Skip to content

Commit 53eab83

Browse files
committed
Created using Colaboratory
1 parent 51e1fa7 commit 53eab83

File tree

1 file changed

+207
-14
lines changed

1 file changed

+207
-14
lines changed

Testing_tutorial.ipynb

+207-14
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
"colab": {
66
"name": "Testing_tutorial.ipynb",
77
"provenance": [],
8-
"authorship_tag": "ABX9TyPtNVbGG+YNd1Y6fmT37q9p",
8+
"authorship_tag": "ABX9TyMf1BmJ3RBQ2bj7TzVXgfnN",
99
"include_colab_link": true
1010
},
1111
"kernelspec": {
@@ -751,12 +751,12 @@
751751
{
752752
"cell_type": "code",
753753
"metadata": {
754-
"id": "EjsXAuSdNHtc",
755-
"outputId": "70959bc1-420f-4c3c-c1b1-8983ed8dd481",
756754
"colab": {
757755
"base_uri": "https://localhost:8080/",
758756
"height": 203
759-
}
757+
},
758+
"id": "EjsXAuSdNHtc",
759+
"outputId": "70959bc1-420f-4c3c-c1b1-8983ed8dd481"
760760
},
761761
"source": [
762762
"# To read data as dataframe\n",
@@ -917,18 +917,113 @@
917917
{
918918
"cell_type": "code",
919919
"metadata": {
920+
"colab": {
921+
"base_uri": "https://localhost:8080/",
922+
"height": 172
923+
},
920924
"id": "9ez6DCbeNU3O",
921-
"outputId": "a39cb14c-e325-4042-f49f-dd975ac9d323",
925+
"outputId": "b65c7953-59d4-4bd5-b8ec-92df9e2d7f45"
926+
},
927+
"source": [
928+
"model = ols('Defaultee ~ C(Gender) + C(Ethnicity) + C(Gender):C(Ethnicity)', data=data).fit()\n",
929+
"sm.stats.anova_lm(model, typ=1)"
930+
],
931+
"execution_count": 83,
932+
"outputs": [
933+
{
934+
"output_type": "execute_result",
935+
"data": {
936+
"text/html": [
937+
"<div>\n",
938+
"<style scoped>\n",
939+
" .dataframe tbody tr th:only-of-type {\n",
940+
" vertical-align: middle;\n",
941+
" }\n",
942+
"\n",
943+
" .dataframe tbody tr th {\n",
944+
" vertical-align: top;\n",
945+
" }\n",
946+
"\n",
947+
" .dataframe thead th {\n",
948+
" text-align: right;\n",
949+
" }\n",
950+
"</style>\n",
951+
"<table border=\"1\" class=\"dataframe\">\n",
952+
" <thead>\n",
953+
" <tr style=\"text-align: right;\">\n",
954+
" <th></th>\n",
955+
" <th>df</th>\n",
956+
" <th>sum_sq</th>\n",
957+
" <th>mean_sq</th>\n",
958+
" <th>F</th>\n",
959+
" <th>PR(&gt;F)</th>\n",
960+
" </tr>\n",
961+
" </thead>\n",
962+
" <tbody>\n",
963+
" <tr>\n",
964+
" <th>C(Gender)</th>\n",
965+
" <td>1.0</td>\n",
966+
" <td>0.000677</td>\n",
967+
" <td>0.000677</td>\n",
968+
" <td>0.004523</td>\n",
969+
" <td>0.946415</td>\n",
970+
" </tr>\n",
971+
" <tr>\n",
972+
" <th>C(Ethnicity)</th>\n",
973+
" <td>2.0</td>\n",
974+
" <td>0.007807</td>\n",
975+
" <td>0.003903</td>\n",
976+
" <td>0.026083</td>\n",
977+
" <td>0.974256</td>\n",
978+
" </tr>\n",
979+
" <tr>\n",
980+
" <th>C(Gender):C(Ethnicity)</th>\n",
981+
" <td>2.0</td>\n",
982+
" <td>0.069887</td>\n",
983+
" <td>0.034944</td>\n",
984+
" <td>0.233504</td>\n",
985+
" <td>0.791864</td>\n",
986+
" </tr>\n",
987+
" <tr>\n",
988+
" <th>Residual</th>\n",
989+
" <td>394.0</td>\n",
990+
" <td>58.961630</td>\n",
991+
" <td>0.149649</td>\n",
992+
" <td>NaN</td>\n",
993+
" <td>NaN</td>\n",
994+
" </tr>\n",
995+
" </tbody>\n",
996+
"</table>\n",
997+
"</div>"
998+
],
999+
"text/plain": [
1000+
" df sum_sq mean_sq F PR(>F)\n",
1001+
"C(Gender) 1.0 0.000677 0.000677 0.004523 0.946415\n",
1002+
"C(Ethnicity) 2.0 0.007807 0.003903 0.026083 0.974256\n",
1003+
"C(Gender):C(Ethnicity) 2.0 0.069887 0.034944 0.233504 0.791864\n",
1004+
"Residual 394.0 58.961630 0.149649 NaN NaN"
1005+
]
1006+
},
1007+
"metadata": {},
1008+
"execution_count": 83
1009+
}
1010+
]
1011+
},
1012+
{
1013+
"cell_type": "code",
1014+
"metadata": {
1015+
"id": "huuCaEC9OmXt",
1016+
"outputId": "48cf90e8-a45b-4e5f-d635-6265ea7b1397",
9221017
"colab": {
9231018
"base_uri": "https://localhost:8080/",
9241019
"height": 172
9251020
}
9261021
},
9271022
"source": [
928-
"model = ols('Defaultee ~ C(Gender) + C(Ethnicity) + C(Gender):C(Ethnicity)', data=data).fit()\n",
1023+
"model = ols('Defaultee ~ C(Gender) + C(Ethnicity) + C(Gender)*C(Ethnicity)', data=data).fit()\n",
9291024
"sm.stats.anova_lm(model, typ=2)"
9301025
],
931-
"execution_count": 69,
1026+
"execution_count": 84,
9321027
"outputs": [
9331028
{
9341029
"output_type": "execute_result",
@@ -1000,7 +1095,105 @@
10001095
]
10011096
},
10021097
"metadata": {},
1003-
"execution_count": 69
1098+
"execution_count": 84
1099+
}
1100+
]
1101+
},
1102+
{
1103+
"cell_type": "code",
1104+
"metadata": {
1105+
"id": "R5NgjCsvO0oj",
1106+
"outputId": "505344f8-5701-4082-d44a-2b8d2bf8b1c2",
1107+
"colab": {
1108+
"base_uri": "https://localhost:8080/",
1109+
"height": 203
1110+
}
1111+
},
1112+
"source": [
1113+
"model= ols('Defaultee ~ C(Gender)*C(Ethnicity)', data=data).fit()\n",
1114+
"sm.stats.anova_lm(model, typ=3)"
1115+
],
1116+
"execution_count": 80,
1117+
"outputs": [
1118+
{
1119+
"output_type": "execute_result",
1120+
"data": {
1121+
"text/html": [
1122+
"<div>\n",
1123+
"<style scoped>\n",
1124+
" .dataframe tbody tr th:only-of-type {\n",
1125+
" vertical-align: middle;\n",
1126+
" }\n",
1127+
"\n",
1128+
" .dataframe tbody tr th {\n",
1129+
" vertical-align: top;\n",
1130+
" }\n",
1131+
"\n",
1132+
" .dataframe thead th {\n",
1133+
" text-align: right;\n",
1134+
" }\n",
1135+
"</style>\n",
1136+
"<table border=\"1\" class=\"dataframe\">\n",
1137+
" <thead>\n",
1138+
" <tr style=\"text-align: right;\">\n",
1139+
" <th></th>\n",
1140+
" <th>sum_sq</th>\n",
1141+
" <th>df</th>\n",
1142+
" <th>F</th>\n",
1143+
" <th>PR(&gt;F)</th>\n",
1144+
" </tr>\n",
1145+
" </thead>\n",
1146+
" <tbody>\n",
1147+
" <tr>\n",
1148+
" <th>Intercept</th>\n",
1149+
" <td>1.280000</td>\n",
1150+
" <td>1.0</td>\n",
1151+
" <td>8.553359</td>\n",
1152+
" <td>0.003648</td>\n",
1153+
" </tr>\n",
1154+
" <tr>\n",
1155+
" <th>C(Gender)</th>\n",
1156+
" <td>0.048089</td>\n",
1157+
" <td>1.0</td>\n",
1158+
" <td>0.321346</td>\n",
1159+
" <td>0.571123</td>\n",
1160+
" </tr>\n",
1161+
" <tr>\n",
1162+
" <th>C(Ethnicity)</th>\n",
1163+
" <td>0.042944</td>\n",
1164+
" <td>2.0</td>\n",
1165+
" <td>0.143483</td>\n",
1166+
" <td>0.866381</td>\n",
1167+
" </tr>\n",
1168+
" <tr>\n",
1169+
" <th>C(Gender):C(Ethnicity)</th>\n",
1170+
" <td>0.069887</td>\n",
1171+
" <td>2.0</td>\n",
1172+
" <td>0.233504</td>\n",
1173+
" <td>0.791864</td>\n",
1174+
" </tr>\n",
1175+
" <tr>\n",
1176+
" <th>Residual</th>\n",
1177+
" <td>58.961630</td>\n",
1178+
" <td>394.0</td>\n",
1179+
" <td>NaN</td>\n",
1180+
" <td>NaN</td>\n",
1181+
" </tr>\n",
1182+
" </tbody>\n",
1183+
"</table>\n",
1184+
"</div>"
1185+
],
1186+
"text/plain": [
1187+
" sum_sq df F PR(>F)\n",
1188+
"Intercept 1.280000 1.0 8.553359 0.003648\n",
1189+
"C(Gender) 0.048089 1.0 0.321346 0.571123\n",
1190+
"C(Ethnicity) 0.042944 2.0 0.143483 0.866381\n",
1191+
"C(Gender):C(Ethnicity) 0.069887 2.0 0.233504 0.791864\n",
1192+
"Residual 58.961630 394.0 NaN NaN"
1193+
]
1194+
},
1195+
"metadata": {},
1196+
"execution_count": 80
10041197
}
10051198
]
10061199
},
@@ -1377,11 +1570,11 @@
13771570
{
13781571
"cell_type": "code",
13791572
"metadata": {
1380-
"id": "dUHlcjVmt62F",
1381-
"outputId": "ae5c5672-cd04-44f8-ac4c-95981e56bf6a",
13821573
"colab": {
13831574
"base_uri": "https://localhost:8080/"
1384-
}
1575+
},
1576+
"id": "dUHlcjVmt62F",
1577+
"outputId": "ae5c5672-cd04-44f8-ac4c-95981e56bf6a"
13851578
},
13861579
"source": [
13871580
"p,dof"
@@ -1403,11 +1596,11 @@
14031596
{
14041597
"cell_type": "code",
14051598
"metadata": {
1406-
"id": "dt9wXHeLt831",
1407-
"outputId": "8e0aecf4-f8fc-48e6-f674-705b19f65dce",
14081599
"colab": {
14091600
"base_uri": "https://localhost:8080/"
1410-
}
1601+
},
1602+
"id": "dt9wXHeLt831",
1603+
"outputId": "8e0aecf4-f8fc-48e6-f674-705b19f65dce"
14111604
},
14121605
"source": [
14131606
"expected"

0 commit comments

Comments
 (0)