1, 4], "domain3d": [1, 4], "trimesh_polyhedron": [1, 4], "trimeshpolyhedron": [1, 4], "torch": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "r3": [1, 4], "p": [1, 4, 15, 16], "file_nam": [1, 4], "home": [1, 2, 3, 4, 9, 10, 12], "hell": [1, 2, 3, 4, 9, 10, 12], "desktop": [1, 2, 3, 4, 9, 10, 12], "phd": 1, "work": [1, 4], "pinn": [1, 17], "10": [1, 2, 5, 6, 7, 9, 10, 12, 13], "june": 1, "2022": 1, "4": [1, 4, 7, 9, 16], "week": 1, "3": [1, 4, 7, 11], "nvidia": [1, 16], "modulu": 1, "7": 1, "modifi": 1, "fourier": 1, "sampl": [1, 3, 5, 6, 7], "adapt": 1, "activ": [1, 11, 12, 13, 14], "stl_file": 1, "stl": [1, 4], "file_typ": [1, 4], "just": [1, 14], "boundari": [1, 2, 3, 4, 5, 12, 13], "p_sampler": [1, 4], "sampler": [1, 2, 3, 4, 5, 6, 7, 9, 10, 12], "lhssampler": [1, 2], "n_point": [1, 2, 3, 4, 5, 6, 7, 9, 10, 12], "200": 1, "randomuniformsampl": [1, 2, 4, 5, 6, 7], "util": [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13], "scatter": [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13], "10000": 1, "filter_fn": [1, 2, 5, 9, 10, 12, 13], "lambda": [1, 2, 3, 5, 6, 7, 9, 10, 12, 13], "ab": 1, "9": [1, 3, 4], "matplotlib": [1, 5, 6, 7, 12, 13], "pyplot": [1, 5, 6, 7, 12, 13], "plt": [1, 5, 6, 7, 12, 13], "p_point": 1, "sample_point": [1, 5, 6, 7, 9], "as_tensor": [1, 5, 6, 7, 9], "detach": 1, "cpu": 1, "numpi": [1, 13], "fig": 1, "figur": [1, 12, 13], "ax": 1, "add_subplot": 1, "project": [1, 4, 15], "3d": [1, 4], "set_ylim": 1, "The": [1, 3, 4, 5, 6, 7, 14, 15, 16], "last": [1, 3, 4, 15], "point": [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14], "tutori": [1, 2, 3, 4, 9, 10, 12, 15, 16], "possibl": [1, 3, 4], "transform": [1, 4], "either": [1, 4], "slice": [1, 4], "plane": [1, 4], "also": [1, 3, 4, 15], "function": [1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13], "implement": [1, 3, 4], "trimesh": [1, 4], "mai": [1, 2, 3, 4], "problem": [1, 4, 17], "should": [1, 3, 4, 9, 10, 14], "first": [1, 4, 7, 9, 10, 12, 16], "research": [1, 4], "2d": [1, 4, 5, 6, 13], "which": [1, 3, 4, 7, 14], "most": [1, 4], "time": [1, 3, 4, 12, 13, 16], "less": [1, 4], "expens": [1, 4], "For": [1, 3, 4, 15], "have": [1, 3, 4], "choos": [1, 4], "how": [1, 4], "want": [1, 3, 4, 14, 15], "creat": [1, 2, 3, 4, 7, 14, 15, 16], "represent": [1, 4], "here": [1, 3, 4, 7, 14, 15, 16], "same": [1, 3, 4, 7, 14], "new_spac": [1, 4], "r2": [1, 2, 3, 4, 5, 6, 7, 13], "new": [1, 4, 15], "object": [1, 3, 8], "p_z": 1, "slice_with_plan": [1, 4], "plane_origin": [1, 4], "plane_norm": [1, 4], "100": [1, 2, 3, 4, 5, 6, 7, 13], "1000": 1, "p_x": 1, "325": 1, "25": [1, 2], "05": 1, "r": [2, 3, 5, 6, 7, 14], "parallelogram": [2, 3, 4, 5, 6, 7, 13], "unit": [2, 3, 13], "squar": [2, 3, 13], "c": [2, 3, 5, 6, 7, 13], "circl": [2, 3], "random_r": 2, "50": [2, 3, 5, 9, 10, 12, 13], "random": [2, 3, 5, 6, 7, 9, 10, 12], "grid_c": 2, "gridsampl": [2, 3, 4], "densiti": [2, 3, 4], "grid": [2, 9, 10, 12, 13], "intersect": [2, 3], "500": [2, 12], "random_intersect": 2, "repo": [2, 3, 4, 9, 10, 12, 14, 15], "domainoper": [2, 3], "sampler_help": [2, 3], "py": [2, 3, 4, 9, 10, 12, 14], "userwarn": [2, 3, 4, 9, 10, 12], "Will": [2, 3, 9, 10, 12], "oper": [2, 4, 7], "loop": [2, 3], "over": [2, 3], "all": [2, 3, 4, 15], "input": [2, 3, 7, 9, 10, 11], "paramet": [2, 3], "total": [2, 3], "slow": [2, 3], "down": [2, 3], "train": [2, 3, 4], "warn": [2, 3, 9, 10, 12], "f": [2, 3, 15, 16], "163": [2, 3], "cut": [2, 3], "107": [2, 3], "exact": [2, 3], "volum": [2, 3, 4], "known": [2, 3, 15], "estim": [2, 3], "domain_a": [2, 3], "domain_b": [2, 3], "If": [2, 3, 4, 7, 14, 15], "you": [2, 3, 4, 9, 10, 12, 13, 14, 15, 16], "set_volum": [2, 3], "right_boundari": 2, "left_boundari": [2, 5], "sign": 2, "In": [3, 15], "file": [3, 4, 14], "explain": [3, 4], "usag": 3, "class": [3, 4, 7], "everi": 3, "child": 3, "main": 3, "follow": [3, 15, 16], "method": [3, 4], "properti": [3, 4], "contain": [3, 16], "check": [3, 8], "lai": 3, "insid": [3, 4], "comput": [3, 4, 7], "set": 3, "bounding_box": 3, "get": 3, "bound": [3, 4], "box": [3, 4], "given": [3, 9, 10, 12], "return": [3, 4, 7, 8, 9, 10, 12, 13], "itself": 3, "know": 3, "normal": [3, 4, 11, 12, 13], "vector": [3, 4], "But": [3, 4], "ha": [3, 4], "explicit": 3, "document": 3, "each": [3, 16], "see": 3, "doc": [3, 14, 15], "some": 3, "pre": [3, 4, 16], "ar": [3, 4, 7, 9, 10, 12, 13, 15], "focu": 3, "now": [3, 4, 14, 16], "creation": [3, 4], "differ": [3, 4], "To": [3, 4, 15], "belong": 3, "definit": 3, "were": 3, "part": [3, 4], "previou": 3, "interval_sampl": 3, "plot": [3, 12, 13], "someth": 3, "dpi": [3, 9, 10, 12, 13], "300": 3, "save": 3, "true": [3, 7, 8, 9, 10, 11, 12, 13], "r_bound": 3, "c_bound": 3, "would": 3, "nice": 3, "look": [3, 4], "directli": 3, "r_sampler": 3, "c_sampler": 3, "venv": [3, 4, 14, 15], "lib": [3, 4], "python3": [3, 4, 14, 15], "site": [3, 4, 15], "504": [3, 4], "meshgrid": [3, 4], "an": [3, 4, 7, 15, 16], "upcom": [3, 4], "releas": [3, 4, 16], "requir": [3, 4, 14], "pass": [3, 4, 7], "index": [3, 4], "argument": [3, 4], "trigger": [3, 4], "intern": [3, 4], "aten": [3, 4], "src": [3, 4], "nativ": [3, 4], "tensorshap": [3, 4], "cpp": [3, 4], "3483": [3, 4], "_vf": [3, 4], "tensor": [3, 4, 5, 8, 9, 10, 11, 12, 13], "kwarg": [3, 4], "type": [3, 4], "ignor": [3, 4], "attr": [3, 4], "defin": [3, 4, 7], "134": [3, 4], "dimens": [3, 4, 5], "other": [3, 4], "than": [3, 4], "revers": [3, 4], "shape": [3, 4, 13], "deprec": [3, 4], "throw": [3, 4], "error": [3, 4, 13], "futur": [3, 4], "consid": [3, 4], "mt": [3, 4], "transpos": [3, 4], "batch": [3, 4], "matric": [3, 4], "permut": [3, 4], "arang": [3, 4], "ndim": [3, 4], "3571": [3, 4], "bary_coord": [3, 4], "stack": [3, 4], "y": [3, 4, 7, 8, 9, 10, 12, 13], "reshap": [3, 4], "wai": [3, 4], "until": 3, "simpl": [3, 5, 6, 7, 9, 10, 12, 13, 14], "complex": [3, 4], "union": 3, "A": [3, 9, 10, 12, 13], "cup": 3, "b": 3, "cap": 3, "setminu": 3, "cartesian": 3, "product": 3, "cdot": 3, "aspect": 3, "previous": [3, 4], "mention": [3, 4], "can": [3, 4, 9, 10, 12, 13, 15, 16], "arbitrari": 3, "number": 3, "possibli": 3, "becom": 3, "costli": 3, "union_domain": 3, "intersection_domain": 3, "cut_domain": 3, "again": [3, 4, 7, 9, 10, 12], "call": [3, 4], "sinc": 3, "voluem": 3, "alwai": [3, 4, 13], "valu": 3, "correspond": 3, "union_sampl": 3, "inter_sampl": 3, "cut_sampl": 3, "142": 3, "30": 3, "boundary_a": 3, "bounadry_b": 3, "cylind": 3, "exampl": [3, 4], "abov": 3, "product_sampl": 3, "20": [3, 9, 10, 12], "variabl": [3, 4], "e": 3, "g": 3, "grow": 3, "rotat": 3, "end": 3, "radiu": 3, "origin": 3, "right": [3, 15], "depend": [3, 4, 14], "anoth": 3, "so": 3, "solut": [3, 16], "stai": [3, 4], "replac": 3, "desir": 3, "These": [3, 15], "like": [3, 4], "appli": 3, "new_domain": 3, "thank": 4, "soft": [4, 15], "polyhedron": 4, "addit": 4, "exist": [4, 15], "thei": 4, "combin": 4, "featur": 4, "mean": 4, "what": 4, "chang": 4, "vertic": 4, "find": [4, 9, 10, 12], "under": 4, "construct": 4, "through": 4, "your": [4, 15], "own": 4, "yourself": 4, "constructor": 4, "befor": 4, "therefor": 4, "pointsampl": 4, "next": 4, "sai": [4, 7], "side": 4, "simplex": 4, "face": 4, "show": 4, "pde": [4, 7, 9, 10, 17], "alreadi": 4, "support": [4, 16], "ascii": 4, "obj": 4, "mani": 4, "more": [4, 7, 9, 10, 12, 13, 15], "do": [4, 7], "specifi": 4, "l_plate": 4, "where": 4, "l": 4, "useabl": 4, "let": [5, 6, 7], "u": [5, 6, 7, 15], "make": [5, 6, 7], "rectangl": [5, 6, 7], "stencil": [5, 6, 7], "collocation_point": [5, 6, 7], "without": 5, "filter": [5, 9, 10, 12], "bc_point": 5, "constraint": [5, 7, 8, 9, 10, 12, 13], "dirichletbc": [5, 9, 10, 12, 13], "geom": [5, 6, 7, 9, 10, 12, 13], "sampling_strategi": [5, 6, 7, 9, 10, 12, 13], "no_point": [5, 6, 7, 9, 10, 12, 13], "bc_points_right": 5, "sampler_object": [5, 6, 7, 9, 10, 12, 13], "manual": [5, 7], "bc_points_sampl": 5, "size": [5, 6, 7, 8, 9, 10, 16], "bc_points_right_sampl": 5, "label": [5, 9, 10, 12, 13], "unsqueez": [5, 6, 7, 9], "add": 5, "result": [5, 7], "bc_points_sampled_label": 5, "sample_label": [5, 6, 7, 9], "bc_points_sampled_right_label": 5, "variat": [5, 6, 7], "base": [5, 6, 7], "provid": [5, 6, 7], "cmap": [5, 6, 7, 13], "get_cmap": [5, 6, 7, 13], "plasma": [5, 6, 7, 13], "colorbar": [5, 6, 7, 13], "0x7fe83c7ed3a0": 5, "0x7fe83c6df730": 5, "collcoc": [6, 7], "collocation_points_sampl": [6, 7], "collocation_points_label": [6, 7], "bc": [6, 7, 12, 13], "0x7ff085fec070": 6, "nn": [7, 11, 12, 13], "requires_grad": [7, 8, 9, 10], "print": [7, 8], "grad_fn": [7, 8, 10, 11], "addbackward0": 7, "frac": 7, "dy": 7, "dx": 7, "2x": 7, "calcul": 7, "autograd": 7, "grad": 7, "create_graph": 7, "retain_graph": 7, "mulbackward0": 7, "jacobian": [7, 8, 9, 10, 12, 13], "jacobian_matrix": 7, "graph": [7, 9, 10], "investig": 7, "whether": 7, "confirm": [7, 14], "both": [7, 9, 10], "neural": [7, 9, 10, 17], "network": [7, 9, 17], "demonstr": 7, "net": [7, 11, 12, 13], "modul": 7, "def": [7, 8, 9, 10, 12, 13], "__init__": 7, "self": [7, 9, 10, 12], "super": 7, "linear": [7, 11, 12, 13], "automat": 7, "weight": [7, 11], "initialis": [7, 11, 12, 13], "forward": [7, 17], "instanti": 7, "4514": 7, "3535": 7, "6050": 7, "squeezebackward1": 7, "verifi": 7, "give": [7, 13], "prop": 7, "fun": 7, "bias": 7, "bia": [7, 11, 12, 13], "output": [7, 9, 10, 13], "matmul": 7, "notic": 7, "ok": 7, "am": 7, "stupid": [7, 9, 10, 12, 13], "n": [7, 9, 10, 12, 15], "func": 7, "sin": 7, "8415": 7, "9093": 7, "1411": 7, "7568": 7, "sinbackward0": 7, "grad_output": 7, "ones_lik": 7, "5403": 7, "4161": 7, "9900": 7, "6536": 7, "column": 7, "denot": 7, "coodin": 7, "second": 7, "coordint": 7, "coordin": 7, "indexbackward0": [7, 8, 10], "0x7f750007aa90": 7, "enabl": [7, 9, 10], "chain": [7, 9, 10], "rule": [7, 9, 10], "differenti": 7, "take": 7, "2930": 7, "0000": [7, 11, 12], "0825": 7, "5305": 7, "9212": 7, "6438": 7, "9175": 7, "7091": 7, "9677": 7, "7350": 7, "6300": 7, "4992": 7, "9642": 7, "3607": 7, "9573": 7, "0166": 7, "8906": 7, "1743": 7, "9489": 7, "0287": 7, "3507": 7, "4230": 7, "9440": 7, "6972": 7, "5564": 7, "2747": 7, "8570": 7, "0975": 7, "6516": 7, "6687": 7, "3874": 7, "5045": 7, "9092": 7, "5228": 7, "5527": 7, "4221": 7, "9412": 7, "9828": 7, "7495": 7, "3001": [7, 13], "0497": 7, "0901": 7, "2823": 7, "9442": 7, "2218": 7, "9692": 7, "5136": 7, "5020": 7, "2023": 7, "3678": 7, "7819": 7, "7172": 7, "0191": 7, "3216": 7, "4669": 7, "5493": 7, "2346": 7, "3253": 7, "7525": 7, "6583": 7, "8198": 7, "6443": 7, "0415": 7, "1759": 7, "8441": 7, "4261": 7, "4104": 7, "6782": 7, "8920": 7, "1505": 7, "7075": 7, "7404": 7, "9070": 7, "1176": 7, "4098": 7, "0612": 7, "1286": 7, "0742": 7, "6482": 7, "9419": 7, "4051": 7, "8317": 7, "3231": 7, "0585": 7, "3959": 7, "1475": 7, "9752": 7, "3819": 7, "4927": 7, "0505": 7, "3465": 7, "9483": 7, "2960": 7, "3112": 7, "1125": 7, "8214": 7, "3367": 7, "5440": 7, "7444": 7, "2778": 7, "j": [7, 8, 9, 10, 12, 13], "hessian": 7, "laplac": [8, 12, 13], "1d": [8, 12, 13], "equat": [8, 12, 13], "u__x": [8, 9, 10, 12, 13], "dy_x": [8, 9, 10, 12, 13], "associ": 8, "dy_xx": [8, 9, 10, 12, 13], "boundary_point_label": [8, 9, 10], "boundary_point_sampl": [8, 9, 10, 12, 13], "0x7f6b65325040": 8, "len": [8, 9, 10], "line": [9, 10, 12, 15], "left_bc": [9, 10, 12, 13], "condit": [9, 10, 12, 13], "deal": [9, 10, 12, 13], "right_bc": [9, 10, 12, 13], "interior_point": [9, 10, 12, 13], "debug": 9, "grid_sampl": [9, 10, 12], "78": [9, 10, 12], "iter": [9, 10, 12, 13], "did": [9, 10, 12], "ani": [9, 10, 12], "try": [9, 10, 12], "Or": [9, 10, 12], "els": [9, 10, 12], "temp": 9, "gener": [9, 10, 12, 13], "don": [9, 10], "collocation_point_label": [9, 10], "collocation_point_sampl": [9, 10, 12, 13], "sample_collocation_point": 9, "sample_collocation_label": [9, 10], "sample_boundary_label": [9, 10], "sample_boundary_point": [9, 10], "neuron": [9, 10], "hypothet": [9, 10], "connect": [9, 10], "fcnn": 10, "tanh": [11, 12, 13], "xavier": [11, 12, 13], "layer_s": [11, 12, 13], "fullyconnect": [11, 12, 13], "modulelist": [11, 12, 13], "in_featur": [11, 12, 13], "out_featur": [11, 12, 13], "data": 11, "randn": 11, "0735": 11, "2387": 11, "4911": 11, "1239": 11, "1970": 11, "addmmbackward0": 11, "0734": 11, "2342": 11, "4551": 11, "loss_metr": 11, "mse": [11, 12, 13], "mseloss": [11, 12, 13], "1445": 11, "mselossbackward0": 11, "model": [12, 13], "optimis": [12, 13], "adam": [12, 13], "lr": [12, 13], "001": [12, 13], "metric": [12, 13], "compil": [12, 13], "devic": [12, 13], "cuda": [12, 13], "optimiser_funct": [12, 13], "optim": [12, 13], "loss": [12, 13], "6431": [], "51": 12, "4550": [], "101": 12, "3263": [], "151": 12, "2451": [], "201": 12, "1962": [], "251": 12, "1659": [], "301": 12, "1442": [], "351": 12, "1258": [], "401": 12, "1085": [], "451": 12, "0919": [], "501": [12, 13], "0761": [], "finish": [12, 13], "2000": [12, 13], "coordinates_list": [12, 13], "tensor2numpi": [12, 13], "solution_list": [12, 13], "collocation_forward": [12, 13], "bc_forward": [12, 13], "histori": [12, 13], "training_histori": [12, 13], "colloc": [12, 13], "color": 12, "red": 12, "blue": 12, "minor": [12, 13], "xlabel": [12, 13], "ylabel": [12, 13], "text": [12, 13], "root": [14, 15], "assumpt": 14, "python": [14, 15], "symlink": 14, "m": [14, 15], "environ": [14, 15], "sourc": [14, 15], "bin": [14, 16], "updat": [14, 15, 16], "stdout": 14, "directori": [14, 15], "upgrad": 14, "pip": 14, "txt": 14, "build": [14, 15], "relev": 14, "veri": 14, "run": [14, 15, 16], "current": 14, "virtual": [14, 15], "step": 15, "allow": 15, "basic": 15, "setup": 15, "detail": 15, "visit": 15, "jupyter_env": 15, "pip3": 15, "templat": 15, "quick": 15, "start": 15, "pwd": [15, 16], "name": 15, "tabl": 15, "content": 15, "store": 15, "_toc": 15, "yml": 15, "configur": 15, "_config": 15, "full": 15, "rebuild": 15, "toc": 15, "doesn": 15, "entir": 15, "publish": 15, "branch": 15, "ghp": 15, "_build": 15, "html": 15, "deploi": 15, "websit": 15, "go": 15, "page": 15, "select": 15, "gh": 15, "locat": 15, "github": 15, "forc": 15, "its": 15, "lazi": 15, "search": 15, "wa": 15, "deploy": 15, "workflow": 15, "click": 15, "button": 15, "re": 15, "job": 15, "top": 15, "corner": 15, "includ": 15, "notebook": 15, "outsid": 15, "link": 15, "ln": 15, "": 15, "readm": 15, "md": 15, "via": 16, "command": 16, "pull": 16, "suitabl": 16, "tagnam": 16, "avail": 16, "prakhars962": 16, "open": 16, "jupyt": 16, "server": 16, "8888": 16, "overrid": 16, "entrypoint": 16, "bash": 16, "guid": 16, "bind": 16, "workspac": 16, "lab": 16, "v": 16, "altern": 16, "interact": 16, "session": 16, "old": 16, "repositori": 16, "tag": 16, "id": 16, "886808706155": 16, "minut": 16, "ago": 16, "6": 16, "99gb": 16, "none": 16, "0bb744f6159e": 16, "38": 16, "4ffbb67f8447": 16, "about": 16, "hour": 16, "8gb": 16, "fe16ca34f9d9": 16, "delet": 16, "them": 16, "image_id": 16, "rm": 16, "deep": 17, "learn": 17, "framework": 17, "solv": 17, "invers": 17, "involv": [13, 17], "physic": 17, "inform": 17, "1876": 12, "0990": 12, "0583": 12, "0352": 12, "0205": 12, "0112": 12, "0057": 12, "0027": 12, "0011": 12, "0004": [12, 13], "0002": 12, "taken": [12, 13], "trainer": [12, 13], "9356": 12, "sec": [12, 13], "np": 13, "rect": 13, "bug": 13, "somehow": 13, "otherwis": 13, "latinhypercub": 13, "u__i": 13, "zero": 13, "becaus": 13, "dy_i": 13, "dy_yi": 13, "5000": 13, "0018": [], "150": [], "6618": [], "6636": [], "2732": [], "9934": [], "2665": [], "1001": 13, "3051": [], "0254": [], "3305": [], "1501": 13, "2981": [], "0206": [], "3187": [], "2001": 13, "0178": [], "3108": [], "2501": 13, "2885": [], "0154": [], "3039": [], "2842": [], "0133": [], "2975": [], "3501": 13, "2801": [], "0113": [], "2914": [], "4001": 13, "2759": [], "0094": [], "2854": [], "4501": 13, "2718": [], "0076": [], "2794": [], "5001": 13, "2676": [], "0058": [], "2734": [], "28": [], "5579": [], "8491": 13, "14": 13, "7276": 13, "15": 13, "5767": 13, "3197": 13, "0032": 13, "3229": 13, "2541": 13, "0012": 13, "2553": 13, "2520": 13, "0010": 13, "2530": 13, "2514": 13, "0008": 13, "2522": 13, "2508": 13, "0006": 13, "0005": 13, "2507": 13, "2495": 13, "2500": 13, "2489": 13, "2494": 13, "2485": 13, "2481": 13, "27": 13, "7122": 13}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"basic": [0, 2, 3, 7, 10], "domain": [0, 3], "ukaea": 1, "sut": 1, "sampl": 2, "techniqu": 2, "oper": 3, "chang": 3, "polygon": 4, "extern": 4, "object": 4, "dirichlet": 5, "bc": 5, "pde": [6, 12, 13], "constraint": 6, "gradient": [7, 8], "test": [7, 14], "1": 7, "A": 7, "note": 7, "futur": 7, "1d": [7, 9, 10], "tensor": 7, "multipl": 7, "valu": 7, "2d": 7, "actual": 7, "geometri": [7, 9, 10, 12, 13], "deepinn": [8, 17], "train": [9, 12, 13], "dataset": [9, 10], "laplac": [9, 10], "equat": [9, 10], "network": [10, 12, 13], "design": 10, "forward": 11, "pass": 11, "fcnn": [12, 13], "contribut": 14, "document": 15, "compil": 15, "set": 15, "up": 15, "jupyt": 15, "book": 15, "instal": 16, "us": 16, "pip": 16, "docker": 16, "imag": 16, "cpu": 16, "onli": 16, "gpu": 16, "passthrough": 16, "tagless": 16, "copi": 16}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinxcontrib.bibtex": 9, "sphinx": 60}, "alltitles": {"Basic domain": [[0, "basic-domain"]], "UKAEA SUT": [[1, "ukaea-sut"]], "Basic sampling techniques": [[2, "basic-sampling-techniques"]], "Domain Basics": [[3, "domain-basics"]], "Domain Operations": [[3, "domain-operations"]], "Changing Domains": [[3, "changing-domains"]], "Polygons and External Objects": [[4, "polygons-and-external-objects"]], "Polygons": [[4, "polygons"]], "External Objects": [[4, "external-objects"]], "Dirichlet BC": [[5, "dirichlet-bc"]], "PDE constraint": [[6, "pde-constraint"]], "Gradient basics": [[7, "gradient-basics"]], "Test 1": [[7, "test-1"]], "A note for the future.": [[7, "a-note-for-the-future"]], "1D tensor with multiple values.": [[7, "d-tensor-with-multiple-values"]], "2D tensor": [[7, "d-tensor"]], "Gradients with actual geometry": [[7, "gradients-with-actual-geometry"]], "Gradients in DeepINN": [[8, "gradients-in-deepinn"]], "Training dataset": [[9, "training-dataset"]], "Geometry": [[9, "geometry"], [10, "geometry"], [12, "geometry"], [13, "geometry"]], "1D Laplace equation": [[9, "d-laplace-equation"], [10, "d-laplace-equation"]], "Dataset": [[9, "dataset"], [10, "dataset"]], "Basics of network design": [[10, "basics-of-network-design"]], "Forward pass": [[11, "forward-pass"]], "Contribution": [[14, "contribution"]], "Testing": [[14, "testing"]], "Documentation compilation": [[15, "documentation-compilation"]], "Setting up Jupyter-books": [[15, "setting-up-jupyter-books"]], "Installation": [[16, "installation"]], "Using pip": [[16, "using-pip"]], "Docker image": [[16, "docker-image"]], "CPU Only": [[16, "cpu-only"]], "GPU passthrough": [[16, "gpu-passthrough"]], "Tagless copy": [[16, "tagless-copy"]], "FCNN training": [[12, "fcnn-training"], [13, "fcnn-training"]], "PDE": [[12, "pde"], [13, "pde"]], "Network": [[12, "network"], [13, "network"]], "DeepINN": [[17, "deepinn"]]}, "indexentries": {}}) \ No newline at end of file +Search.setIndex({"docnames": ["Tutorials/1. Geometry/Basic_domains", "Tutorials/1. Geometry/UKAEA SUT", "Tutorials/1. Geometry/different sampling", "Tutorials/1. Geometry/domain_creation", "Tutorials/1. Geometry/polygons_external_objects", "Tutorials/2. BC/1. dirichlet", "Tutorials/2. BC/2. pde", "Tutorials/3. Gradients/1. Gradients", "Tutorials/3. Gradients/2. higher derivative", "Tutorials/4. Dataset/1. basic", "Tutorials/5. FCNN/1. basic", "Tutorials/5. FCNN/2. test", "Tutorials/5. FCNN/3. model", "Tutorials/6. 2D heat conduction/1. model", "docs_tutorial/contribution", "docs_tutorial/docs_contribution", "docs_tutorial/installation", "intro"], "filenames": ["Tutorials/1. Geometry/Basic_domains.ipynb", "Tutorials/1. Geometry/UKAEA SUT.ipynb", "Tutorials/1. Geometry/different sampling.ipynb", "Tutorials/1. Geometry/domain_creation.ipynb", "Tutorials/1. Geometry/polygons_external_objects.ipynb", "Tutorials/2. BC/1. dirichlet.ipynb", "Tutorials/2. BC/2. pde.ipynb", "Tutorials/3. Gradients/1. Gradients.ipynb", "Tutorials/3. Gradients/2. higher derivative.ipynb", "Tutorials/4. Dataset/1. basic.ipynb", "Tutorials/5. FCNN/1. basic.ipynb", "Tutorials/5. FCNN/2. test.ipynb", "Tutorials/5. FCNN/3. model.ipynb", "Tutorials/6. 2D heat conduction/1. model.ipynb", "docs_tutorial/contribution.md", "docs_tutorial/docs_contribution.md", "docs_tutorial/installation.md", "intro.md"], "titles": ["Basic domain", "UKAEA SUT", "Basic sampling techniques", "Domain Basics", "Polygons and External Objects", "Dirichlet BC", "PDE constraint", "Gradient basics", "Gradients in DeepINN", "Training dataset", "Basics of network design", "Forward pass", "1D Laplace Equation", "2D Laplace Equation", "Contribution", "Documentation compilation", "Installation", "DeepINN"], "terms": {"thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16], "i": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17], "onli": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "valid": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "when": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "packag": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "instal": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "import": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15], "sy": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "path": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "append": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "two": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "folder": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "up": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "deepinn": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 16], "dp": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "us": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17], "default": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16], "backend": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "pytorch": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "2": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "0": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "1": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13], "cu117": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "t": [0, 3, 4, 7, 9, 10, 15], "space": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13], "r1": [0, 3, 9, 10, 12], "we": [0, 1, 3, 4, 7, 13], "need": [0, 2, 3, 4, 7, 13], "one": [0, 3, 4, 15, 16], "dimension": [0, 3], "interv": [0, 3, 9, 10, 12], "5": [0, 2, 3, 4, 7, 10, 11, 12, 13], "from": [1, 4, 7, 15], "geometri": [1, 2, 3, 4], "domain": [1, 2, 4, 5, 6, 7, 9, 10, 12, 13], "domain2d": [1, 3, 4], "shapely_polygon": [1, 4], "shapelypolygon": [1, 4], "polygon": 1, "creator": [1, 4], "domain3d": [1, 4], "trimesh_polyhedron": [1, 4], "trimeshpolyhedron": [1, 4], "torch": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "r3": [1, 4], "p": [1, 4, 15, 16], "file_nam": [1, 4], "home": [1, 2, 3, 4, 9, 10, 12], "hell": [1, 2, 3, 4, 9, 10, 12], "desktop": [1, 2, 3, 4, 9, 10, 12], "phd": 1, "work": [1, 4], "pinn": [1, 17], "10": [1, 2, 5, 6, 7, 9, 10, 12, 13], "june": 1, "2022": 1, "4": [1, 4, 7, 9, 16], "week": 1, "3": [1, 4, 7, 11, 12], "nvidia": [1, 16], "modulu": 1, "7": 1, "modifi": 1, "fourier": 1, "sampl": [1, 3, 5, 6, 7], "adapt": 1, "activ": [1, 11, 12, 13, 14], "stl_file": 1, "stl": [1, 4], "file_typ": [1, 4], "just": [1, 14], "boundari": [1, 2, 3, 4, 5, 12, 13], "p_sampler": [1, 4], "sampler": [1, 2, 3, 4, 5, 6, 7, 9, 10, 12], "lhssampler": [1, 2], "n_point": [1, 2, 3, 4, 5, 6, 7, 9, 10, 12], "200": 1, "randomuniformsampl": [1, 2, 4, 5, 6, 7], "util": [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13], "scatter": [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13], "10000": 1, "filter_fn": [1, 2, 5, 9, 10, 12, 13], "lambda": [1, 2, 3, 5, 6, 7, 9, 10, 12, 13], "ab": 1, "9": [1, 3, 4], "matplotlib": [1, 5, 6, 7, 12, 13], "pyplot": [1, 5, 6, 7, 12, 13], "plt": [1, 5, 6, 7, 12, 13], "p_point": 1, "sample_point": [1, 5, 6, 7, 9], "as_tensor": [1, 5, 6, 7, 9], "detach": 1, "cpu": 1, "numpi": [1, 13], "fig": 1, "figur": [1, 12, 13], "ax": 1, "add_subplot": 1, "project": [1, 4, 15], "3d": [1, 4], "set_ylim": 1, "The": [1, 3, 4, 5, 6, 7, 14, 15, 16], "last": [1, 3, 4, 15], "point": [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14], "tutori": [1, 2, 3, 4, 9, 10, 12, 15, 16], "possibl": [1, 3, 4], "transform": [1, 4], "either": [1, 4], "slice": [1, 4], "plane": [1, 4], "also": [1, 3, 4, 15], "function": [1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13], "implement": [1, 3, 4], "trimesh": [1, 4], "mai": [1, 2, 3, 4], "problem": [1, 4, 17], "should": [1, 3, 4, 9, 10, 14], "first": [1, 4, 7, 9, 10, 12, 16], "research": [1, 4], "2d": [1, 4, 5, 6], "which": [1, 3, 4, 7, 14], "most": [1, 4], "time": [1, 3, 4, 12, 13, 16], "less": [1, 4], "expens": [1, 4], "For": [1, 3, 4, 15], "have": [1, 3, 4], "choos": [1, 4], "how": [1, 4], "want": [1, 3, 4, 14, 15], "creat": [1, 2, 3, 4, 7, 14, 15, 16], "represent": [1, 4], "here": [1, 3, 4, 7, 14, 15, 16], "same": [1, 3, 4, 7, 14], "new_spac": [1, 4], "r2": [1, 2, 3, 4, 5, 6, 7, 13], "new": [1, 4, 15], "object": [1, 3, 8], "p_z": 1, "slice_with_plan": [1, 4], "plane_origin": [1, 4], "plane_norm": [1, 4], "100": [1, 2, 3, 4, 5, 6, 7, 13], "1000": 1, "p_x": 1, "325": 1, "25": [1, 2], "05": 1, "r": [2, 3, 5, 6, 7, 14], "parallelogram": [2, 3, 4, 5, 6, 7, 13], "unit": [2, 3, 13], "squar": [2, 3, 13], "c": [2, 3, 5, 6, 7, 13], "circl": [2, 3], "random_r": 2, "50": [2, 3, 5, 9, 10, 12, 13], "random": [2, 3, 5, 6, 7, 9, 10, 12], "grid_c": 2, "gridsampl": [2, 3, 4], "densiti": [2, 3, 4], "grid": [2, 9, 10, 12, 13], "intersect": [2, 3], "500": [2, 12], "random_intersect": 2, "repo": [2, 3, 4, 9, 10, 12, 14, 15], "domainoper": [2, 3], "sampler_help": [2, 3], "py": [2, 3, 4, 9, 10, 12, 14], "userwarn": [2, 3, 4, 9, 10, 12], "Will": [2, 3, 9, 10, 12], "oper": [2, 4, 7], "loop": [2, 3], "over": [2, 3], "all": [2, 3, 4, 15], "input": [2, 3, 7, 9, 10, 11], "paramet": [2, 3], "total": [2, 3], "slow": [2, 3], "down": [2, 3], "train": [2, 3, 4, 12, 13], "warn": [2, 3, 9, 10, 12], "f": [2, 3, 15, 16], "163": [2, 3], "cut": [2, 3], "107": [2, 3], "exact": [2, 3], "volum": [2, 3, 4], "known": [2, 3, 15], "estim": [2, 3], "domain_a": [2, 3], "domain_b": [2, 3], "If": [2, 3, 4, 7, 14, 15], "you": [2, 3, 4, 9, 10, 12, 13, 14, 15, 16], "set_volum": [2, 3], "right_boundari": 2, "left_boundari": [2, 5], "sign": 2, "In": [3, 15], "file": [3, 4, 14], "explain": [3, 4], "usag": 3, "class": [3, 4, 7], "everi": 3, "child": 3, "main": 3, "follow": [3, 15, 16], "method": [3, 4], "properti": [3, 4], "contain": [3, 16], "check": [3, 8], "lai": 3, "insid": [3, 4], "comput": [3, 4, 7], "set": 3, "bounding_box": 3, "get": 3, "bound": [3, 4], "box": [3, 4], "given": [3, 9, 10, 12], "return": [3, 4, 7, 8, 9, 10, 12, 13], "itself": 3, "know": 3, "normal": [3, 4, 11, 12, 13], "vector": [3, 4], "But": [3, 4], "ha": [3, 4], "explicit": 3, "document": 3, "each": [3, 16], "see": 3, "doc": [3, 14, 15], "some": 3, "pre": [3, 4, 16], "ar": [3, 4, 7, 9, 10, 12, 13, 15], "focu": 3, "now": [3, 4, 14, 16], "creation": [3, 4], "differ": [3, 4], "To": [3, 4, 15], "belong": 3, "definit": 3, "were": 3, "part": [3, 4], "previou": 3, "interval_sampl": 3, "plot": [3, 12, 13], "someth": 3, "dpi": [3, 9, 10, 12, 13], "300": 3, "save": 3, "true": [3, 7, 8, 9, 10, 11, 12, 13], "r_bound": 3, "c_bound": 3, "would": 3, "nice": 3, "look": [3, 4], "directli": 3, "r_sampler": 3, "c_sampler": 3, "venv": [3, 4, 14, 15], "lib": [3, 4], "python3": [3, 4, 14, 15], "site": [3, 4, 15], "504": [3, 4], "meshgrid": [3, 4], "an": [3, 4, 7, 15, 16], "upcom": [3, 4], "releas": [3, 4, 16], "requir": [3, 4, 14], "pass": [3, 4, 7], "index": [3, 4], "argument": [3, 4], "trigger": [3, 4], "intern": [3, 4], "aten": [3, 4], "src": [3, 4], "nativ": [3, 4], "tensorshap": [3, 4], "cpp": [3, 4], "3483": [3, 4], "_vf": [3, 4], "tensor": [3, 4, 5, 8, 9, 10, 11, 12, 13], "kwarg": [3, 4], "type": [3, 4], "ignor": [3, 4], "attr": [3, 4], "defin": [3, 4, 7], "134": [3, 4], "dimens": [3, 4, 5], "other": [3, 4], "than": [3, 4], "revers": [3, 4], "shape": [3, 4, 13], "deprec": [3, 4], "throw": [3, 4], "error": [3, 4, 13], "futur": [3, 4], "consid": [3, 4], "mt": [3, 4], "transpos": [3, 4], "batch": [3, 4], "matric": [3, 4], "permut": [3, 4], "arang": [3, 4], "ndim": [3, 4], "3571": [3, 4], "bary_coord": [3, 4], "stack": [3, 4], "y": [3, 4, 7, 8, 9, 10, 12, 13], "reshap": [3, 4], "wai": [3, 4], "until": 3, "simpl": [3, 5, 6, 7, 9, 10, 12, 13, 14], "complex": [3, 4], "union": 3, "A": [3, 9, 10, 12, 13], "cup": 3, "b": 3, "cap": 3, "setminu": 3, "cartesian": 3, "product": 3, "cdot": 3, "aspect": 3, "previous": [3, 4], "mention": [3, 4], "can": [3, 4, 9, 10, 12, 13, 15, 16], "arbitrari": 3, "number": 3, "possibli": 3, "becom": 3, "costli": 3, "union_domain": 3, "intersection_domain": 3, "cut_domain": 3, "again": [3, 4, 7, 9, 10, 12], "call": [3, 4], "sinc": 3, "voluem": 3, "alwai": [3, 4, 13], "valu": 3, "correspond": 3, "union_sampl": 3, "inter_sampl": 3, "cut_sampl": 3, "142": 3, "30": 3, "boundary_a": 3, "bounadry_b": 3, "cylind": 3, "exampl": [3, 4], "abov": 3, "product_sampl": 3, "20": [3, 9, 10, 12], "variabl": [3, 4], "e": 3, "g": 3, "grow": 3, "rotat": 3, "end": 3, "radiu": 3, "origin": 3, "right": [3, 15], "depend": [3, 4, 14], "anoth": 3, "so": 3, "solut": [3, 16], "stai": [3, 4], "replac": 3, "desir": 3, "These": [3, 15], "like": [3, 4], "appli": 3, "new_domain": 3, "thank": 4, "soft": [4, 15], "polyhedron": 4, "addit": 4, "exist": [4, 15], "thei": 4, "combin": 4, "featur": 4, "mean": 4, "what": 4, "chang": 4, "vertic": 4, "find": [4, 9, 10, 12], "under": 4, "construct": 4, "through": 4, "your": [4, 15], "own": 4, "yourself": 4, "constructor": 4, "befor": 4, "therefor": 4, "pointsampl": 4, "next": 4, "sai": [4, 7], "side": 4, "simplex": 4, "face": 4, "show": 4, "pde": [4, 7, 9, 10, 17], "alreadi": 4, "support": [4, 16], "ascii": 4, "obj": 4, "mani": 4, "more": [4, 7, 9, 10, 12, 13, 15], "do": [4, 7], "specifi": 4, "l_plate": 4, "where": 4, "l": 4, "useabl": 4, "let": [5, 6, 7], "u": [5, 6, 7, 15], "make": [5, 6, 7], "rectangl": [5, 6, 7], "stencil": [5, 6, 7], "collocation_point": [5, 6, 7], "without": 5, "filter": [5, 9, 10, 12], "bc_point": 5, "constraint": [5, 7, 8, 9, 10, 12, 13], "dirichletbc": [5, 9, 10, 12, 13], "geom": [5, 6, 7, 9, 10, 12, 13], "sampling_strategi": [5, 6, 7, 9, 10, 12, 13], "no_point": [5, 6, 7, 9, 10, 12, 13], "bc_points_right": 5, "sampler_object": [5, 6, 7, 9, 10, 12, 13], "manual": [5, 7], "bc_points_sampl": 5, "size": [5, 6, 7, 8, 9, 10, 16], "bc_points_right_sampl": 5, "label": [5, 9, 10, 12, 13], "unsqueez": [5, 6, 7, 9], "add": 5, "result": [5, 7], "bc_points_sampled_label": 5, "sample_label": [5, 6, 7, 9], "bc_points_sampled_right_label": 5, "variat": [5, 6, 7], "base": [5, 6, 7], "provid": [5, 6, 7], "cmap": [5, 6, 7, 13], "get_cmap": [5, 6, 7, 13], "plasma": [5, 6, 7, 13], "colorbar": [5, 6, 7, 13], "0x7fe83c7ed3a0": [], "0x7fe83c6df730": [], "collcoc": [6, 7], "collocation_points_sampl": [6, 7], "collocation_points_label": [6, 7], "bc": [6, 7, 12, 13], "0x7ff085fec070": [], "nn": [7, 11, 12, 13], "requires_grad": [7, 8, 9, 10], "print": [7, 8], "grad_fn": [7, 8, 10, 11], "addbackward0": 7, "frac": 7, "dy": 7, "dx": 7, "2x": 7, "calcul": 7, "autograd": 7, "grad": 7, "create_graph": 7, "retain_graph": 7, "mulbackward0": 7, "jacobian": [7, 8, 9, 10, 12, 13], "jacobian_matrix": 7, "graph": [7, 9, 10], "investig": 7, "whether": 7, "confirm": [7, 14], "both": [7, 9, 10], "neural": [7, 9, 10, 17], "network": [7, 9, 17], "demonstr": 7, "net": [7, 11, 12, 13], "modul": 7, "def": [7, 8, 9, 10, 12, 13], "__init__": 7, "self": [7, 9, 10, 12], "super": 7, "linear": [7, 11, 12, 13], "automat": 7, "weight": [7, 11], "initialis": [7, 11, 12, 13], "forward": [7, 17], "instanti": 7, "4514": [], "3535": [], "6050": [], "squeezebackward1": 7, "verifi": 7, "give": [7, 13], "prop": 7, "fun": 7, "bias": 7, "bia": [7, 11, 12, 13], "output": [7, 9, 10, 13], "matmul": 7, "notic": 7, "ok": 7, "am": 7, "stupid": [7, 9, 10, 12, 13], "n": [7, 9, 10, 12, 15], "func": 7, "sin": 7, "8415": 7, "9093": 7, "1411": 7, "7568": 7, "sinbackward0": 7, "grad_output": 7, "ones_lik": 7, "5403": 7, "4161": 7, "9900": 7, "6536": 7, "column": 7, "denot": 7, "coodin": 7, "second": 7, "coordint": 7, "coordin": 7, "indexbackward0": [7, 8, 10], "0x7f750007aa90": [], "enabl": [7, 9, 10], "chain": [7, 9, 10], "rule": [7, 9, 10], "differenti": 7, "take": 7, "2930": [], "0000": [7, 11, 12], "0825": [], "5305": [], "9212": [], "6438": [], "9175": [], "7091": [], "9677": [], "7350": [], "6300": [], "4992": [], "9642": [], "3607": [], "9573": [], "0166": [], "8906": [], "1743": [], "9489": [], "0287": [], "3507": 7, "4230": [], "9440": [], "6972": [], "5564": [], "2747": [], "8570": [], "0975": [], "6516": [], "6687": [], "3874": [], "5045": [], "9092": [], "5228": [], "5527": [], "4221": [], "9412": [], "9828": [], "7495": [], "3001": 13, "0497": [], "0901": [], "2823": [], "9442": [], "2218": [], "9692": [], "5136": [], "5020": [], "2023": [], "3678": [], "7819": [], "7172": [], "0191": [], "3216": [], "4669": [], "5493": [], "2346": [], "3253": [], "7525": [], "6583": [], "8198": [], "6443": [], "0415": [], "1759": [], "8441": [], "4261": [], "4104": [], "6782": [], "8920": [], "1505": [], "7075": [], "7404": [], "9070": [], "1176": [], "4098": [], "0612": [], "1286": [], "0742": [], "6482": [], "9419": [], "4051": [], "8317": [], "3231": [], "0585": [], "3959": [], "1475": [], "9752": [], "3819": [], "4927": [], "0505": [], "3465": [], "9483": [], "2960": [], "3112": [], "1125": [], "8214": [], "3367": [], "5440": [], "7444": [], "2778": [], "j": [7, 8, 9, 10, 12, 13], "hessian": 7, "laplac": 8, "1d": [8, 13], "equat": 8, "u__x": [8, 9, 10, 12, 13], "dy_x": [8, 9, 10, 12, 13], "associ": 8, "dy_xx": [8, 9, 10, 12, 13], "boundary_point_label": [8, 9, 10], "boundary_point_sampl": [8, 9, 10, 12, 13], "0x7f6b65325040": [], "len": [8, 9, 10], "line": [9, 10, 12, 15], "left_bc": [9, 10, 12, 13], "condit": [9, 10, 12, 13], "deal": [9, 10, 12, 13], "right_bc": [9, 10, 12, 13], "interior_point": [9, 10, 12, 13], "debug": 9, "grid_sampl": [9, 10, 12], "78": [9, 10, 12], "iter": [9, 10, 12, 13], "did": [9, 10, 12], "ani": [9, 10, 12], "try": [9, 10, 12], "Or": [9, 10, 12], "els": [9, 10, 12], "temp": 9, "gener": [9, 10, 12, 13], "don": [9, 10], "collocation_point_label": [9, 10], "collocation_point_sampl": [9, 10, 12, 13], "sample_collocation_point": 9, "sample_collocation_label": [9, 10], "sample_boundary_label": [9, 10], "sample_boundary_point": [9, 10], "neuron": [9, 10], "hypothet": [9, 10], "connect": [9, 10], "fcnn": [10, 12], "tanh": [11, 12, 13], "xavier": [11, 12, 13], "layer_s": [11, 12, 13], "fullyconnect": [11, 12, 13], "modulelist": [11, 12, 13], "in_featur": [11, 12, 13], "out_featur": [11, 12, 13], "data": 11, "randn": 11, "0735": [], "2387": [], "4911": [], "1239": [], "1970": [], "addmmbackward0": 11, "0734": [], "2342": [], "4551": [], "loss_metr": 11, "mse": [11, 12, 13], "mseloss": [11, 12, 13], "1445": [], "mselossbackward0": 11, "model": [12, 13], "optimis": [12, 13], "adam": [12, 13], "lr": [12, 13], "001": [12, 13], "metric": [12, 13], "compil": [12, 13], "devic": [12, 13], "cuda": [12, 13], "optimiser_funct": [12, 13], "optim": [12, 13], "loss": [12, 13], "6431": [], "51": 12, "4550": 7, "101": 12, "3263": [], "151": 12, "2451": [], "201": 12, "1962": [], "251": 12, "1659": [], "301": 12, "1442": [], "351": 12, "1258": [], "401": 12, "1085": [], "451": 12, "0919": [], "501": [12, 13], "0761": [], "finish": [12, 13], "2000": [12, 13], "coordinates_list": [12, 13], "tensor2numpi": [12, 13], "solution_list": [12, 13], "collocation_forward": [12, 13], "bc_forward": [12, 13], "histori": [12, 13], "training_histori": [12, 13], "colloc": [12, 13], "color": 12, "red": 12, "blue": 12, "minor": [12, 13], "xlabel": [12, 13], "ylabel": [12, 13], "text": [12, 13], "root": [14, 15], "assumpt": 14, "python": [14, 15], "symlink": 14, "m": [14, 15], "environ": [14, 15], "sourc": [14, 15], "bin": [14, 16], "updat": [14, 15, 16], "stdout": 14, "directori": [14, 15], "upgrad": 14, "pip": 14, "txt": 14, "build": [14, 15], "relev": 14, "veri": 14, "run": [14, 15, 16], "current": 14, "virtual": [14, 15], "step": 15, "allow": 15, "basic": 15, "setup": 15, "detail": 15, "visit": 15, "jupyter_env": 15, "pip3": 15, "templat": 15, "quick": 15, "start": 15, "pwd": [15, 16], "name": 15, "tabl": 15, "content": 15, "store": 15, "_toc": 15, "yml": 15, "configur": 15, "_config": 15, "full": 15, "rebuild": 15, "toc": 15, "doesn": 15, "entir": 15, "publish": 15, "branch": 15, "ghp": 15, "_build": 15, "html": 15, "deploi": 15, "websit": 15, "go": 15, "page": 15, "select": 15, "gh": 15, "locat": 15, "github": 15, "forc": 15, "its": 15, "lazi": 15, "search": 15, "wa": 15, "deploy": 15, "workflow": 15, "click": 15, "button": 15, "re": 15, "job": 15, "top": 15, "corner": 15, "includ": 15, "notebook": 15, "outsid": 15, "link": 15, "ln": 15, "": 15, "readm": 15, "md": 15, "via": 16, "command": 16, "pull": 16, "suitabl": 16, "tagnam": 16, "avail": 16, "prakhars962": 16, "open": 16, "jupyt": 16, "server": 16, "8888": 16, "overrid": 16, "entrypoint": 16, "bash": 16, "guid": 16, "bind": 16, "workspac": 16, "lab": 16, "v": 16, "altern": 16, "interact": 16, "session": 16, "old": 16, "repositori": 16, "tag": 16, "id": 16, "886808706155": 16, "minut": 16, "ago": 16, "6": [13, 16], "99gb": 16, "none": 16, "0bb744f6159e": 16, "38": 16, "4ffbb67f8447": 16, "about": 16, "hour": 16, "8gb": 16, "fe16ca34f9d9": 16, "delet": 16, "them": 16, "image_id": 16, "rm": 16, "deep": 17, "learn": 17, "framework": 17, "solv": 17, "invers": 17, "involv": [13, 17], "physic": 17, "inform": 17, "1876": [], "0990": [], "0583": [], "0352": [], "0205": [], "0112": [], "0057": [], "0027": [], "0011": [], "0004": [12, 13], "0002": 13, "taken": [12, 13], "trainer": [12, 13], "9356": [], "sec": [12, 13], "np": 13, "rect": 13, "bug": 13, "somehow": 13, "otherwis": 13, "latinhypercub": 13, "u__i": 13, "zero": 13, "becaus": 13, "dy_i": 13, "dy_yi": 13, "5000": 13, "0018": [], "150": [], "6618": [], "6636": [], "2732": [], "9934": [], "2665": [], "1001": 13, "3051": [], "0254": [], "3305": [], "1501": [7, 13], "2981": [], "0206": [], "3187": [], "2001": 13, "0178": 11, "3108": [], "2501": 13, "2885": [], "0154": [], "3039": [], "2842": [], "0133": [], "2975": [], "3501": 13, "2801": [], "0113": [], "2914": [], "4001": 13, "2759": [], "0094": [], "2854": [], "4501": 13, "2718": [], "0076": [], "2794": [], "5001": 13, "2676": [], "0058": [], "2734": [], "28": [], "5579": [], "8491": [], "14": [], "7276": [], "15": [], "5767": [], "3197": [], "0032": [], "3229": [], "2541": [], "0012": [], "2553": [], "2520": [], "0010": [], "2530": [], "2514": [], "0008": [], "2522": [], "2508": [], "0006": 13, "0005": [], "2507": [], "2495": [], "2500": [], "2489": [], "2494": [], "2485": [], "2481": [], "27": 13, "7122": [], "0x72f8354fbf40": [], "0x72f8353fa3a0": [], "0x7beb601dc940": [], "0516": [], "6891": [], "0037": [], "0x7c1514340520": [], "2081": [], "1293": [], "9969": [], "0562": [], "6503": [], "5758": [], "1142": [], "5658": [], "6205": [], "4566": [], "4953": [], "9840": [], "7622": [], "7376": [], "2176": [], "5563": [], "3717": [], "0733": [], "5884": [], "1044": [], "2316": [], "6337": [], "9880": [], "3901": [], "8064": [], "1991": [], "1719": [], "5309": [], "6126": [], "1916": [], "2004": [], "2687": [], "7630": [], "7769": [], "7708": [], "1350": [], "1813": [], "1773": [], "2669": [], "4753": [], "9273": [], "9156": [], "0181": [], "6654": [], "6475": [], "5853": [], "9135": [], "7197": [], "0338": [], "4407": [], "8176": [], "4385": [], "5819": [], "8210": [], "8956": [], "4193": [], "7618": [], "2107": [], "0972": [], "0409": [], "5815": [], "5158": [], "2925": [], "8957": [], "8829": [], "8673": [], "8944": [], "8518": [], "4616": [], "4969": [], "9469": [], "4401": [], "5107": [], "5870": [], "7520": [], "7245": [], "9182": [], "9941": [], "3377": [], "7006": [], "6768": [], "8862": [], "0097": [], "1995": [], "0231": [], "0820": [], "9846": [], "8800": [], "4444": [], "2966": [], "1782": [], "2632": [], "5003": [], "0405": [], "1372": [], "5528": [], "8778": [], "0627": [], "4457": [], "7621": [], "0x7ce4c812a610": [], "3199": [], "5203": [], "1167": [], "2207": [], "5441": [], "3094": [], "4780": [], "1162": [], "2391": [], "6070": [], "4529": [], "3394": [], "2550": [], "1900": [], "1396": [], "1008": [], "0715": [], "0225": [], "6771": [], "0234": 13, "7638": [], "7872": [], "0863": [], "2770": [], "3633": 7, "1033": [], "1620": [], "2653": [], "1178": [], "1172": [], "2350": [], "1302": [], "0887": [], "2190": [], "1406": [], "0699": [], "2105": [], "1490": [], "0572": [], "2062": [], "1553": [], "0488": [], "2041": [], "1597": [], "0435": [], "2031": [], "1623": [], "0404": [], "2027": [], "1635": [], "0389": [], "2024": [], "9073": [], "0x7dc3575b3a30": [], "0x7dc3575135e0": [], "0x7b2aeefa9c70": [], "0383": [], "3538": 7, "4665": [], "0x77bc1dcb2130": [], "3342": [], "0797": [], "4876": [], "7261": [], "3124": [], "5448": [], "1151": [], "4023": [], "6525": [], "7299": [], "1683": [], "2683": [], "3160": [], "4232": [], "6081": [], "7969": [], "5759": [], "5317": [], "4062": [], "3031": [], "8831": [], "6393": [], "7746": [], "7689": [], "6521": [], "7983": [], "7902": [], "8045": [], "6983": [], "3036": [], "9076": [], "4826": [], "5202": [], "0958": [], "4028": [], "6027": [], "2708": [], "0446": [], "4515": [], "3595": [], "6311": [], "1113": [], "3412": [], "6844": [], "8933": [], "5472": [], "3544": [], "1070": [], "7305": [], "8029": [], "7409": [], "7716": [], "1792": 13, "6344": [], "3722": [], "1977": [], "6066": [], "9814": [], "4491": [], "7173": [], "2895": 7, "1143": [], "8548": [], "8917": [], "4536": [], "1007": [], "8599": [], "8775": [], "7212": [], "5212": [], "5619": [], "9288": [], "9922": [], "7626": [], "2811": [], "6749": [], "5600": [], "9231": [], "4757": [], "7901": [], "1192": [], "0290": [], "4403": [], "1103": [], "0238": [], "5814": [], "3969": [], "0788": [], "7632": [], "0294": [], "3528": [], "9726": [], "4467": [], "0x72e4e01b40a0": [], "0467": [], "2948": [], "3771": [], "2046": [], "0137": [], "7805": [], "2865": [], "3601": [], "5956": [], "8316": [], "6661": [], "5271": [], "4181": [], "3386": [], "2835": [], "2450": [], "2153": [], "1891": [], "1641": [], "1399": [], "7206": [], "6093": [], "54": [], "8631": [], "55": [], "4724": [], "3487": 13, "7329": [], "0815": [], "3169": [], "0833": [], "4002": [], "3174": [], "0132": [], "3306": [], "3105": [], "0068": [], "3173": [], "3017": [], "3053": [], "2920": [], "0020": [], "2940": [], "2814": [], "2826": [], "2695": [], "0009": 13, "2704": [], "2551": [], "2559": [], "2357": [], "2363": [], "26": [], "7674": [], "edgecolor": 13, "k": 13, "0x7889653af640": 5, "0x78896527d610": 5, "0x7494db6c2790": 6, "5027": 7, "6726": 7, "4256": 7, "0x7b9c52997580": 7, "6733": 7, "6685": 7, "0176": 7, "6641": 7, "9967": 7, "6386": 7, "2306": 7, "7671": 7, "3454": 7, "8883": 7, "2225": 7, "8830": 7, "5180": 7, "6009": 7, "4308": 7, "0261": 7, "5584": 7, "1730": 7, "7687": 7, "8867": 7, "8041": 7, "5583": 7, "5580": 7, "7970": 7, "5377": 7, "6538": 7, "7832": 7, "4909": 7, "8772": 7, "5479": 7, "1592": 7, "0740": 7, "9643": 7, "0257": 7, "2799": 7, "7555": 7, "0478": 7, "9280": 7, "6001": 7, "9786": 7, "6759": 7, "8473": 7, "0966": 7, "3954": 7, "9916": 7, "3232": 7, "4093": 7, "1539": 7, "3791": 7, "8612": 7, "5549": 7, "1919": 7, "9863": 7, "0187": 7, "9845": 7, "5591": 7, "8240": 7, "3481": 7, "8477": 7, "0604": 7, "3063": 7, "8167": 7, "5160": 7, "2010": 7, "6498": 7, "6442": 7, "4801": 7, "3056": 7, "1697": 7, "9645": 7, "3555": 7, "8697": 7, "7806": 7, "7696": 7, "2021": 7, "8245": 7, "2962": 7, "0385": 7, "0791": 7, "5716": 7, "1625": 7, "2896": 7, "5592": 7, "9910": 7, "7264": 7, "9206": 7, "6380": 7, "8515": 7, "3841": 7, "5092": 7, "7644": 7, "4880": 7, "4294": 7, "0x7581944093d0": 8, "9623": 11, "3584": 11, "0563": 11, "0799": 11, "7690": 11, "9613": 11, "3438": 11, "7321": 11, "0286": 12, "0061": 12, "0021": 12, "0001": 12, "1389": 12, "1201": 13, "130": 13, "2115": 13, "132": 13, "3316": 13, "4108": 13, "5380": 13, "9488": 13, "7701": 13, "2101": 13, "9802": 13, "5292": 13, "0038": 13, "5330": 13, "4286": 13, "0025": 13, "4310": 13, "0019": 13, "3506": 13, "2640": 13, "0014": 13, "2654": 13, "1801": 13, "1062": 13, "1068": 13, "0540": 13, "0544": 13, "0232": 13, "7988": 13}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"basic": [0, 2, 3, 7, 10], "domain": [0, 3], "ukaea": 1, "sut": 1, "sampl": 2, "techniqu": 2, "oper": 3, "chang": 3, "polygon": 4, "extern": 4, "object": 4, "dirichlet": 5, "bc": 5, "pde": [6, 12, 13], "constraint": 6, "gradient": [7, 8], "test": [7, 14], "1": 7, "A": 7, "note": 7, "futur": 7, "1d": [7, 9, 10, 12], "tensor": 7, "multipl": 7, "valu": 7, "2d": [7, 13], "actual": 7, "geometri": [7, 9, 10, 12, 13], "deepinn": [8, 17], "train": 9, "dataset": [9, 10], "laplac": [9, 10, 12, 13], "equat": [9, 10, 12, 13], "network": [10, 12, 13], "design": 10, "forward": 11, "pass": 11, "fcnn": [], "contribut": 14, "document": 15, "compil": 15, "set": 15, "up": 15, "jupyt": 15, "book": 15, "instal": 16, "us": 16, "pip": 16, "docker": 16, "imag": 16, "cpu": 16, "onli": 16, "gpu": 16, "passthrough": 16, "tagless": 16, "copi": 16}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinxcontrib.bibtex": 9, "sphinx": 60}, "alltitles": {"Basic domain": [[0, "basic-domain"]], "UKAEA SUT": [[1, "ukaea-sut"]], "Basic sampling techniques": [[2, "basic-sampling-techniques"]], "Domain Basics": [[3, "domain-basics"]], "Domain Operations": [[3, "domain-operations"]], "Changing Domains": [[3, "changing-domains"]], "Polygons and External Objects": [[4, "polygons-and-external-objects"]], "Polygons": [[4, "polygons"]], "External Objects": [[4, "external-objects"]], "Dirichlet BC": [[5, "dirichlet-bc"]], "PDE constraint": [[6, "pde-constraint"]], "Gradient basics": [[7, "gradient-basics"]], "Test 1": [[7, "test-1"]], "A note for the future.": [[7, "a-note-for-the-future"]], "1D tensor with multiple values.": [[7, "d-tensor-with-multiple-values"]], "2D tensor": [[7, "d-tensor"]], "Gradients with actual geometry": [[7, "gradients-with-actual-geometry"]], "Gradients in DeepINN": [[8, "gradients-in-deepinn"]], "Training dataset": [[9, "training-dataset"]], "Geometry": [[9, "geometry"], [10, "geometry"], [12, "geometry"], [13, "geometry"]], "1D Laplace equation": [[9, "d-laplace-equation"], [10, "d-laplace-equation"]], "Dataset": [[9, "dataset"], [10, "dataset"]], "Basics of network design": [[10, "basics-of-network-design"]], "Forward pass": [[11, "forward-pass"]], "1D Laplace Equation": [[12, "d-laplace-equation"]], "PDE": [[12, "pde"], [13, "pde"]], "Network": [[12, "network"], [13, "network"]], "2D Laplace Equation": [[13, "d-laplace-equation"]], "Contribution": [[14, "contribution"]], "Testing": [[14, "testing"]], "Documentation compilation": [[15, "documentation-compilation"]], "Setting up Jupyter-books": [[15, "setting-up-jupyter-books"]], "Installation": [[16, "installation"]], "Using pip": [[16, "using-pip"]], "Docker image": [[16, "docker-image"]], "CPU Only": [[16, "cpu-only"]], "GPU passthrough": [[16, "gpu-passthrough"]], "Tagless copy": [[16, "tagless-copy"]], "DeepINN": [[17, "deepinn"]]}, "indexentries": {}}) \ No newline at end of file