-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
286 lines (237 loc) · 8.95 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# -*- coding: utf-8 -*-
import unittest
from collections import defaultdict
from evaluator import Evaluator as E
from instance import Instance
from heuristic import Heuristic
from solution import Solution
from local_search import LocalSearch
from simulated_annealing import SimulatedAnnealing
from tabu_search import TabuSearch
import similarity
class Test_heuristic(unittest.TestCase):
def setUp(self):
self.flow = [
[0, 1, 2],
[4, 0, 5],
[7, 2, 0]
]
self.distance = [
[0, 5, 2],
[1, 0, 1],
[6, 2, 0]
]
self.i = Instance(None, self.distance, self.flow)
self.h = Heuristic()
def test_sorted_list_flow(self):
expected = [(2, 0, 7), (1, 2, 5), (1, 0, 4),
(0, 2, 2), (2, 1, 2), (0, 1, 1)]
actual = self.h.sorted_list(self.i.flow, True)
self.assertEqual(actual, expected)
def test_sorted_list_distance(self):
expected = [(1, 0, 1), (1, 2, 1), (0, 2, 2),
(2, 1, 2), (0, 1, 5), (2, 0, 6)]
actual = self.h.sorted_list(self.i.distance, False)
self.assertEqual(actual, expected)
def test_unique_rows_columns_flow(self):
expected = [2, 0, 1]
actual = self.h.unique_rows_columns(
self.h.sorted_list(self.i.flow, True))
self.h.append_unpaired(actual, len(self.i.flow))
self.assertEqual(actual, expected)
def test_unique_rows_columns_distance(self):
expected = [1, 0, 2]
actual = self.h.unique_rows_columns(
self.h.sorted_list(self.i.distance, False))
self.h.append_unpaired(actual, len(self.i.distance))
self.assertEqual(actual, expected)
def test_heuristic_solution(self):
expected = Solution((0, 2, 1))
actual = self.h.solve(self.i)
self.assertTupleEqual(actual.sequence, expected.sequence)
class TestLocalSearch(unittest.TestCase):
def setUp(self):
self.flow = [
[0, 1, 2],
[4, 0, 5],
[7, 2, 0]]
self.distance = [
[0, 5, 2],
[1, 0, 1],
[6, 2, 0]]
self.i = Instance(None, self.distance, self.flow)
self.ls_steepest = LocalSearch()
self.ls_greedy = LocalSearch(greedy=True)
self.startpoint = Solution((0, 1, 2))
def test_solve_steepest_with_startpoint(self):
expected = (2, 1, 0)
actual = self.ls_steepest.solve(self.i, self.startpoint).sequence
self.assertEqual(expected, actual)
def test_solve_greedy_with_startpoint(self):
expected = (2, 1, 0)
actual = self.ls_greedy.solve(self.i, self.startpoint).sequence
self.assertEqual(expected, actual)
class TestSimulatedAnnealing(unittest.TestCase):
def setUp(self):
self.flow = [
[0, 1, 2],
[4, 0, 5],
[7, 2, 0]]
self.distance = [
[0, 5, 2],
[1, 0, 1],
[6, 2, 0]]
self.i = Instance(None, self.distance, self.flow)
self.sa = SimulatedAnnealing()
self.startpoint = Solution((0, 1, 2))
def test_solve_with_startpoint(self):
expected = (2, 1, 0)
actual = self.sa.solve(self.i, self.startpoint).sequence
self.assertEqual(expected, actual)
def test_guess_temperature(self):
expected = 255.0
actual = self.sa._guess_temp(None, prob=0.98, df=1000)
self.assertAlmostEqual(expected, actual, -1)
def test_guess_temperature_for_given_instance(self):
expected = 3.5
actual = self.sa._guess_temp(self.i, prob=0.95)
self.assertAlmostEqual(expected, actual, 0)
class TestTabuSearch(unittest.TestCase):
def setUp(self):
self.flow = [
[0, 1, 2],
[4, 0, 5],
[7, 2, 0]]
self.distance = [
[0, 5, 2],
[1, 0, 1],
[6, 2, 0]]
self.i = Instance(None, self.distance, self.flow)
self.e = E(self.i)
self.ts = TabuSearch()
self.startpoint = Solution((0, 1, 2))
def test_filter_moves(self):
moves = [(1, 2),
(1, 3),
(2, 3)]
tabu = defaultdict(int, {(1, 2): 1, (2, 3): 1})
expected = [(1, 3)]
actual = list(self.ts._get_filtered_moves(moves, tabu=tabu))
self.assertEqual(expected, actual)
def test_filter_moves_with_aspiration(self):
self.i = Instance(None, self.distance, self.flow)
self.e = E(self.i)
self.startpoint = Solution((2, 1, 0))
moves = [(0, 1),
(0, 2),
(1, 2)]
tabu = defaultdict(int, {(0, 1): 1, (1, 2): 2, (0, 2): 3})
expected = [(0, 1),
(0, 2),
(1, 2)]
actual = list(self.ts._get_filtered_moves(moves, e=self.e,
current=(self.startpoint, self.e.evaluate(self.startpoint)),
tabu=tabu))
self.assertEqual(expected, actual)
def test_decrease_tabu_penalty(self):
tabu = defaultdict(int, {(1, 2): 2, (2, 3): 1})
expected = [(1, 2)]
self.ts._decrease_tabu_penalty(tabu)
actual = tabu.keys()
self.assertEqual(expected, actual)
def test_select_best_move(self):
current = self.startpoint
moves = [(0, 1),
(0, 2),
(1, 2)]
expected = (0, 2)
actual = self.ts._select_best_move(current, moves, self.e)
self.assertEqual(expected, actual)
def test_select_best_moves(self):
current = self.startpoint
moves = [(0, 1),
(0, 2),
(1, 2)]
expected = [(0, 2),
(1, 2)]
actual = self.ts._select_best_moves(current, moves, self.e, 2)
self.assertEqual(expected, actual)
def test_with_startpoint(self):
expected = (2, 1, 0)
actual = self.ts.solve(self.i, self.startpoint).sequence
self.assertEqual(expected, actual)
class SimilarityTest(unittest.TestCase):
def setUp(self):
self.s1 = Solution((0, 1, 2))
self.s2 = Solution((0, 2, 1))
self.s3 = Solution((0, 1, 2))
self.flow = [
[0, 1, 2],
[4, 0, 5],
[7, 2, 0]]
self.distance = [
[0, 5, 5],
[4, 2, 2],
[4, 2, 2]]
self.i = Instance(None, self.distance, self.flow)
self.flow2 = [
[0, 1, 2],
[4, 0, 5],
[7, 2, 0]]
self.distance2 = [
[0, 5, 2],
[1, 0, 1],
[6, 2, 0]]
self.i2 = Instance(None, self.distance2, self.flow2)
def test_binary_similarity(self):
expected = 0.3333333333333333
actual = similarity.binary_solution_similarity(self.s1, self.s2)
self.assertAlmostEqual(actual, expected)
def test_partial_solution_similarity_identical1(self):
expected = 1.0
actual = similarity.binary_solution_similarity(self.s1, self.s3)
self.assertEqual(actual, expected)
def test_ratio_similarity(self):
expected = (1.0 + 2.0 / 3.0 + 0.5) / 3.0
actual = similarity.ratio_similarity([3, 4, 2], [3, 6, 1])
self.assertEqual(actual, expected)
def test_partial_solution_similarity_identical2(self):
expected = 1.0
actual = similarity.partial_solution_similarity(self.s1,
self.s2, self.i)
self.assertEqual(actual, expected)
def test_partial_solution_similarity_identical3(self):
expected = 1.0
actual = similarity.partial_solution_similarity(self.s1,
self.s3, self.i2)
self.assertEqual(actual, expected)
def test_partial_solution_similarity(self):
expected = (1.0 + 1.0 / 18.0 + 4.0 / 30.0) / 3.0
actual = similarity.partial_solution_similarity(self.s1,
self.s2, self.i2)
self.assertAlmostEqual(actual, expected)
class TestSolution(unittest.TestCase):
def setUp(self):
self.s = Solution((0, 1, 2))
def test_move_generation(self):
expected = [(0, 1), (0, 2), (1, 2)]
actual = list(self.s.moves())
self.assertEqual(actual, expected)
def test_make_move1(self):
expected = (1, 0, 2)
actual = self.s.make_move((0, 1)).sequence
self.assertEqual(actual, expected)
def test_make_move2(self):
expected = (2, 1, 0)
actual = self.s.make_move((0, 2)).sequence
self.assertEqual(actual, expected)
def test_make_move3(self):
expected = (0, 2, 1)
actual = self.s.make_move((1, 2)).sequence
self.assertEqual(actual, expected)
def test_neighbours_generation(self):
expected = [(1, 0, 2), (2, 1, 0), (0, 2, 1)]
actual = map(lambda s: s.sequence, list(self.s.neighbours()))
self.assertEqual(actual, expected)
if __name__ == '__main__':
unittest.main()