-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbert.py
254 lines (199 loc) · 10.5 KB
/
bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import torch
import torch.nn as nn
import torch.nn.functional as F
from base_bert import BertPreTrainedModel
from utils import *
class BertSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
# Initialize the linear transformation layers for key, value, query.
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
# This dropout is applied to normalized attention scores following the original
# implementation of transformer. Although it is a bit unusual, we empirically
# observe that it yields better performance.
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transform(self, x, linear_layer):
# The corresponding linear_layer of k, v, q are used to project the hidden_state (x).
bs, seq_len = x.shape[:2]
proj = linear_layer(x)
# Next, we need to produce multiple heads for the proj. This is done by spliting the
# hidden state to self.num_attention_heads, each of size self.attention_head_size.
proj = proj.view(bs, seq_len, self.num_attention_heads, self.attention_head_size)
# By proper transpose, we have proj of size [bs, num_attention_heads, seq_len, attention_head_size].
proj = proj.transpose(1, 2)
return proj
def attention(self, key, query, value, attention_mask):
# Each attention is calculated following eq. (1) of https://arxiv.org/pdf/1706.03762.pdf.
# Attention scores are calculated by multiplying the key and query to obtain
# a score matrix S of size [bs, num_attention_heads, seq_len, seq_len].
# S[*, i, j, k] represents the (unnormalized) attention score between the j-th and k-th
# token, given by i-th attention head.
# Before normalizing the scores, use the attention mask to mask out the padding token scores.
# Note that the attention mask distinguishes between non-padding tokens (with a value of 0)
# and padding tokens (with a value of a large negative number).
attention_scores = torch.matmul(query, key.transpose(-1, -2))
attention_scores = attention_scores / torch.sqrt(torch.tensor(self.attention_head_size, dtype=torch.float32))
# Apply attention mask
attention_scores = attention_scores + attention_mask
# Normalize the scores with softmax
attention_probs =F.softmax(attention_scores, dim = -1)
# Apply dropout to the attention probabilities
attention_probs = self.dropout(attention_probs)
# Multiply the attention scores with the value to get back weighted values
context_layer = torch.matmul(attention_probs, value)
# Concatenate multi-heads to recover the original shape
bs, num_heads, seq_len, head_dim = context_layer.size()
context_layer = context_layer.transpose(1, 2).reshape(bs, seq_len, num_heads * head_dim)
return context_layer
# Make sure to:
# - Normalize the scores with softmax.
# - Multiply the attention scores with the value to get back weighted values.
# - Before returning, concatenate multi-heads to recover the original shape:
# [bs, seq_len, num_attention_heads * attention_head_size = hidden_size].
### TODO
def forward(self, hidden_states, attention_mask):
"""
hidden_states: [bs, seq_len, hidden_state]
attention_mask: [bs, 1, 1, seq_len]
output: [bs, seq_len, hidden_state]
"""
# First, we have to generate the key, value, query for each token for multi-head attention
# using self.transform (more details inside the function).
# Size of *_layer is [bs, num_attention_heads, seq_len, attention_head_size].
key_layer = self.transform(hidden_states, self.key)
value_layer = self.transform(hidden_states, self.value)
query_layer = self.transform(hidden_states, self.query)
# Calculate the multi-head attention.
attn_value = self.attention(key_layer, query_layer, value_layer, attention_mask)
return attn_value
class BertLayer(nn.Module):
def __init__(self, config):
super().__init__()
# Multi-head attention.
self.self_attention = BertSelfAttention(config)
# Add-norm for multi-head attention.
self.attention_dense = nn.Linear(config.hidden_size, config.hidden_size)
self.attention_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.attention_dropout = nn.Dropout(config.hidden_dropout_prob)
# Feed forward.
self.interm_dense = nn.Linear(config.hidden_size, config.intermediate_size)
self.interm_af = F.gelu
# Add-norm for feed forward.
self.out_dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.out_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.out_dropout = nn.Dropout(config.hidden_dropout_prob)
def add_norm(self, input, output, dense_layer, dropout, ln_layer):
"""
This function is applied after the multi-head attention layer or the feed forward layer.
input: the input of the previous layer
output: the output of the previous layer
dense_layer: used to transform the output
dropout: the dropout to be applied
ln_layer: the layer norm to be applied
"""
# Hint: Remember that BERT applies dropout to the transformed output of each sub-layer,
# before it is added to the sub-layer input and normalized with a layer norm.
### TODO
output = dense_layer(output)
output = dropout(output)
output = output + input
return ln_layer(output)
def forward(self, hidden_states, attention_mask):
"""
hidden_states: either from the embedding layer (first BERT layer) or from the previous BERT layer
as shown in the left of Figure 1 of https://arxiv.org/pdf/1706.03762.pdf.
Each block consists of:
1. A multi-head attention layer (BertSelfAttention).
2. An add-norm operation that takes the input and output of the multi-head attention layer.
3. A feed forward layer.
4. An add-norm operation that takes the input and output of the feed forward layer.
"""
### TODO
hidden_states_out = self.self_attention(hidden_states, attention_mask)
h_prime = self.add_norm(hidden_states, hidden_states_out, self.attention_dense, self.attention_dropout, self.attention_layer_norm)
#feed_forward
ffn = self.interm_af(self.interm_dense(h_prime))
out = self.add_norm(h_prime, ffn, self.out_dense, self.out_dropout, self.out_layer_norm)
return out
class BertModel(BertPreTrainedModel):
"""
The BERT model returns the final embeddings for each token in a sentence.
The model consists of:
1. Embedding layers (used in self.embed).
2. A stack of n BERT layers (used in self.encode).
3. A linear transformation layer for the [CLS] token (used in self.forward, as given).
"""
def __init__(self, config):
super().__init__(config)
self.config = config
# Embedding layers.
self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.pos_embedding = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.tk_type_embedding = nn.Embedding(config.type_vocab_size, config.hidden_size)
self.embed_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.embed_dropout = nn.Dropout(config.hidden_dropout_prob)
# Register position_ids (1, len position emb) to buffer because it is a constant.
position_ids = torch.arange(config.max_position_embeddings).unsqueeze(0)
self.register_buffer('position_ids', position_ids)
# BERT encoder.
self.bert_layers = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
# [CLS] token transformations.
self.pooler_dense = nn.Linear(config.hidden_size, config.hidden_size)
self.pooler_af = nn.Tanh()
self.init_weights()
def embed(self, input_ids):
input_shape = input_ids.size()
seq_length = input_shape[1]
# Get word embedding from self.word_embedding into input_embeds.
inputs_embeds = None
### TODO
inputs_embeds = self.word_embedding(input_ids)
# Use pos_ids to get position embedding from self.pos_embedding into pos_embeds.
pos_ids = self.position_ids[:, :seq_length]
pos_embeds = None
### TODO
pos_embeds = self.pos_embedding(pos_ids)
# Get token type ids. Since we are not considering token type, this embedding is
# just a placeholder.
tk_type_ids = torch.zeros(input_shape, dtype=torch.long, device=input_ids.device)
tk_type_embeds = self.tk_type_embedding(tk_type_ids)
# Add three embeddings together; then apply embed_layer_norm and dropout and return.
### TODO
combined = inputs_embeds + pos_embeds + tk_type_embeds
combined = self.embed_layer_norm(combined)
combined = self.embed_dropout(combined)
return combined
def encode(self, hidden_states, attention_mask):
"""
hidden_states: the output from the embedding layer [batch_size, seq_len, hidden_size]
attention_mask: [batch_size, seq_len]
"""
# Get the extended attention mask for self-attention.
# Returns extended_attention_mask of size [batch_size, 1, 1, seq_len].
# Distinguishes between non-padding tokens (with a value of 0) and padding tokens
# (with a value of a large negative number).
extended_attention_mask: torch.Tensor = get_extended_attention_mask(attention_mask, self.dtype)
# Pass the hidden states through the encoder layers.
for i, layer_module in enumerate(self.bert_layers):
# Feed the encoding from the last bert_layer to the next.
hidden_states = layer_module(hidden_states, extended_attention_mask)
return hidden_states
def forward(self, input_ids, attention_mask):
"""
input_ids: [batch_size, seq_len], seq_len is the max length of the batch
attention_mask: same size as input_ids, 1 represents non-padding tokens, 0 represents padding tokens
"""
# Get the embedding for each input token.
embedding_output = self.embed(input_ids=input_ids)
# Feed to a transformer (a stack of BertLayers).
sequence_output = self.encode(embedding_output, attention_mask=attention_mask)
# Get cls token hidden state.
first_tk = sequence_output[:, 0]
first_tk = self.pooler_dense(first_tk)
first_tk = self.pooler_af(first_tk)
return {'last_hidden_state': sequence_output, 'pooler_output': first_tk}