-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
501 lines (427 loc) · 23.5 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
import tensorflow as tf
import tensorflow_addons as tfa
from custom_layers import ReflectionPadding2D, ResizeLayer, SqueezeExciteBlock
class DSR_Base(tf.keras.Model):
def __init__(self, **kwargs):
super(DSR_Base, self).__init__(**kwargs)
# Encoder)
self.conv1_1 = tf.keras.layers.Conv2D(64, (3,3), padding='same', activation='relu', kernel_initializer='he_normal',input_shape=[192,256,4])
self.conv1_bn1 = tf.keras.layers.BatchNormalization()
self.conv1_2 = tf.keras.layers.Conv2D(64, (3,3), padding='same', activation='relu', kernel_initializer='he_normal')
self.conv1_bn2 = tf.keras.layers.BatchNormalization()
self.maxpool1 = tf.keras.layers.MaxPooling2D(pool_size=(2,2))
self.conv2_1 = tf.keras.layers.Conv2D(128, (3,3), padding='same', activation='relu', kernel_initializer='he_normal')
self.conv2_bn1 = tf.keras.layers.BatchNormalization()
self.conv2_2 = tf.keras.layers.Conv2D(128, (3,3), padding='same', activation='relu', kernel_initializer='he_normal')
self.conv2_bn2 = tf.keras.layers.BatchNormalization()
self.maxpool2 = tf.keras.layers.MaxPooling2D(pool_size=(2,2))
self.conv3_1 = tf.keras.layers.Conv2D(256, (3,3), padding='same', activation='relu', kernel_initializer='he_normal')
self.conv3_bn1 = tf.keras.layers.BatchNormalization()
self.conv3_2 = tf.keras.layers.Conv2D(256, (3,3), padding='same', activation='relu', kernel_initializer='he_normal')
self.conv3_bn2 = tf.keras.layers.BatchNormalization()
self.maxpool3 = tf.keras.layers.MaxPooling2D(pool_size=(2,2))
self.conv4_1 = tf.keras.layers.Conv2D(512, (3,3), padding='same', activation='relu', kernel_initializer='he_normal')
self.conv4_bn1 = tf.keras.layers.BatchNormalization()
self.conv4_2 = tf.keras.layers.Conv2D(512, (3,3), padding='same', activation='relu', kernel_initializer='he_normal')
self.conv4_bn2 = tf.keras.layers.BatchNormalization()
self.maxpool4 = tf.keras.layers.MaxPooling2D(pool_size=(2,2))
# Bottleneck
self.diconv1 = tf.keras.layers.Conv2D(256, (3,3), dilation_rate=1, padding='same', activation='relu', kernel_initializer='he_normal')
self.diconv1_bn1 = tf.keras.layers.BatchNormalization()
self.diconv2 = tf.keras.layers.Conv2D(256, (3,3), dilation_rate=2, padding='same', activation='relu', kernel_initializer='he_normal')
self.diconv2_bn1 = tf.keras.layers.BatchNormalization()
self.diconv3 = tf.keras.layers.Conv2D(256, (3,3), dilation_rate=4, padding='same', activation='relu', kernel_initializer='he_normal')
self.diconv3_bn1 = tf.keras.layers.BatchNormalization()
self.diconv4 = tf.keras.layers.Conv2D(256, (3,3), dilation_rate=8, padding='same', activation='relu', kernel_initializer='he_normal')
self.diconv4_bn1 = tf.keras.layers.BatchNormalization()
self.diconcat = tf.keras.layers.Concatenate(axis=-1)
# Decoder
self.ups1 = tf.keras.layers.UpSampling2D((2,2))
self.deconv1_1 = tf.keras.layers.Conv2D(512, (2,2), padding='same', activation='relu', kernel_initializer='he_normal')
self.deconv1_bn1 = tf.keras.layers.BatchNormalization()
self.deconv1_se1 = SqueezeExciteBlock()
self.concat1 = tf.keras.layers.Concatenate(axis=-1)
self.deconv1_2 = tf.keras.layers.Conv2D(512, (3,3), padding='same', activation='relu', kernel_initializer='he_normal')
self.deconv1_bn2 = tf.keras.layers.BatchNormalization()
self.deconv1_3 = tf.keras.layers.Conv2D(512, (3,3), padding='same', activation='relu', kernel_initializer='he_normal')
self.deconv1_bn3 = tf.keras.layers.BatchNormalization()
self.ups2 = tf.keras.layers.UpSampling2D((2,2))
self.deconv2_1 = tf.keras.layers.Conv2D(256, (2,2), padding='same', activation='relu', kernel_initializer='he_normal')
self.deconv2_bn1 = tf.keras.layers.BatchNormalization()
self.deconv2_se1 = SqueezeExciteBlock()
self.concat2 = tf.keras.layers.Concatenate(axis=-1)
self.deconv2_2 = tf.keras.layers.Conv2D(256, (3,3), padding='same', activation='relu', kernel_initializer='he_normal')
self.deconv2_bn2 = tf.keras.layers.BatchNormalization()
self.deconv2_3 = tf.keras.layers.Conv2D(256, (3,3), padding='same', activation='relu', kernel_initializer='he_normal')
self.deconv2_bn3 = tf.keras.layers.BatchNormalization()
self.ups3 = tf.keras.layers.UpSampling2D((2,2))
self.deconv3_1 = tf.keras.layers.Conv2D(128, (2,2), padding='same', activation='relu', kernel_initializer='he_normal')
self.deconv3_bn1 = tf.keras.layers.BatchNormalization()
self.deconv3_se1 = SqueezeExciteBlock()
self.concat3 = tf.keras.layers.Concatenate(axis=-1)
self.deconv3_2 = tf.keras.layers.Conv2D(128, (3,3), padding='same', activation='relu', kernel_initializer='he_normal')
self.deconv3_bn2 = tf.keras.layers.BatchNormalization()
self.deconv3_3 = tf.keras.layers.Conv2D(128, (3,3), padding='same', activation='relu', kernel_initializer='he_normal')
self.deconv3_bn3 = tf.keras.layers.BatchNormalization()
self.ups4 = tf.keras.layers.UpSampling2D((2,2))
self.deconv4_1 = tf.keras.layers.Conv2D(64, (2,2), padding='same', activation='relu', kernel_initializer='he_normal')
self.deconv4_bn1 = tf.keras.layers.BatchNormalization()
self.deconv4_se1 = SqueezeExciteBlock()
self.concat4 = tf.keras.layers.Concatenate(axis=-1)
self.deconv4_2 = tf.keras.layers.Conv2D(64, (3,3), padding='same', activation='relu', kernel_initializer='he_normal')
self.deconv4_bn2 = tf.keras.layers.BatchNormalization()
self.deconv4_3 = tf.keras.layers.Conv2D(64, (3,3), padding='same', activation='relu', kernel_initializer='he_normal')
self.deconv4_bn3 = tf.keras.layers.BatchNormalization()
self.outputs = tf.keras.layers.Conv2D(3, (1,1), activation='sigmoid')
def call(self, inputs, training=False, **kwargs):
# Encoder
c1_1 = self.conv1_1(inputs)
c1_bn1 = self.conv1_bn1(c1_1, training=training)
c1_2 = self.conv1_2(c1_bn1)
c1_bn2 = self.conv1_bn2(c1_2, training=training)
mp1 = self.maxpool1(c1_bn2)
c2_1 = self.conv2_1(mp1)
c2_bn1 = self.conv2_bn1(c2_1, training=training)
c2_2 = self.conv2_2(c2_bn1)
c2_bn2 = self.conv2_bn2(c2_2, training=training)
mp2 = self.maxpool2(c2_bn2)
c3_1 = self.conv3_1(mp2)
c3_bn1 = self.conv3_bn1(c3_1, training=training)
c3_2 = self.conv3_2(c3_bn1)
c3_bn2 = self.conv3_bn2(c3_2, training=training)
mp3 = self.maxpool3(c3_bn2)
c4_1 = self.conv4_1(mp3)
c4_bn1 = self.conv4_bn1(c4_1, training=training)
c4_2 = self.conv4_2(c4_bn1)
c4_bn2 = self.conv4_bn2(c4_2, training=training)
mp4 = self.maxpool4(c4_bn2)
# BottleNeck
bt1 = self.diconv1(mp4)
bt1 = self.diconv1_bn1(bt1,training=training)
bt2 = self.diconv2(mp4)
bt2 = self.diconv2_bn1(bt2,training=training)
bt3 = self.diconv3(mp4)
bt3 = self.diconv3_bn1(bt3,training=training)
bt4 = self.diconv4(mp4)
bt4 = self.diconv4_bn1(bt4,training=training)
btc = self.diconcat([bt1,bt2,bt3,bt4])
# Decoder
x = self.ups1(btc)
x = self.deconv1_1(x)
x = self.deconv1_bn1(x, training=training)
x = self.deconv1_se1(x)
x = self.concat1([x,c4_1])
x = self.deconv1_2(x)
x = self.deconv1_bn2(x, training=training)
x = self.deconv1_3(x)
x = self.deconv1_bn3(x, training=training)
x = self.ups2(x)
x = self.deconv2_1(x)
x = self.deconv2_bn1(x, training=training)
x = self.deconv2_se1(x)
x = self.concat2([x,c3_1])
x = self.deconv2_2(x)
x = self.deconv2_bn2(x, training=training)
x = self.deconv2_3(x)
x = self.deconv2_bn3(x, training=training)
x = self.ups3(x)
x = self.deconv3_1(x)
x = self.deconv3_bn1(x, training=training)
x = self.deconv3_se1(x)
x = self.concat3([x,c2_1])
x = self.deconv3_2(x)
x = self.deconv3_bn2(x, training=training)
x = self.deconv3_3(x)
x = self.deconv3_bn3(x, training=training)
x = self.ups4(x)
x = self.deconv4_1(x)
x = self.deconv4_bn1(x, training=training)
x = self.deconv4_se1(x)
x = self.concat4([x,c1_1])
x = self.deconv4_2(x)
x = self.deconv4_bn2(x, training=training)
x = self.deconv4_3(x)
x = self.deconv4_bn3(x, training=training)
outputs = self.outputs(x)
return outputs
class DSR_Reflect(tf.keras.Model):
def __init__(self, **kwargs):
super(DSR_Reflect, self).__init__(**kwargs)
# Encoder
self.conv1_1 = tf.keras.layers.Conv2D(64, (3,3), padding='valid', activation='relu', kernel_initializer='he_normal')
self.conv1_pd1 = ReflectionPadding2D()
self.conv1_bn1 = tf.keras.layers.BatchNormalization()
self.conv1_2 = tf.keras.layers.Conv2D(64, (3,3), padding='valid', activation='relu', kernel_initializer='he_normal')
self.conv1_pd2 = ReflectionPadding2D()
self.conv1_bn2 = tf.keras.layers.BatchNormalization()
self.maxpool1 = tf.keras.layers.MaxPooling2D(pool_size=(2,2))
self.conv2_1 = tf.keras.layers.Conv2D(128, (3,3), padding='valid', activation='relu', kernel_initializer='he_normal')
self.conv2_pd1 = ReflectionPadding2D()
self.conv2_bn1 = tf.keras.layers.BatchNormalization()
self.conv2_2 = tf.keras.layers.Conv2D(128, (3,3), padding='valid', activation='relu', kernel_initializer='he_normal')
self.conv2_pd2 = ReflectionPadding2D()
self.conv2_bn2 = tf.keras.layers.BatchNormalization()
self.maxpool2 = tf.keras.layers.MaxPooling2D(pool_size=(2,2))
self.conv3_1 = tf.keras.layers.Conv2D(256, (3,3), padding='valid', activation='relu', kernel_initializer='he_normal')
self.conv3_pd1 = ReflectionPadding2D()
self.conv3_bn1 = tf.keras.layers.BatchNormalization()
self.conv3_2 = tf.keras.layers.Conv2D(256, (3,3), padding='valid', activation='relu', kernel_initializer='he_normal')
self.conv3_pd2 = ReflectionPadding2D()
self.conv3_bn2 = tf.keras.layers.BatchNormalization()
self.maxpool3 = tf.keras.layers.MaxPooling2D(pool_size=(2,2))
self.conv4_1 = tf.keras.layers.Conv2D(512, (3,3), padding='valid', activation='relu', kernel_initializer='he_normal')
self.conv4_pd1 = ReflectionPadding2D()
self.conv4_bn1 = tf.keras.layers.BatchNormalization()
self.conv4_2 = tf.keras.layers.Conv2D(512, (3,3), padding='valid', activation='relu', kernel_initializer='he_normal')
self.conv4_pd2 = ReflectionPadding2D()
self.conv4_bn2 = tf.keras.layers.BatchNormalization()
self.maxpool4 = tf.keras.layers.MaxPooling2D(pool_size=(2,2))
# Bottleneck
self.diconv1 = tf.keras.layers.Conv2D(256, (3,3), dilation_rate=1, padding='valid', activation='relu', kernel_initializer='he_normal')
self.diconv1_pd1 = ReflectionPadding2D()
self.diconv1_bn1 = tf.keras.layers.BatchNormalization()
self.diconv2 = tf.keras.layers.Conv2D(256, (3,3), dilation_rate=2, padding='valid', activation='relu', kernel_initializer='he_normal')
self.diconv2_pd1 = ReflectionPadding2D((2,2))
self.diconv2_bn1 = tf.keras.layers.BatchNormalization()
self.diconv3 = tf.keras.layers.Conv2D(256, (3,3), dilation_rate=4, padding='valid', activation='relu', kernel_initializer='he_normal')
self.diconv3_pd1 = ReflectionPadding2D((4,4))
self.diconv3_bn1 = tf.keras.layers.BatchNormalization()
self.diconv4 = tf.keras.layers.Conv2D(256, (3,3), dilation_rate=8, padding='valid', activation='relu', kernel_initializer='he_normal')
self.diconv4_pd1 = ReflectionPadding2D((8,8))
self.diconv4_bn1 = tf.keras.layers.BatchNormalization()
self.diconcat = tf.keras.layers.Concatenate(axis=-1)
# Decoder
self.ups1 = ResizeLayer()
self.deconv1_1 = tf.keras.layers.Conv2D(512, (3,3), padding='valid', activation='relu', kernel_initializer='he_normal')
self.deconv1_pd1 = ReflectionPadding2D()
self.deconv1_bn1 = tf.keras.layers.BatchNormalization()
self.deconv1_se1 = SqueezeExciteBlock()
self.concat1 = tf.keras.layers.Concatenate(axis=-1)
self.deconv1_2 = tf.keras.layers.Conv2D(512, (3,3), padding='valid', activation='relu', kernel_initializer='he_normal')
self.deconv1_pd2 = ReflectionPadding2D()
self.deconv1_bn2 = tf.keras.layers.BatchNormalization()
self.deconv1_3 = tf.keras.layers.Conv2D(512, (3,3), padding='valid', activation='relu', kernel_initializer='he_normal')
self.deconv1_pd3 = ReflectionPadding2D()
self.deconv1_bn3 = tf.keras.layers.BatchNormalization()
self.ups2 = ResizeLayer()
self.deconv2_1 = tf.keras.layers.Conv2D(256, (3,3), padding='valid', activation='relu', kernel_initializer='he_normal')
self.deconv2_pd1 = ReflectionPadding2D()
self.deconv2_bn1 = tf.keras.layers.BatchNormalization()
self.deconv2_se1 = SqueezeExciteBlock()
self.concat2 = tf.keras.layers.Concatenate(axis=-1)
self.deconv2_2 = tf.keras.layers.Conv2D(256, (3,3), padding='valid', activation='relu', kernel_initializer='he_normal')
self.deconv2_pd2 = ReflectionPadding2D()
self.deconv2_bn2 = tf.keras.layers.BatchNormalization()
self.deconv2_3 = tf.keras.layers.Conv2D(256, (3,3), padding='valid', activation='relu', kernel_initializer='he_normal')
self.deconv2_pd3 = ReflectionPadding2D()
self.deconv2_bn3 = tf.keras.layers.BatchNormalization()
self.ups3 = ResizeLayer()
self.deconv3_1 = tf.keras.layers.Conv2D(128, (3,3), padding='valid', activation='relu', kernel_initializer='he_normal')
self.deconv3_pd1 = ReflectionPadding2D()
self.deconv3_bn1 = tf.keras.layers.BatchNormalization()
self.deconv3_se1 = SqueezeExciteBlock()
self.concat3 = tf.keras.layers.Concatenate(axis=-1)
self.deconv3_2 = tf.keras.layers.Conv2D(128, (3,3), padding='valid', activation='relu', kernel_initializer='he_normal')
self.deconv3_pd2 = ReflectionPadding2D()
self.deconv3_bn2 = tf.keras.layers.BatchNormalization()
self.deconv3_3 = tf.keras.layers.Conv2D(128, (3,3), padding='valid', activation='relu', kernel_initializer='he_normal')
self.deconv3_pd3 = ReflectionPadding2D()
self.deconv3_bn3 = tf.keras.layers.BatchNormalization()
self.ups4 = ResizeLayer()
self.deconv4_1 = tf.keras.layers.Conv2D(64, (3,3), padding='valid', activation='relu', kernel_initializer='he_normal')
self.deconv4_pd1 = ReflectionPadding2D()
self.deconv4_bn1 = tf.keras.layers.BatchNormalization()
self.deconv4_se1 = SqueezeExciteBlock()
self.concat4 = tf.keras.layers.Concatenate(axis=-1)
self.deconv4_2 = tf.keras.layers.Conv2D(64, (3,3), padding='valid', activation='relu', kernel_initializer='he_normal')
self.deconv4_pd2 = ReflectionPadding2D()
self.deconv4_bn2 = tf.keras.layers.BatchNormalization()
self.deconv4_3 = tf.keras.layers.Conv2D(64, (3,3), padding='valid', activation='relu', kernel_initializer='he_normal')
self.deconv4_pd3 = ReflectionPadding2D()
self.deconv4_bn3 = tf.keras.layers.BatchNormalization()
self.outputs = tf.keras.layers.Conv2D(3, (1,1), activation='sigmoid')
def call(self, inputs, training=False, **kwargs):
# Encoder
c1_1 = self.conv1_1(inputs)
c1_pd1 = self.conv1_pd1(c1_1)
c1_bn1 = self.conv1_bn1(c1_pd1, training=training)
c1_2 = self.conv1_2(c1_bn1)
c1_pd2 = self.conv1_pd2(c1_2)
c1_bn2 = self.conv1_bn2(c1_pd2, training=training)
mp1 = self.maxpool1(c1_bn2)
c2_1 = self.conv2_1(mp1)
c2_pd1 = self.conv2_pd1(c2_1)
c2_bn1 = self.conv2_bn1(c2_pd1, training=training)
c2_2 = self.conv2_2(c2_bn1)
c2_pd2 = self.conv2_pd2(c2_2)
c2_bn2 = self.conv2_bn2(c2_pd2, training=training)
mp2 = self.maxpool2(c2_bn2)
c3_1 = self.conv3_1(mp2)
c3_pd1 = self.conv3_pd1(c3_1)
c3_bn1 = self.conv3_bn1(c3_pd1, training=training)
c3_2 = self.conv3_2(c3_bn1)
c3_pd2 = self.conv3_pd2(c3_2)
c3_bn2 = self.conv3_bn2(c3_pd2, training=training)
mp3 = self.maxpool3(c3_bn2)
c4_1 = self.conv4_1(mp3)
c4_pd1 = self.conv4_pd1(c4_1)
c4_bn1 = self.conv4_bn1(c4_pd1, training=training)
c4_2 = self.conv4_2(c4_bn1)
c4_pd2 = self.conv4_pd2(c4_2)
c4_bn2 = self.conv4_bn2(c4_pd2, training=training)
mp4 = self.maxpool4(c4_bn2)
# BottleNeck
bt1 = self.diconv1(mp4)
bt1 = self.diconv1_pd1(bt1)
bt1 = self.diconv1_bn1(bt1)
bt2 = self.diconv2(mp4)
bt2 = self.diconv2_pd1(bt2)
bt2 = self.diconv2_bn1(bt2)
bt3 = self.diconv3(mp4)
bt3 = self.diconv3_pd1(bt3)
bt3 = self.diconv3_bn1(bt3)
bt4 = self.diconv4(mp4)
bt4 = self.diconv4_pd1(bt4)
bt4 = self.diconv4_bn1(bt4)
btc = self.diconcat([bt1,bt2,bt3,bt4])
# Decoder
x = self.ups1(btc, c4_pd1.shape[1:-1])
x = self.deconv1_1(x)
x = self.deconv1_pd1(x)
x = self.deconv1_bn1(x, training=training)
x = self.deconv1_se1(x)
x = self.concat1([x,c4_pd1])
x = self.deconv1_2(x)
x = self.deconv1_pd2(x)
x = self.deconv1_bn2(x, training=training)
x = self.deconv1_3(x)
x = self.deconv1_pd3(x)
x = self.deconv1_bn3(x, training=training)
x = self.ups2(x, c3_pd1.shape[1:-1])
x = self.deconv2_1(x)
x = self.deconv2_pd1(x)
x = self.deconv2_bn1(x, training=training)
x = self.deconv2_se1(x)
x = self.concat2([x,c3_pd1])
x = self.deconv2_2(x)
x = self.deconv2_pd2(x)
x = self.deconv2_bn2(x, training=training)
x = self.deconv2_3(x)
x = self.deconv2_pd3(x)
x = self.deconv2_bn3(x, training=training)
x = self.ups3(x, c2_pd1.shape[1:-1])
x = self.deconv3_1(x)
x = self.deconv3_pd1(x)
x = self.deconv3_bn1(x, training=training)
x = self.deconv3_se1(x)
x = self.concat3([x,c2_pd1])
x = self.deconv3_2(x)
x = self.deconv3_pd2(x)
x = self.deconv3_bn2(x, training=training)
x = self.deconv3_3(x)
x = self.deconv3_pd3(x)
x = self.deconv3_bn3(x, training=training)
x = self.ups4(x, c1_pd1.shape[1:-1])
x = self.deconv4_1(x)
x = self.deconv4_pd1(x)
x = self.deconv4_bn1(x, training=training)
x = self.deconv4_se1(x)
x = self.concat4([x,c1_pd1])
x = self.deconv4_2(x)
x = self.deconv4_pd2(x)
x = self.deconv4_bn2(x, training=training)
x = self.deconv4_3(x)
x = self.deconv4_pd3(x)
x = self.deconv4_bn3(x, training=training)
outputs = self.outputs(x)
return outputs
class Discriminator(tf.keras.Model):
def __init__(self, **kwargs):
super(Discriminator, self).__init__(**kwargs)
self.conv1 = tf.keras.layers.Conv2D(32, (3,3), padding='same', input_shape=[192,256,3])
self.conv1_lr = tf.keras.layers.LeakyReLU(0.2)
self.conv1_bn = tf.keras.layers.BatchNormalization()
self.conv1_mp = tf.keras.layers.MaxPooling2D(pool_size=(2,2))
self.conv2 = tf.keras.layers.Conv2D(64, (3,3), padding='same')
self.conv2_lr = tf.keras.layers.LeakyReLU(0.2)
self.conv2_bn = tf.keras.layers.BatchNormalization()
self.conv2_mp = tf.keras.layers.MaxPooling2D(pool_size=(2,2))
self.conv3 = tf.keras.layers.Conv2D(64, (3,3), padding='same')
self.conv3_lr = tf.keras.layers.LeakyReLU(0.2)
self.conv3_bn = tf.keras.layers.BatchNormalization()
self.conv3_mp = tf.keras.layers.MaxPooling2D(pool_size=(2,2))
self.conv4 = tf.keras.layers.Conv2D(128, (3,3), padding='same')
self.conv4_lr = tf.keras.layers.LeakyReLU(0.2)
self.conv4_bn = tf.keras.layers.BatchNormalization()
self.conv4_mp = tf.keras.layers.MaxPooling2D(pool_size=(2,2))
self.flatten = tf.keras.layers.Flatten()
self.dense1 = tf.keras.layers.Dense(100, activation="tanh")
self.dense2 = tf.keras.layers.Dense(2, activation="tanh")
self.outputs = tf.keras.layers.Dense(1, activation="sigmoid")
def call(self, inputs, training=False, **kwargs):
x = self.conv1(inputs)
x = self.conv1_lr(x)
x = self.conv1_bn(x,training=training)
x = self.conv1_mp(x)
x = self.conv2(x)
x = self.conv2_lr(x)
x = self.conv2_bn(x,training=training)
x = self.conv2_mp(x)
x = self.conv3(x)
x = self.conv3_lr(x)
x = self.conv3_bn(x,training=training)
x = self.conv3_mp(x)
x = self.conv4(x)
x = self.conv4_lr(x)
x = self.conv4_bn(x,training=training)
x = self.conv4_mp(x)
x = self.flatten(x)
x = self.dense1(x)
x = self.dense2(x)
outputs = self.outputs(x)
return outputs
class Discriminator_wgan(tf.keras.Model):
def __init__(self, **kwargs):
super(Discriminator_wgan, self).__init__(**kwargs)
self.conv1 = tf.keras.layers.Conv2D(32, (3,3), padding='same', input_shape=[192,256,3])
self.conv1_lr = tf.keras.layers.LeakyReLU(0.2)
self.conv1_bn = tf.keras.layers.BatchNormalization()
self.conv1_mp = tf.keras.layers.MaxPooling2D(pool_size=(2,2))
self.conv2 = tf.keras.layers.Conv2D(64, (3,3), padding='same')
self.conv2_lr = tf.keras.layers.LeakyReLU(0.2)
self.conv2_bn = tf.keras.layers.BatchNormalization()
self.conv2_mp = tf.keras.layers.MaxPooling2D(pool_size=(2,2))
self.conv3 = tf.keras.layers.Conv2D(64, (3,3), padding='same')
self.conv3_lr = tf.keras.layers.LeakyReLU(0.2)
self.conv3_bn = tf.keras.layers.BatchNormalization()
self.conv3_mp = tf.keras.layers.MaxPooling2D(pool_size=(2,2))
self.conv4 = tf.keras.layers.Conv2D(64, (3,3), padding='same')
self.conv4_lr = tf.keras.layers.LeakyReLU(0.2)
self.conv4_bn = tf.keras.layers.BatchNormalization()
self.conv4_mp = tf.keras.layers.MaxPooling2D(pool_size=(2,2))
self.flatten = tf.keras.layers.Flatten()
self.dense1 = tf.keras.layers.Dense(100)
self.dense2 = tf.keras.layers.Dense(2)
self.outputs = tf.keras.layers.Dense(1)
def call(self, inputs, training=False, **kwargs):
x = self.conv1(inputs)
x = self.conv1_lr(x)
x = self.conv1_bn(x,training=training)
x = self.conv1_mp(x)
x = self.conv2(x)
x = self.conv2_lr(x)
x = self.conv2_bn(x,training=training)
x = self.conv2_mp(x)
x = self.conv3(x)
x = self.conv3_lr(x)
x = self.conv3_bn(x,training=training)
x = self.conv3_mp(x)
x = self.conv4(x)
x = self.conv4_lr(x)
x = self.conv4_bn(x,training=training)
x = self.conv4_mp(x)
x = self.flatten(x)
x = self.dense1(x)
x = self.dense2(x)
outputs = self.outputs(x)
return outputs