-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy path05_evaluate_gcnn_torch.py
260 lines (215 loc) · 9.22 KB
/
05_evaluate_gcnn_torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
"""
File adapted from https://github.com/ds4dm/learn2branch
"""
import os
import sys
import importlib
import argparse
import csv
import math
import numpy as np
import time
import pickle
import pyscipopt as scip
import tensorflow as tf
import torch
import utilities
class PolicyBranching(scip.Branchrule):
def __init__(self, policy, device):
super().__init__()
self.policy_type = policy['type']
self.policy_name = policy['name']
self.device = device
if self.policy_type == 'gcnn':
model = policy['model']
model.restore_state(policy['parameters'])
model.to(device)
model.eval()
self.policy = model.forward
else:
raise NotImplementedError
def branchinitsol(self):
self.ndomchgs = 0
self.ncutoffs = 0
self.state_buffer = {}
self.khalil_root_buffer = {}
def branchexeclp(self, allowaddcons):
# SCIP internal branching rule
if self.policy_type == 'internal':
result = self.model.executeBranchRule(self.policy, allowaddcons)
# custom policy branching
else:
candidate_vars, *_ = self.model.getPseudoBranchCands()
candidate_mask = [var.getCol().getIndex() for var in candidate_vars]
state = utilities.extract_state(self.model, self.state_buffer)
c,e,v = state
state = (
torch.as_tensor(c['values'], dtype=torch.float32),
torch.as_tensor(e['indices'], dtype=torch.long),
torch.as_tensor(e['values'], dtype=torch.float32),
torch.as_tensor(v['values'], dtype=torch.float32),
torch.as_tensor(c['values'].shape[0], dtype=torch.int32),
torch.as_tensor(v['values'].shape[0], dtype=torch.int32),
)
state = map(lambda x:x.to(self.device), state)
with torch.no_grad():
_, var_logits = self.policy(state)
var_logits = torch.squeeze(var_logits, 0).cpu().numpy()
candidate_scores = var_logits[candidate_mask]
best_var = candidate_vars[candidate_scores.argmax()]
self.model.branchVar(best_var)
result = scip.SCIP_RESULT.BRANCHED
# fair node counting
if result == scip.SCIP_RESULT.REDUCEDDOM:
self.ndomchgs += 1
elif result == scip.SCIP_RESULT.CUTOFF:
self.ncutoffs += 1
return {'result': result}
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'problem',
help='MILP instance type to process.',
choices=['setcover', 'cauctions', 'facilities', 'indset'],
)
parser.add_argument(
'-g', '--gpu',
help='CUDA GPU id (-1 for CPU).',
type=int,
default=-1,
)
parser.add_argument(
'--model_name',
help='searches for this model_name in respective trained_models folder',
type=str,
default='baseline_torch',
)
args = parser.parse_args()
instances = []
seeds = [0, 1, 2]
gcnn_models = [args.model_name]
time_limit = 2700
## OUTPUT
device = "CPU" if args.gpu == -1 else "GPU"
result_file = f"GCNN_{device}_{time.strftime('%Y%m%d-%H%M%S')}.csv"
eval_dir = f"eval_results/{args.problem}"
os.makedirs(eval_dir, exist_ok=True)
result_file = f"{eval_dir}/{result_file}"
if args.problem == 'setcover':
instances += [{'type': 'small', 'path': f"data/instances/setcover/transfer_500r_1000c_0.05d/instance_{i+1}.lp"} for i in range(20)]
instances += [{'type': 'medium', 'path': f"data/instances/setcover/transfer_1000r_1000c_0.05d/instance_{i+1}.lp"} for i in range(20)]
instances += [{'type': 'big', 'path': f"data/instances/setcover/transfer_2000r_1000c_0.05d/instance_{i+1}.lp"} for i in range(20)]
elif args.problem == 'cauctions':
instances += [{'type': 'small', 'path': f"data/instances/cauctions/transfer_100_500/instance_{i+1}.lp"} for i in range(20)]
instances += [{'type': 'medium', 'path': f"data/instances/cauctions/transfer_200_1000/instance_{i+1}.lp"} for i in range(20)]
instances += [{'type': 'big', 'path': f"data/instances/cauctions/transfer_300_1500/instance_{i+1}.lp"} for i in range(20)]
elif args.problem == 'facilities':
instances += [{'type': 'small', 'path': f"data/instances/facilities/transfer_100_100_5/instance_{i+1}.lp"} for i in range(20)]
instances += [{'type': 'medium', 'path': f"data/instances/facilities/transfer_200_100_5/instance_{i+1}.lp"} for i in range(20)]
instances += [{'type': 'big', 'path': f"data/instances/facilities/transfer_400_100_5/instance_{i+1}.lp"} for i in range(20)]
elif args.problem == 'indset':
instances += [{'type': 'small', 'path': f"data/instances/indset/transfer_750_4/instance_{i+1}.lp"} for i in range(20)]
instances += [{'type': 'medium', 'path': f"data/instances/indset/transfer_1000_4/instance_{i+1}.lp"} for i in range(20)]
instances += [{'type': 'big', 'path': f"data/instances/indset/transfer_1500_4/instance_{i+1}.lp"} for i in range(20)]
else:
raise NotImplementedError
branching_policies = []
# GCNN models
for model in gcnn_models:
for seed in seeds:
branching_policies.append({
'type': 'gcnn',
'name': model,
'seed': seed,
'parameters': f'trained_models/{args.problem}/{model}/{seed}/best_params.pkl'
})
print(f"problem: {args.problem}")
print(f"gpu: {args.gpu}")
print(f"time limit: {time_limit} s")
### NUMPY / TORCH SETUP ###
if args.gpu == -1:
os.environ['CUDA_VISIBLE_DEVICES'] = ''
device = torch.device("cpu")
else:
os.environ['CUDA_VISIBLE_DEVICES'] = f'{args.gpu}'
device = torch.device(f"cuda" if torch.cuda.is_available() else "cpu")
# load and assign tensorflow models to policies (share models and update parameters)
loaded_models = {}
for policy in branching_policies:
if policy['type'] == 'gcnn':
if policy['name'] not in loaded_models:
sys.path.insert(0, os.path.abspath(f"models/{policy['name']}"))
import model
importlib.reload(model)
loaded_models[policy['name']] = model.GCNPolicy()
del sys.path[0]
policy['model'] = loaded_models[policy['name']]
print("running SCIP...")
fieldnames = [
'problem',
'device',
'policy',
'seed',
'type',
'instance',
'nnodes',
'nlps',
'stime',
'gap',
'status',
'ndomchgs',
'ncutoffs',
'walltime',
'proctime',
]
with open(result_file, 'a', newline='') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
for instance in instances:
print(f"{instance['type']}: {instance['path']}...")
for policy in branching_policies:
torch.manual_seed(policy['seed'])
m = scip.Model()
m.setIntParam('display/verblevel', 0)
m.readProblem(f"{instance['path']}")
utilities.init_scip_params(m, seed=policy['seed'])
m.setIntParam('timing/clocktype', 1) # 1: CPU user seconds, 2: wall clock time
m.setRealParam('limits/time', time_limit)
brancher = PolicyBranching(policy, device)
m.includeBranchrule(
branchrule=brancher,
name=f"{policy['type']}:{policy['name']}",
desc=f"Custom MLPOpt branching policy.",
priority=666666, maxdepth=-1, maxbounddist=1)
walltime = time.perf_counter()
proctime = time.process_time()
m.optimize()
walltime = time.perf_counter() - walltime
proctime = time.process_time() - proctime
stime = m.getSolvingTime()
nnodes = m.getNNodes()
nlps = m.getNLPs()
gap = m.getGap()
status = m.getStatus()
ndomchgs = brancher.ndomchgs
ncutoffs = brancher.ncutoffs
writer.writerow({
'policy': f"{policy['type']}:{policy['name']}",
'seed': policy['seed'],
'type': instance['type'],
'instance': instance['path'],
'nnodes': nnodes,
'nlps': nlps,
'stime': stime,
'gap': gap,
'status': status,
'ndomchgs': ndomchgs,
'ncutoffs': ncutoffs,
'walltime': walltime,
'proctime': proctime,
'problem':args.problem,
'device': "CPU" if args.gpu == -1 else "GPU"
})
csvfile.flush()
m.freeProb()
print(f" {policy['type']}:{policy['name']} {policy['seed']} - {nnodes} ({nnodes+2*(ndomchgs+ncutoffs)}) nodes {nlps} lps {stime:.2f} ({walltime:.2f} wall {proctime:.2f} proc) s. {status}")