-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathreferences.bib
456 lines (411 loc) · 14.9 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
@article{birnbaum2020modelassisted,
title={Model-assisted cohort selection with bias analysis for generating large-scale cohorts from the EHR for oncology research},
author={Benjamin Birnbaum and Nathan Nussbaum and Katharina Seidl-Rathkopf and Monica Agrawal and Melissa Estevez and Evan Estola and Joshua Haimson and Lucy He and Peter Larson and Paul Richardson},
year={2020},
eprint={2001.09765},
archivePrefix={arXiv},
primaryClass={cs.CY}
}
@article{breslow1972,
title={Contribution to the Discussion of the Paper by D.R. Cox},
author={Breslow, Norman Edward},
journal={Journal of the Royal Statistical Society: Series B (Methodological)},
volume={34},
number={2},
pages={216--217},
year={1972},
publisher={Blackwell Publishing}
}
@article{chiou2019transformation,
title={Transformation model estimation of survival under dependent truncation and independent censoring},
author={Chiou, Sy Han and Austin, Matthew D and Qian, Jing and Betensky, Rebecca A},
journal={Statistical methods in medical research},
volume={28},
number={12},
pages={3785--3798},
year={2019},
publisher={SAGE Publications Sage UK: London, England}
}
@article{cox1972regression,
title={Regression models and life-tables},
author={Cox, David R},
journal={Journal of the Royal Statistical Society: Series B (Methodological)},
volume={34},
number={2},
pages={187--202},
year={1972},
publisher={Blackwell Publishing}
}
@article{friedman2010regularization,
title={Regularization paths for generalized linear models via coordinate descent},
author={Friedman, Jerome and Hastie, Trevor and Tibshirani, Rob},
journal={Journal of statistical software},
volume={33},
number={1},
pages={1},
year={2010},
publisher={NIH Public Access}
}
@manual{glmnet,
title = {glmnet: Lasso and Elastic-Net Regularized Generalized Linear Models},
author = {Friedman, Jerome and Hastie, Trevor and Tibshirani, Rob and Narasimhan, Balasubramanian and Tay, Kenneth and Simon, and Noah and Qian, Junyang},
note = {R package version 4.1},
url = {https://cran.r-project.org/web/packages/glmnet/index.html},
year = {2021},
}
@article{giobbie2013challenges,
title={Challenges of guarantee-time bias},
author={Giobbie-Hurder, Anita and Gelber, Richard D and Regan, Meredith M},
journal={Journal of clinical oncology},
volume={31},
number={23},
pages={2963},
year={2013},
publisher={American Society of Clinical Oncology}
}
@article{goldstein2021xcal,
title={X-CAL: Explicit Calibration for Survival Analysis},
author={Mark Goldstein and Xintian Han and Aahlad Puli and Adler J. Perotte and Rajesh Ranganath},
year={2021},
eprint={2101.05346},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@article{gui2005penalized,
title={Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data},
author={Gui, Jiang and Li, Hongzhe},
journal={Bioinformatics},
volume={21},
number={13},
pages={3001--3008},
year={2005},
publisher={Oxford University Press}
}
@article{hanley2014avoiding,
title={Avoiding blunders involving immortal time},
author={Hanley, James A and Foster, Bethany J},
journal={International journal of epidemiology},
volume={43},
number={3},
pages={949},
year={2014},
publisher={Oxford University Press}
}
@article{harrell1996multivariable,
title={Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors},
author={Harrell Jr, Frank E and Lee, Kerry L and Mark, Daniel B},
journal={Statistics in medicine},
volume={15},
number={4},
pages={361--387},
year={1996},
publisher={Wiley Online Library}
}
@book{harrell2015regression,
title={Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis},
author={Harrell Jr, Frank E},
year={2015},
publisher={Springer}
}
@article{hoerl1970ridgeA,
title={Ridge regression: applications to nonorthogonal problems},
author={Hoerl, Arthur E and Kennard, Robert W},
journal={Technometrics},
volume={12},
number={1},
pages={69--82},
year={1970},
publisher={Taylor \& Francis Group}
}
@article{hoerl1970ridgeB,
title={Ridge regression: Biased estimation for nonorthogonal problems},
author={Hoerl, Arthur E and Kennard, Robert W},
journal={Technometrics},
volume={12},
number={1},
pages={55--67},
year={1970},
publisher={Taylor \& Francis Group}
}
@article{hothorn2006survival,
title={Survival ensembles},
author={Hothorn, Torsten and B{\"u}hlmann, Peter and Dudoit, Sandrine and Molinaro, Annette and Van Der Laan, Mark J},
journal={Biostatistics},
volume={7},
number={3},
pages={355--373},
year={2006},
publisher={Oxford University Press}
}
@article{ishwaran2008random,
title={Random survival forests},
author={Ishwaran, Hemant and Kogalur, Udaya B and Blackstone, Eugene H and Lauer, Michael S and others},
journal={The annals of applied statistics},
volume={2},
number={3},
pages={841--860},
year={2008},
publisher={Institute of Mathematical Statistics}
}
@book{kalbfleisch2011statistical,
title={The statistical analysis of failure time data},
author={Kalbfleisch, John D and Prentice, Ross L},
volume={360},
year={2011},
publisher={John Wiley \& Sons}
}
@article{kehl2020selectionbias,
title={Assessment of temporal selection bias in genomic testing in a cohort of patients with cancer},
author={Kehl, Kenneth L and Schrag, Deborah and Hassett, Michael J and Uno, Hajime},
journal={JAMA Network Open},
volume={3},
number={6},
year={2020},
publisher={American Medical Association}
}
@article{lai2020nsclc,
title={Overall survival prediction of non-small cell lung cancer by integrating microarray and clinical data with deep learning},
author={Lai Yu-Heng and Chen, Wei-Ning and Hsu, Te-Cheng and Lin, Che and Tsao, Yu and Wu, Semon},
journal={Scientific reports},
volume={10},
number={1},
pages={4679},
year={2020},
publisher={Nature Publishing Group}
}
@article{levesque2010problem,
title={Problem of immortal time bias in cohort studies: example using statins for preventing progression of diabetes},
author={L{\'e}vesque, Linda E and Hanley, James A and Kezouh, Abbas and Suissa, Samy},
journal={Bmj},
volume={340},
pages={b5087},
year={2010},
publisher={British Medical Journal Publishing Group}
}
@article {ma2020fmi,
author = {Ma, Xinran and Long, Lura and Moon, Sharon and Adamson, Blythe J.S. and Baxi, Shrujal S.},
title = {Comparison of Population Characteristics in Real-World Clinical Oncology Databases in the US: Flatiron Health, SEER, and NPCR},
elocation-id = {2020.03.16.20037143},
year = {2020},
doi = {10.1101/2020.03.16.20037143},
publisher = {Cold Spring Harbor Laboratory Press}
}
@article{martin2005tau,
title={Testing quasi-independence of failure and truncation times via conditional Kendall's tau},
author={Martin, Emily C and Betensky, Rebecca A},
journal={Journal of the American Statistical Association},
volume={100},
pages={484--492},
year={2005},
publisher={American Statistical Association}
}
@article{mittal2013penalized,
title={Large-scale parametric survival analysis},
author={Mittal, Sushil and Madigan, David and Cheng, Jerry and Burdc, Randall},
journal={Statistics in Medicine},
volume={32},
number={23},
pages={3955--3971},
year={2013},
publisher={Wiley}
}
@article{newman2020immortaltime,
title={Immortal time bias in national cancer database studies},
author={Newman, Neil B and Brett, Christopher L and Kluwe, Christien A and Patel, Chirayu G and Attia, Albert and Osmundson, Evan C and Kachnic, Lisa A},
journal={International Journal of Radiation Oncology*Biology*Physics},
volume={106},
number={1},
pages={5--12},
year={2020},
publisher={Elsevier}
}
@article{niculescu2005isotonic,
title={Predicting good probabilities with supervised learning},
author={Niculescu-Mizil, Alexandru and Caruana, Rich},
journal={ICML '05: Proceedings of the 22nd International Conference on Machine Learning},
year={2005},
publisher={Association for Computing Machinery}
}
@article{ow2016big,
title={Big genomics and clinical data analytics strategies for precision cancer prognosis},
author={Ow, Ghim Siong and Kuznetsov, Vladimir A},
journal={Scientific reports},
volume={6},
pages={36493},
year={2016},
publisher={Nature Publishing Group}
}
@article{platt1999scaling,
title={Probabilistic outputs for support vector machines and comparison to regularized likelihood methods},
author={Platt, J},
journal={Advances in Large Margin Classifiers},
pages={61--74},
year={1999},
publisher={MIT press}
}
@article{shen_harnessing_2019,
title = {Harnessing {Clinical} {Sequencing} {Data} for {Survival} {Stratification} of {Patients} with {Metastatic} {Lung} {Adenocarcinomas}},
volume = {3},
issn = {2473-4284},
url = {https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6474404/},
urldate = {2020-04-15},
journal = {JCO precision oncology},
author = {Shen, Ronglai and Martin, Axel and Ni, Ai and Hellmann, Matthew and Arbour, Kathryn C. and Jordan, Emmet and Arora, Arshi and Ptashkin, Ryan and Zehir, Ahmet and Kris, Mark G. and Rudin, Charles M. and Berger, Michael F. and Solit, David B. and Seshan, Venkatraman E. and Arcila, Maria and Ladanyi, Marc and Riely, Gregory J.},
year = {2019},
pmid = {31008437},
pmcid = {PMC6474404}
}
@article{simon2011regularization,
title={Regularization paths for Cox's proportional hazards model via coordinate descent},
author={Simon, Noah and Friedman, Jerome and Hastie, Trevor and Tibshirani, Rob},
journal={Journal of statistical software},
volume={39},
number={5},
pages={1},
year={2011},
publisher={NIH Public Access}
}
@article{singal2017cgdb,
title={Development and validation of a real-world clinicogenomic database},
author={Singal, Gaurav and Miller, Peter G and Agarwala, Vineeta and He, Jie and Gossai, Anala and Frank, Shannon and Bourque, David and Bowser, Bryan and Caron, Thomas and Baydur, Ezra and Seidl-Rathkopf, Kathi and Ivanov, Ivan and Parker, Alex and Guria, Ameet and Frampton, Garrett Michael and Jaskiw, Ann and Feuchtbaum,Dana and Nussbaum, Nathan Coleman and Abernethy, Amy Pickar and Miller, Vincent A},
journal={Journal of Clinical Oncology},
volume={35},
number={15},
pages={2514},
year={2017},
publisher={ASCO}
}
@misc{therneau1997introduction,
title={An introduction to recursive partitioning using the RPART routines},
author={Therneau, Terry M and Atkinson, Elizabeth J and others},
year={1997},
publisher={Technical Report 61. URL http://www. mayo. edu/hsr/techrpt/61. pdf}
}
@article{thiebaut2004choice,
title={Choice of time-scale in Cox's model analysis of epidemiologic cohort data: a simulation study},
author={Thi{\'e}baut, Anne CM and B{\'e}nichou, Jacques},
journal={Statistics in medicine},
volume={23},
number={24},
pages={3803--3820},
year={2004},
publisher={Wiley Online Library}
}
@article{tibshirani1996regression,
title={Regression shrinkage and selection via the lasso},
author={Tibshirani, Robert},
journal={Journal of the Royal Statistical Society: Series B (Methodological)},
volume={58},
number={1},
pages={267--288},
year={1996},
publisher={Wiley Online Library}
}
@article{tibshirani1997lasso,
title={The lasso method for variable selection in the Cox model},
author={Tibshirani, Robert},
journal={Statistics in medicine},
volume={16},
number={4},
pages={385--395},
year={1997},
publisher={Wiley Online Library}
}
@article{tikhonov1963ridge,
title={Solution of incorrectly formulated problems and the regularization method},
author={Tikhonov, Andrey N},
journal={Soviet Mathematics},
volume={4},
pages={1035--1038},
year={1963}
}
@article{tsai1987note,
title={A note on the product-limit estimator under right censoring and left truncation},
author={Tsai, Wei-Yann and Jewell, Nicholas P and Wang, Mei-Cheng},
journal={Biometrika},
volume={74},
number={4},
pages={883--886},
year={1987},
publisher={Oxford University Press}
}
@article{troyanskaya_missing_2001,
title = {Missing value estimation methods for {DNA} microarrays},
volume = {17},
issn = {1367-4803},
doi = {10.1093/bioinformatics/17.6.520},
language = {eng},
number = {6},
journal = {Bioinformatics (Oxford, England)},
author = {Troyanskaya, O. and Cantor, M. and Sherlock, G. and Brown, P. and Hastie, T. and Tibshirani, R. and Botstein, D. and Altman, R. B.},
month = jun,
year = {2001},
pmid = {11395428},
pages = {520--525}
}
@article{wishart2010predict,
title={PREDICT: a new UK prognostic model that predicts survival following surgery for invasive breast cancer},
author={Wishart, Gordon C and Azzato, Elizabeth M and Greenberg, David C and Rashbass, Jem and Kearins, Olive and Lawrence, Gill and Caldas, Carlos and Pharoah, Paul DP},
journal={Breast Cancer Research},
volume={12},
number={1},
pages={R1},
year={2010},
publisher={BioMed Central}
}
@article{wu2011penalized,
title={A transcriptome analysis by lasso penalized Cox regression for pancreatic cancer survival},
author={Wu, Tong Tong and Gong, Haijun and Clarke, Edmund M},
journal={Journal of Bioinformatics and Computational Biology},
volume={9},
number={1},
pages={63--73},
year={2011},
publisher={Imperial College Press}
}
@article{xie2009scad,
title={SCAD-penalized regression in high-dimensional partially linear models},
author={Xie, Huiliang and Huang, Jian},
journal={Annals of Statistics},
volume={37},
number={2},
pages={673--696},
year={2009},
publisher={Institute of Mathematical Statistics}
}
@article{yousefi2017predicting,
title={Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models},
author={Yousefi, Safoora and Amrollahi, Fatemeh and Amgad, Mohamed and Dong, Chengliang and Lewis, Joshua E and Song, Congzheng and Gutman, David A and Halani, Sameer H and Vega, Jose Enrique Velazquez and Brat, Daniel J and others},
journal={Scientific reports},
volume={7},
number={1},
pages={1--11},
year={2017},
publisher={Nature Publishing Group}
}
@article{zou2005regularization,
title={Regularization and variable selection via the elastic net},
author={Zou, Hui and Hastie, Trevor},
journal={Journal of the royal statistical society: series B (statistical methodology)},
volume={67},
number={2},
pages={301--320},
year={2005},
publisher={Wiley Online Library}
}
@article{zou2006adaptive,
title={The adaptive lasso and its oracle properties},
author={Zou, Hui},
journal={Journal of the American statistical association},
volume={101},
number={476},
pages={1418--1429},
year={2006},
publisher={Taylor \& Francis}
}
@book{hastie2009statlearn,
title={The elements of statistical learning: data mining, inference, and prediction},
author={Hastie, Trevor and Tibshirani, Rob and Friedman, Jerome},
year={2009},
publisher={Springer}
}