-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfit.R
174 lines (156 loc) · 5.96 KB
/
fit.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
check_survival_xy <- function(data) {
# Check if data is a list
if (inherits(data, "list")) {
is_survival_xy <- sapply(data, function (x) inherits(x, "survival_xy"))
is_survival_xy <- all(is_survival_xy)
} else if (inherits(data, "survival_xy")) {
is_survival_xy <- TRUE
} else {
is_survival_xy <- FALSE
}
if (!is_survival_xy) {
stop(paste0("'data' must be an object of class 'survival_xy' or ",
"a list of objects of class 'survival_xy'."))
}
}
#' Fit a survival model
#'
#' This is a general function for fitting a survival model using different
#' possible algorithms.
#'
#' @param data Data used to fit the model. Must be an object of class
#' [`survival_xy`].
#' @param algorithm The algorithm used to fit the model. Either an unpenalized
#' ([survival::coxph()]) or cross-validated penalized ([glmnet::cv.glmnet()])
#' Cox proportional hazards model.
#' @param indication_method Whether to account for different tumor indications
#' with a factor (i.e., dummy) variable (`"factor"`),
#' by stratifying the baseline hazard (`"stratify"`),
#' or by fitting separate models for each indication (`"separate"`).
#' @param univariate_screen Logical. If `TRUE`, then univariate screening is used
#' to determine which features should be included in the model within k-fold CV.
#' @param ... Additional arguments to pass to underlying fitting functions
#' specified in `algorithm`.
#'
#' @return If a single model is fit, then an object of class `model_fit`,
#' in addition to a subsequent class related to the fitted model (e.g., `_coxph`).
#' If separate models are fit, then a list of `model_fit` objects.
#' @importFrom survival strata
#' @export
fit <- function(data, algorithm = c("coxph", "cv.glmnet"),
indication_method = c("factor", "stratify", "separate"),
univariate_screen = FALSE,
...) {
algorithm <- match.arg(algorithm)
indication_method <- match.arg(indication_method)
check_survival_xy(data)
if(!univariate_screen){
if (algorithm == "coxph" && indication_method != "separate") {
fit <- fit_coxph(data = data, indication_method = indication_method, ...)
} else if (algorithm == "cv.glmnet" && indication_method != "separate") {
fit <- fit_cv.glmnet(data = data, indication_method = indication_method, ...)
} else {
fit <- fit_list(data = data, algorithm = algorithm,
indication_method = indication_method, ...)
}
return(fit)
} else {
if (algorithm == "cv.glmnet" && indication_method != "separate") {
fit <- fit_cv.glmnet(data = data, indication_method = indication_method, exclude=prescreen_genomic_vars, ...)
} else if (algorithm == "cv.glmnet" && indication_method == "separate") {
fit <- fit_list(data = data, algorithm = algorithm,
indication_method = indication_method, exclude=prescreen_genomic_vars, ...)
} else {
stop("Univariate screen is only implemented when algorithm == cv.glmnet.")
}
return(fit)
}
}
fit_coxph <- function(data, indication_method, ...) {
message_postfix <- ifelse(
"indication" %in% names(attributes(data)),
paste0(", indication: ",attributes(data)$indication),
"")
warn <- NULL
fit <- tryCatch(suppressWarnings(withCallingHandlers(
{
if (indication_method == "stratify"){
survival::coxph(data$y ~ . -indication + strata(indication), data = data.frame(data$x, indication = data$indication,
check.names = FALSE))
} else {
survival::coxph(data$y ~ ., data = data.frame(data$x, check.names = FALSE))
}
},
warning = function(w) {
logger::log_warn("coxph: {w$message}{message_postfix}")
warn <<- w
},
error = function(e) {
logger::log_error("coxph: {e$message}{message_postfix}")
})),
error = function(e) e
)
object <- list(fit = fit,
indication_method = indication_method)
class(object) <- c("model_fit", "_coxph")
if(!is.null(warn)) {
attr(object, "warning") <- warn
}
return(object)
}
fit_cv.glmnet <- function(data, indication_method, ...) {
# Set glmnet control
glmnet::glmnet.control(eps = 1e-04, mxitnr=10000)
message_postfix <- ifelse(
"indication" %in% names(attributes(data)),
paste0(", indication: ",attributes(data)$indication),
"")
if(indication_method=="stratify"){
data$y <- glmnet::stratifySurv(data$y, strata = data$indication)
}
warn <- NULL
fit <- tryCatch(suppressWarnings(withCallingHandlers(
{
glmnet::cv.glmnet(x = data$x, y = data$y, family = "cox",
foldid = data$fold_id, standardize = FALSE, type.measure = "C", ...) # automatically fits stratified model if y is a stratifySurv object
},
warning = function(w) {
logger::log_warn("glmnet::cv.glmnet {w$message}{message_postfix}")
warn <<- w
},
error = function(e) {
logger::log_error("glmnet::cv.glmnet {e$message}{message_postfix}")
})),
error = function(e) e
)
object <- list(
fit = fit,
x = data$x,
y = data$y,
indication_method = indication_method
)
if(!is.null(warn)) {
attr(object, "warning") <- warn
}
class(object) <- c("model_fit", "_cv.glmnet")
return(object)
}
fit_list <- function(data, algorithm, indication_method, ...) {
fun <- paste0("fit_", algorithm)
args <- c(list(indication_method = indication_method),
list(...))
#curr_log_format <- logger::log_layout()
fits <- list()
for(i in seq_along(data)) {
x <- data[[i]]
attributes(x)$indication <- names(data)[[i]]
#format_with_ind <- paste0(as.character(curr_log_format$format),", indication:",names(data)[[i]])
#logger::log_layout(format_with_ind)
args_i <- c(list(data = x), args)
fit <- do.call(fun, args_i)
fits[[i]] <- fit
}
names(fits) <- names(data)
#logger::log_layout(curr_log_format)
return(fits)
}