-
Notifications
You must be signed in to change notification settings - Fork 633
/
Copy pathadd_trace.Rd
251 lines (189 loc) · 7.09 KB
/
add_trace.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/add.R
\name{add_trace}
\alias{add_trace}
\alias{add_markers}
\alias{add_text}
\alias{add_paths}
\alias{add_lines}
\alias{add_segments}
\alias{add_polygons}
\alias{add_sf}
\alias{add_table}
\alias{add_parcoords}
\alias{add_ribbons}
\alias{add_area}
\alias{add_pie}
\alias{add_bars}
\alias{add_histogram}
\alias{add_histogram2d}
\alias{add_histogram2dcontour}
\alias{add_heatmap}
\alias{add_contour}
\alias{add_boxplot}
\alias{add_surface}
\alias{add_mesh}
\alias{add_scattergeo}
\alias{add_choropleth}
\title{Add trace(s) to a plotly visualization}
\usage{
add_trace(p, ..., data = NULL, inherit = TRUE)
add_markers(p, x = NULL, y = NULL, z = NULL, ..., data = NULL,
inherit = TRUE)
add_text(p, x = NULL, y = NULL, z = NULL, text = NULL, ...,
data = NULL, inherit = TRUE)
add_paths(p, x = NULL, y = NULL, z = NULL, ..., data = NULL,
inherit = TRUE)
add_lines(p, x = NULL, y = NULL, z = NULL, ..., data = NULL,
inherit = TRUE)
add_segments(p, x = NULL, y = NULL, xend = NULL, yend = NULL, ...,
data = NULL, inherit = TRUE)
add_polygons(p, x = NULL, y = NULL, ..., data = NULL,
inherit = TRUE)
add_sf(p, ..., x = ~x, y = ~y, data = NULL, inherit = TRUE)
add_table(p, ..., rownames = TRUE, data = NULL, inherit = TRUE)
add_parcoords(p, ..., data = NULL, inherit = TRUE)
add_ribbons(p, x = NULL, ymin = NULL, ymax = NULL, ...,
data = NULL, inherit = TRUE)
add_area(p, r = NULL, t = NULL, ..., data = NULL, inherit = TRUE)
add_pie(p, values = NULL, labels = NULL, ..., data = NULL,
inherit = TRUE)
add_bars(p, x = NULL, y = NULL, ..., data = NULL, inherit = TRUE)
add_histogram(p, x = NULL, y = NULL, ..., data = NULL,
inherit = TRUE)
add_histogram2d(p, x = NULL, y = NULL, z = NULL, ..., data = NULL,
inherit = TRUE)
add_histogram2dcontour(p, x = NULL, y = NULL, z = NULL, ...,
data = NULL, inherit = TRUE)
add_heatmap(p, x = NULL, y = NULL, z = NULL, ..., data = NULL,
inherit = TRUE)
add_contour(p, z = NULL, ..., data = NULL, inherit = TRUE)
add_boxplot(p, x = NULL, y = NULL, ..., data = NULL,
inherit = TRUE)
add_surface(p, z = NULL, ..., data = NULL, inherit = TRUE)
add_mesh(p, x = NULL, y = NULL, z = NULL, ..., data = NULL,
inherit = TRUE)
add_scattergeo(p, ...)
add_choropleth(p, z = NULL, ..., data = NULL, inherit = TRUE)
}
\arguments{
\item{p}{a plotly object}
\item{...}{Arguments (i.e., attributes) passed along to the trace \code{type}.
See \code{\link[=schema]{schema()}} for a list of acceptable attributes for a given trace \code{type}
(by going to \code{traces} -> \code{type} -> \code{attributes}). Note that attributes
provided at this level may override other arguments
(e.g. \code{plot_ly(x = 1:10, y = 1:10, color = I("red"), marker = list(color = "blue"))}).}
\item{data}{A data frame (optional) or \link[crosstalk:SharedData]{crosstalk::SharedData} object.}
\item{inherit}{inherit attributes from \code{\link[=plot_ly]{plot_ly()}}?}
\item{x}{the x variable.}
\item{y}{the y variable.}
\item{z}{a numeric matrix}
\item{text}{textual labels.}
\item{xend}{"final" x position (in this context, x represents "start")}
\item{yend}{"final" y position (in this context, y represents "start")}
\item{rownames}{whether or not to display the rownames of \code{data}.}
\item{ymin}{a variable used to define the lower boundary of a polygon.}
\item{ymax}{a variable used to define the upper boundary of a polygon.}
\item{r}{For polar chart only. Sets the radial coordinates.}
\item{t}{For polar chart only. Sets the radial coordinates.}
\item{values}{the value to associated with each slice of the pie.}
\item{labels}{the labels (categories) corresponding to \code{values}.}
\item{rownames}{whether or not to display the rownames of \code{data}.}
}
\description{
Add trace(s) to a plotly visualization
}
\examples{
# the `plot_ly()` function initiates an object, and if no trace type
# is specified, it sets a sensible default
p <- plot_ly(economics, x = ~date, y = ~uempmed)
p
# some `add_*()` functions are a specific case of a trace type
# for example, `add_markers()` is a scatter trace with mode of markers
add_markers(p)
# scatter trace with mode of text
add_text(p, text = "\%")
# scatter trace with mode of lines
add_paths(p)
# like `add_paths()`, but ensures points are connected according to `x`
add_lines(p)
# if you prefer to work with plotly.js more directly, can always
# use `add_trace()` and specify the type yourself
add_trace(p, type = "scatter", mode = "markers+lines")
# mappings provided to `plot_ly()` are "global", but can be overwritten
plot_ly(economics, x = ~date, y = ~uempmed, color = I("red"), showlegend = FALSE) \%>\%
add_lines() \%>\%
add_markers(color = ~pop)
# a number of `add_*()` functions are special cases of the scatter trace
plot_ly(economics, x = ~date) \%>\%
add_ribbons(ymin = ~pce - 1e3, ymax = ~pce + 1e3)
# use `group_by()` (or `group2NA()`) to apply visual mapping
# once per group (e.g. one line per group)
txhousing \%>\%
group_by(city) \%>\%
plot_ly(x = ~date, y = ~median) \%>\%
add_lines(color = I("black"))
\dontrun{
# use `add_sf()` or `add_polygons()` to create geo-spatial maps
# http://blog.cpsievert.me/2018/03/30/visualizing-geo-spatial-data-with-sf-and-plotly/
if (requireNamespace("sf", quietly = TRUE)) {
nc <- sf::st_read(system.file("shape/nc.shp", package = "sf"), quiet = TRUE)
plot_ly() \%>\% add_sf(data = nc)
}
# univariate summary statistics
plot_ly(mtcars, x = ~factor(vs), y = ~mpg) \%>\%
add_boxplot()
plot_ly(mtcars, x = ~factor(vs), y = ~mpg) \%>\%
add_trace(type = "violin")
# `add_histogram()` does binning for you...
mtcars \%>\%
plot_ly(x = ~factor(vs)) \%>\%
add_histogram()
# ...but you can 'pre-compute' bar heights in R
mtcars \%>\%
dplyr::count(vs) \%>\%
plot_ly(x = ~vs, y = ~n) \%>\%
add_bars()
# the 2d analogy of add_histogram() is add_histogram2d()/add_histogram2dcontour()
library(MASS)
(p <- plot_ly(geyser, x = ~waiting, y = ~duration))
add_histogram2d(p)
add_histogram2dcontour(p)
# the 2d analogy of add_bars() is add_heatmap()/add_contour()
# (i.e., bin counts must be pre-specified)
den <- kde2d(geyser$waiting, geyser$duration)
p <- plot_ly(x = den$x, y = den$y, z = den$z)
add_heatmap(p)
add_contour(p)
# `add_table()` makes it easy to map a data frame to the table trace type
plot_ly(economics) \%>\%
add_table()
# pie charts!
ds <- data.frame(labels = c("A", "B", "C"), values = c(10, 40, 60))
plot_ly(ds, labels = ~labels, values = ~values) \%>\%
add_pie() \%>\%
layout(title = "Basic Pie Chart using Plotly")
data(wind)
plot_ly(wind, r = ~r, t = ~t) \%>\%
add_area(color = ~nms) \%>\%
layout(radialaxis = list(ticksuffix = "\%"), orientation = 270)
# ------------------------------------------------------------
# 3D chart types
# ------------------------------------------------------------
plot_ly(z = ~volcano) \%>\%
add_surface()
plot_ly(x = c(0, 0, 1), y = c(0, 1, 0), z = c(0, 0, 0)) \%>\%
add_mesh()
}
}
\references{
\url{http://plotly-book.cpsievert.me/the-plotly-cookbook.html}
\url{https://plot.ly/r}
\url{https://plot.ly/r/reference/}
}
\seealso{
\code{\link[=plot_ly]{plot_ly()}}
}
\author{
Carson Sievert
}