-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmarks.py
282 lines (238 loc) · 12.6 KB
/
benchmarks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import time
import os
import re
import argparse
import math
import evaluator
import instance
import heuristic
import random_solver
import local_search
import similarity
from random_solver import Random
from simulated_annealing import SimulatedAnnealing
from tabu_search import TabuSearch
def compute(inst, alg, n, max_time):
results = []
startpoints = []
start = time.clock()
for i in range(n):
if alg[0] == "Greedy" or alg[0] == "Tabu" or alg[0] == "Annealing":
startpoint = Random().solve(inst)
startpoints.append(startpoint)
results.append(alg[1].solve(inst, startpoint))
else:
results.append(alg[1].solve(inst))
elapsed = (time.clock()-start)
if elapsed >= max_time:
break
stop = time.clock()
elapsed = (stop-start)
mean_time = elapsed / float(len(results))
return elapsed, mean_time, results, startpoints
def mean(data):
return sum(data) / len(data)
def sd(data, mean):
return math.sqrt(sum([math.pow(x - mean, 2) for x in data])/(len(data) ))
def multirandom_statistics(qualities):
bests = []
best = 0
sum = 0.0
means = []
for q in qualities:
best = q if q > best else best
bests.append(best)
sum += float(q)
means.append(sum / float(len(bests)))
return bests, means
def write_multirandom_statistics(currents, bests, means, instance):
with open(results_dir+"multirandom_"+instance+".dat", "w") as file:
file.write("i current best mean\n")
for i, current_best_mean in enumerate(zip(currents, bests, means)):
current, best, mean = current_best_mean
file.write("{0} {1} {2} {3}\n".format(i, current, best, mean))
file.close()
def write_results(results, measure_names):
for alg, instances in results.iteritems():
result_filepath = results_dir + alg + ".dat"
result_file = open(result_filepath, "w")
result_file.write("N Instance")
for measure in sorted(measure_names):
result_file.write(" " + measure)
result_file.write("\n")
counter = 0
for instance in sorted(instances, key=lambda i:i[1]):
counter+=1#instance[1]
result_file.write(str(counter)+" ")
result_file.write(instance[0])
measures = instances[instance]
for measure in sorted(measure_names):
value = measures[measure]
result_file.write(" "+str(value))
result_file.write("\n")
result_file.close()
def write_gs_comparision(gs_comparision):
gnuplot_file = open(results_dir + "gnuplot_gs.plt", "w")
for instance, qualities in gs_comparision.items():
gnuplot_file.write("set output \"gs_comparision_{0}.pdf\"\n plot \"gs_comparision_{0}.dat\" using 1:2 notitle\n unset output\n\n".format(instance))
result_filepath = results_dir + "gs_comparision_"+instance+".dat"
with open(result_filepath, "w") as f:
f.write("Startpoint\tSolution\n")
for start_quality, solution_quality in qualities:
f.write(str(start_quality)+"\t"+str(solution_quality)+"\n")
f.close()
gnuplot_file.close()
def write_gnuplot_multirandom_commands(instances):
gnuplot_file = open(results_dir + "gnuplot_multirandom.plt", "w")
gnuplot_file.write("set ylabel \"Quality\"\n")
gnuplot_file.write("set xlabel \"Number of restarts\"\n\n")
gnuplot_file.write("set key right bottom\n\n")
for instance in gs_comparision:
gnuplot_file.write("set output \"multirandom_{0}.pdf\"\n plot \"multirandom_{0}.dat\" using 1:2 title columnheader, \"multirandom_{0}.dat\" using 1:3 title columnheader, \"multirandom_{0}.dat\" using 1:4 title columnheader with linespoints \n unset output\n\n".format(instance))
gnuplot_file.close()
def solutions_similarity(solutions, instance):
binary_similarities = []
partial_similarities = []
for s1 in solutions:
for s2 in solutions:
binary_similarities.append(similarity.binary_solution_similarity(s1, s2))
partial_similarities.append(similarity.partial_solution_similarity(s1, s2, instance))
return binary_similarities, partial_similarities
if __name__ == '__main__':
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description = "Benchmark for optimisation algorithms.",
prog = "benchmarks",
epilog = u"Authors:\t\tKrzysztof Urban & Tomasz Ziętkiewicz. 2011\nCopyright:\tThis is free software: you are free to change and redistribute it.\n\t\tThere is NO WARRANTY, to the extent permitted by law."
)
parser.add_argument('-R', '--Random', action='append_const', dest='choosen_algorithms',
const='Random', help='Turns on Random algorithm')
parser.add_argument('-M', '--Multirandom', action='append_const', dest='choosen_algorithms',
const='Multirandom', help='Turns on Multirandom algorithm')
parser.add_argument('-H', '--Heuristic', action='append_const', dest='choosen_algorithms',
const='Heuristic', help='Turns on Heuristic algorithm')
parser.add_argument('-G', '--Greedy', action='append_const', dest='choosen_algorithms',
const='Greedy', help='Turns on Greedy algorithm')
parser.add_argument('-S', '--Steepest', action='append_const', dest='choosen_algorithms',
const='Steepest', help='Turns on Steepest algorithm')
parser.add_argument('-A', '--Annealing', action='append_const', dest='choosen_algorithms',
const='Annealing', help='Turns on simulated annealing')
parser.add_argument('-T', '--Tabu', action='append_const', dest='choosen_algorithms',
const='Tabu', help='Turns on tabu search algorithm')
parser.add_argument('-n', '--norepeats', help='Number of repeats', default='100')
parser.add_argument('-t', '--maxtime', help='Maximum time of computation', default='180')
parser.add_argument('-d', '--data', help='Data dir path', default='data')
parser.add_argument('-r', '--results', help='Results dir path', default='results')
parser.add_argument('-v', '--version', action='version', version='%(prog)s 0.3')
args = parser.parse_args()
algorithms = []
all_algorithms = [("Greedy", local_search.LocalSearch(greedy=True)),
("Steepest", local_search.LocalSearch()),
("Heuristic", heuristic.Heuristic()),
("Random", random_solver.Random()),
("Multirandom", random_solver.Random()),
("Annealing", SimulatedAnnealing()),
("Tabu", TabuSearch())]
for alg in all_algorithms:
if alg[0] in args.choosen_algorithms:
algorithms.append(alg)
measures = sorted(["quality", "time", "effectiveness", "quality_sd",
"best_quality", "z-binary_similarity", "z-partial_similarity", "z-binary_similarity_sd", "z-partial_similarity_sd"])
data_dir = args.data+"/"
results_dir = args.results+"/"
results = {}
gs_comparision = {}
for alg in algorithms:
results[alg[0]] = {}
ls = os.walk(data_dir)
instance_names = []
for dirpath, dirnames, filenames in ls:
instance_names += [re.sub(r"\.dat", "", file) for file in filenames if re.search(r"\.dat", file)]
instances = sorted(
[(instance_name, instance.Instance(filename = data_dir+instance_name+".dat"))
for instance_name in instance_names],
key=lambda i:len(i[1]))
optimal_solutions_values = {}
for instance_name in instance_names:
with open(data_dir+instance_name+".sln") as f:
value = int(f.readline().split()[1])
optimal_solutions_values[instance_name] = value
n = 10
max_time = 18
elapsed = 0
for instance_tuple in instances:
inst = instance_tuple[1]
instance_name = instance_tuple[0]
eval_ = evaluator.Evaluator(inst)
print "Instance: " + instance_name
for alg in algorithms:
results[alg[0]][(instance_name, len(inst))] = {}
print "\tAlgorithm: " + alg[0]
if alg[0] == "Heuristic":
n = 100
elif alg[0] in ["Random", "Multirandom"]:
#n = 5000000
n = 500000
elif alg[0] in ["Greedy", "Tabu"]:
n = 100
elif alg[0] in ["Annealing"]:
n = 100
else:
n = 100
if alg[0] in ["Greedy", "Steepest", "Annealing", "Tabu"]:
max_time = int(args.maxtime)
print "MAxtime: $1".format(max_time)
elapsed, mean_time, solutions, startpoints = compute(inst, alg, n, max_time)
if alg[0] in ["Greedy", "Steepest"]:
max_time = mean_time
start = time.clock()
solutions_performance = [float(eval_.evaluate(solution)) for solution in solutions]
stop = time.clock()
eval_time = stop - start
if alg[0] == "Multirandom":
elapsed += eval_time
solutions_quality = [(float(optimal_solutions_values[instance_name]) / solution_performance) * 100.0
for solution_performance in solutions_performance]
solutions_similarities = solutions_similarity(solutions[:10], inst)
binary_similarities = solutions_similarities[0]
partial_similarities = solutions_similarities[1]
mean_binary_similarity = mean(binary_similarities)
mean_partial_similarity = mean(partial_similarities)
binary_similarity_sd = sd(binary_similarities, mean_binary_similarity)
partial_similarity_sd = sd(partial_similarities, mean_partial_similarity)
if(alg[0] == "Greedy"):
startpoints_performance = [float(eval_.evaluate(startpoint)) for startpoint in startpoints]
startpoints_quality = [(float(optimal_solutions_values[instance_name]) / startpoint_performance) * 100.0
for startpoint_performance in startpoints_performance]
gs_comparision[instance_name] = zip(startpoints_quality, solutions_quality)
bests, means = multirandom_statistics(solutions_quality)
write_multirandom_statistics(solutions_quality, bests, means, instance_name)
#solutions_performance = solutions_performance[:10]
#solutions_quality = solutions_quality[:10]
write_gs_comparision(gs_comparision)
write_gnuplot_multirandom_commands(gs_comparision)
#mean_result = mean(solutions_performance)
best_result = min(solutions_performance)
#worst_result = max(solutions_performance)
best_quality = optimal_solutions_values[instance_name] / best_result * 100.0
#worst_quality = optimal_solutions_values[instance_name] / worst_result * 100.0
mean_quality = mean(solutions_quality[:10])
quality_sd = sd(solutions_quality[:10], mean_quality)
results[alg[0]][(instance_name, len(inst))]["quality"] = mean_quality
results[alg[0]][(instance_name, len(inst))]["time"] = mean_time
results[alg[0]][(instance_name, len(inst))]["effectiveness"] = mean_quality / mean_time
results[alg[0]][(instance_name, len(inst))]["quality_sd"] = quality_sd
results[alg[0]][(instance_name, len(inst))]["best_quality"] = best_quality
results[alg[0]][(instance_name, len(inst))]["z-binary_similarity"] = mean_binary_similarity
results[alg[0]][(instance_name, len(inst))]["z-partial_similarity"] = mean_partial_similarity
results[alg[0]][(instance_name, len(inst))]["z-binary_similarity_sd"] = binary_similarity_sd
results[alg[0]][(instance_name, len(inst))]["z-partial_similarity_sd"] = partial_similarity_sd
#results[alg[0]][(instance_name, len(inst))]["worst_quality"] = worst_quality
print "\t\ttime: "+str(elapsed)
print "\t\tMean Time: " + str(mean_time)
print "\t\tMean result quality: " + str(mean_quality)
print "\t\tBest result quality: " + str(best_quality)
#print "\t\tMean result: " + str(mean_result)
print "\t\tMean effectiveness: " + str(mean_quality / mean_time)
print "\t\tQuality SD: " + str(quality_sd)
write_results(results, measures)