-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.R
377 lines (337 loc) · 13.7 KB
/
evaluate.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
# Evaluate statistic given predictions on a test set ---------------------------
#' Evaluate statistic
#'
#' This is a general function to evaluate a statistic using predictions from a survival model.
#' It is used internally within the functions [cindex()] and [deviance.predict_surv()].
#' @param object An object of class [`predict_surv`], which contains predictions made on a test set.
#' @param newdata An object of class [`survival_xy`] (or a list of objects of class [`survival_xy`])
#' containing new values of `$y` at which predictions should be evaluated.
#' @param f A function that evaluates a statistic given the values of `object`
#' and `newy`, where `newy` is the result of calling [get_y()] on `newdata`. `f`
#' must return a single value.
#'
#' @return A [`dplyr::tibble`] with two columns: `indication` for the indication and
#' `estimate` for an estimate computed using `f`. There is also a "Pan tumor" estimate
#' which evaluates the statistic across all indications.
#' @export
evaluate_statistic <- function(object, newdata, f, reference_object=NULL) {
newy <- get_y(newdata)
# Pan tumor model
pan_estimate <- do.call(f, args = list(newy = newy, object = object))
names(pan_estimate) <- "Pan tumor"
# Indication specific models
object_list <- split(object[, ], object$indication)
newy_list <- split(newy, object$indication)
if(!is.null(reference_object)){
ref_list <- split(reference_object, reference_object$indication)
shared_indications <- intersect(names(object_list), names(ref_list))
indication_estimates <- mapply(function(x, y, z) {
do.call(f, args = list(object = x, newy = y, reference_object = z))
}, object_list[shared_indications], newy_list[shared_indications], ref_list[shared_indications]
)
} else{
indication_estimates <- mapply(function(x, y) {
do.call(f, args = list(object = x, newy = y))
}, object_list, newy_list
)
}
estimates <- c(pan_estimate, indication_estimates)
return(tibble(
indication = names(estimates),
estimate = estimates
))
}
# C-index ----------------------------------------------------------------------
#' C-index
#'
#' Evaluate concordance from a survival model.
#'
#' @inheritParams evaluate_statistic
#' @param ... Additional arguments affecting the evaluation of concordance. Currently unused.
#'
#' @return A [`dplyr::tibble`] with two columns: `indication` for the indication and
#' `estimate` for the estimate of the C-index.
#' @export
cindex <- function(object, newdata, ...){
UseMethod("cindex", object)
}
#' @rdname cindex
#' @export
cindex.predict_surv <- function(object, newdata, ...){
cindex_fun <- function(object, newy) {
if (nrow(newy) > 1) {
survival::concordance(newy ~ object$lp, reverse = TRUE)$concordance
} else {
NA_real_
}
}
evaluate_statistic(object, newdata = newdata, f = cindex_fun)
}
# C-index variance ----------------------------------------------------------------------
#' C-index variance
#'
#' Obtain variance of concordance estimate from a survival model.
#'
#' @inheritParams evaluate_statistic
#' @param ... Additional arguments affecting the evaluation of concordance. Currently unused.
#'
#' @return A [`dplyr::tibble`] with two columns: `indication` for the indication and
#' `estimate` for the estimate of the C-index variance.
#' @export
cindex_var <- function(object, newdata, ...){
UseMethod("cindex_var", object)
}
#' @rdname cindex_var
#' @export
cindex_var.predict_surv <- function(object, newdata, ...){
cindex_var_fun <- function(object, newy) {
if (nrow(newy) > 1) {
survival::concordance(newy ~ object$lp, reverse = TRUE)$var
} else {
NA_real_
}
}
evaluate_statistic(object, newdata = newdata, f = cindex_var_fun)
}
# Deviance ---------------------------------------------------------------------
#' Deviance
#'
#' Evaluate deviance from a survival model.
#'
#' @inheritParams cindex
#' @return A [`dplyr::tibble`] with two columns: `indication` for the indication and
#' `estimate` for the estimate of the deviance.
#' @export
deviance.predict_surv <- function(object, newdata, ...){
deviance_fun <- function(object, newy) {
glmnet::coxnet.deviance(object$lp, newy)
}
evaluate_statistic(object, newdata = newdata, f = deviance_fun)
}
# Integrated Brier Score --------------------------------------------------
#' Integrated Brier Score
#'
#' Estimate Integrated Brier Score from a survival model.
#' The IBS is scaled by max_t in the data.
#' Uses left truncation adjustment from `LTRCforests`.
#'
#' @inheritParams evaluate_statistic
#' @return A [`dplyr::tibble`] with two columns: `indication` for the indication and
#' `estimate` for the estimate of the Integrated Brier Score, scaled by max_t.
#' @export
ibs <- function(object, newdata, ...){
UseMethod("ibs", object)
}
#' @rdname ibs
#' @export
ibs.predict_surv <- function(object, newdata, reference_object=NULL, ...){
ibs_fun <- function(object, newy, reference_object=NULL){
newy_mat = as.matrix(newy)
df = rbindlist_surv(object)
names(df)[3] <- "pred"
n_times <- df[, .N, by = c("row_id")] # Account for potential differences in followup
df <- cbind(df, newy_mat[rep(1:nrow(newy_mat), times = n_times$N), ])
# Define the event times at which the IBS score will be computed
# Use the time points from referenceobject
if(!is.null(reference_object)){
if(length(unique(df$indication))>1){
times <- unname(stats::quantile(df$time, probs = seq(0, 1, by=0.01), na.rm = TRUE))
} else {
times <- sort(unique(reference_object$surv[[1]]$time))
}
} else{
if(length(unique(df$indication))>1){
times <- unname(stats::quantile(df$time, probs = seq(0, 1, by=0.01), na.rm = TRUE))
} else {
times <- sort(unique(df$time))
}
}
# Interpolates survival probabilities for a common set of time points, for all patients and all indications.
req_times = tidyr::expand_grid(row_id = unique(df$row_id), time = times)
data.table::setDT(req_times)
data.table::setkey(df, row_id, time)
df <- df[req_times,roll=Inf, rollends=c(T,T)]
# Now define the inputs to "pred": probabilities, evaluation times, max time, and n
probs <- lapply(split(df , f = df$row_id ), function(x) as.vector(unlist(x[,3])))
unique_times = times # this returns the unique vector of times for the indication or pan-tumor
tau = unname(quantile(df$time, probs=0.9, na.rm = TRUE)) # set upper limit of evaluation times = 90th percentile
n = length(unique(df$row_id))
pred = list(
survival.probs = lapply(probs, function(x) c(1,x)), # start at t=0, prob=1
survival.times = c(0,as.vector(unique_times)), # start at t=0, prob=1
survival.tau = rep(tau, n),
survival.obj = newy,
survival.id = 1:n
)
ibs <- unname(LTRCforests::sbrier_ltrc(obj = newy, id= 1:n, pred = pred, type = "IBS"))
ibs # returns the average IBS score = IBS / tau, which is ALREADY computed by the function
}
evaluate_statistic(object, newdata = newdata, f = ibs_fun, reference_object = reference_object)
}
# Calibration ------------------------------------------------------------------
#' Subset survival predictions
#'
#' A predicted survival curves at specific times, which may not times at
#' which the original curves were evaluated. The step-function nature of the
#' predictions are preserved so that if `times` lies within `[t1, t2)`, the
#' survival curves evaluated at `t1` will be used. An efficient approach using
#' `data.table` is employed.
#' @param x Predicted survival curves as generated by [predict_surv()].
#' @param times Times at which to subset survival curves to.
#' @param extend Whether to extend survival predictions beyond maximum followup
#' time.
subset_surv <- function(x, times, extend = FALSE) {
x <- data.table::as.data.table(x)
time_index <- findInterval(x$time, times, left.open = TRUE) + 1L
x$u <- times[time_index]
x2 <- x[x[, .I[.N], by = c("row_id", "u")]$V1] # Get last row for each u by ID
# Remove "times" if they are beyond what is observed in the survival curves
# from "x"
if (extend == FALSE) {
x2[, max_time := max(time), by = "indication"]
x2 <- x2[u <= max_time]
}
# Return
return(x2)
}
#' Calibrate survival model
#'
#' Calibrate survival models by comparing predicted survival
#' probabilities with pseudo-observed probabilities at selected time points.
#'
#' @inheritParams evaluate_statistic
#' @param n_groups Number of groups to break predicted survival probabilities
#' into.
#' @param times A list of selected time points for which the calibration should be calculated.
#'
#' @return An object of class `calibrate` that inherits from [dplyr::tibble]
#' comparing predicted survival probabilities to pseudo-observed probabilities at
#' specified time points. The table contains the following columns:
#' \describe{
#' \item{time}{The time point at which a survival probability is evaluated.}
#' \item{interval}{An identifier of a group whose predicted survival probabilities lie
#' within a specific interval. The number of intervals is determined by
#' `n_groups`.}
#' \item{pred}{The average predicted survival probability among patients in an
#' interval.}
#' \item{n_patients}{The number of patients withn an interval.}
#' \item{obs}{The observed survival probability among patients in an interval.
#' Computed with the Kaplan-Meier estimator using the `$y` element of `newdata`.}
#' \item{indication}{The cancer indication.}
#'
#' }
#' @importFrom data.table ':='
#' @export
calibrate <- function(object, newdata, n_groups = 10,
times = NULL){
# (1) Combine the predicted survival probabilities with the observed
## Row bind predicted survival probabilities
if (!inherits(object, "predict_surv")) {
stop("'object' must be of class 'predict_surv'.")
}
surv <- rbindlist_surv(object)
## Restrict number of times
if(is.null(times)) {
times <- stats::quantile(surv$time, probs = seq(0, 1, length.out = 7)[-1], na.rm = TRUE)
}
surv <- subset_surv(surv, times)
## Add Observed survival outcomes
## Note that if baseline hazards vary by indication, then not all rows of y will
## contain all times because of differences in followup.
newy <- get_y(newdata); ymat <- as.matrix(newy)
data.table::setnames(surv, c("surv"), c("pred"))
n_times <- surv[, .N, by = c("row_id")] # Account for potential differences in followup
surv <- cbind(surv,
ymat[rep(1:nrow(ymat), times = n_times$N), ])
# (2) Calibrate
## Calibrate pan tumor model
cal_pan <- calibrate_surv(surv, newy = newy, n_groups = n_groups,
times = times)
cal_pan[, indication := "Pan tumor"]
## Indication specific models
surv_list <- split(surv, by = "indication")
newy_list <- split(newy, object$indication)
cal_indication <- mapply(function(x, y) {
calibrate_surv(surv = x, newy = y, n_groups = n_groups,
times = times)
}, surv_list, newy_list, SIMPLIFY = FALSE
)
cal_indication <- data.table::rbindlist(cal_indication, idcol = "indication")
## Combine
res <- rbind(cal_pan, cal_indication)
res <- dplyr::as_tibble(res)
class(res) <- c("calibrate", class(res))
return(res)
}
calibrate_surv <- function(surv, newy, n_groups = NULL, times = NULL,
...) {
# (1) Cutpoints of predicted S(u|x)
ntile <- function(x, n){
cut(x,
breaks = quantile(x,
probs = seq(0, 1, length = n + 1),
na.rm = TRUE,
type = 2),
include.lowest = TRUE,
labels = FALSE)
}
if (n_groups > 1){
#NOTE: ntile() and dplyr::ntile() should be equivalent but ntile() seems to cause more errors
# when n + 1 quantiles cannot be recreated.
surv[, interval := dplyr::ntile(pred, n = n_groups), by = "u"]
} else{
surv[, interval := 1]
}
# (2) Average predicted S(u|x) in each interval
surv_mean <- surv[, .(pred = mean(pred),
n_patients = .N),
by = c("u", "interval")]
# (3) Compute KM for patients in each interval
if(ncol(newy) == 3){
kmfit <- survival::survfit(survival::Surv(start, stop, status) ~ survival::strata(interval),
data = surv)
} else{
kmfit <- survival::survfit(survival::Surv(time, status) ~ survival::strata(interval),
data = surv)
}
kmfit_summary <- summary(kmfit, times = times, extend = TRUE)
if (n_groups > 1){
strata <- as.integer(gsub("survival::strata(interval)=interval=", "",
kmfit_summary$strata, fixed = TRUE))
} else{
strata <- 1
}
kmfit_df <- data.table::data.table(
interval = strata,
time = kmfit_summary$time,
obs = kmfit_summary$surv
)
data.table::setnames(surv_mean, "u", "time")
surv_mean <- merge(surv_mean, kmfit_df,
by = c("time", "interval"),
all.x = TRUE)
# Return
return(surv_mean)
}
autoplot.calibrate <- function(object, colour = NULL){
object$f_time <- factor(object$time,
levels = object$time,
labels = paste0("Time = ", object$time))
p <- ggplot(object)
if (is.null(colour)){
aes <- aes_string(x = "pred", y = "obs", label = "interval")
} else{
aes <- aes_string(x = "pred", y = "obs", col = colour, label = "interval")
}
p <- p +
aes +
geom_point(size = 2) +
geom_abline(slope = 1) +
facet_wrap(~f_time) +
scale_shape_discrete(name = "Model") +
scale_x_continuous(breaks = seq(0, 1, .2)) +
scale_y_continuous(breaks = seq(0, 1, .2)) +
xlab("Predicted survival probability") +
ylab("Observed survival probability")
return(p)
}