-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlocal_search.py
47 lines (37 loc) · 1.23 KB
/
local_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# -*- coding: utf-8 -*-
from random_solver import Random
from evaluator import Evaluator
class LocalSearch(object):
def __init__(self, greedy=False):
self.select_step = self._steepest
if greedy:
self.select_step = self._greedy
def solve(self, instance, startpoint=None):
if startpoint is None:
startpoint = Random().solve(instance)
e = Evaluator(instance)
current = (startpoint, e.evaluate(startpoint))
while True:
next_step = self.select_step(e, current)
if not next_step:
break
else:
current = next_step
return current[0]
def _greedy(self, evaluator, current):
for n in current[0].neighbours():
n_score = evaluator.evaluate(n)
if n_score < current[1]:
return (n, n_score)
return None
def _steepest(self, evaluator, current):
best = current
improved = False
for n in current[0].neighbours():
n_score = evaluator.evaluate(n)
if n_score < best[1]:
best = (n, n_score)
improved = True
if improved:
return best
return None