-
Notifications
You must be signed in to change notification settings - Fork 205
/
Copy pathtrain_mn.py
157 lines (140 loc) · 6.83 KB
/
train_mn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os, sys, time
import shutil
import yaml
import argparse
import chainer
from chainer import training
from chainer.training import extension
from chainer.training import extensions
import chainermn
import multiprocessing
sys.path.append(os.path.dirname(__file__))
from evaluation import sample_generate, sample_generate_conditional, sample_generate_light, calc_inception
import source.yaml_utils as yaml_utils
def create_result_dir(result_dir, config_path, config):
if not os.path.exists(result_dir):
os.makedirs(result_dir)
def copy_to_result_dir(fn, result_dir):
bfn = os.path.basename(fn)
shutil.copy(fn, '{}/{}'.format(result_dir, bfn))
copy_to_result_dir(config_path, result_dir)
copy_to_result_dir(
config.models['generator']['fn'], result_dir)
copy_to_result_dir(
config.models['discriminator']['fn'], result_dir)
copy_to_result_dir(
config.dataset['dataset_fn'], result_dir)
copy_to_result_dir(
config.updater['fn'], result_dir)
def load_models(config):
gen_conf = config.models['generator']
gen = yaml_utils.load_model(gen_conf['fn'], gen_conf['name'], gen_conf['args'])
dis_conf = config.models['discriminator']
dis = yaml_utils.load_model(dis_conf['fn'], dis_conf['name'], dis_conf['args'])
return gen, dis
def make_optimizer(model, comm, alpha=0.0002, beta1=0., beta2=0.9):
optimizer = chainermn.create_multi_node_optimizer(
chainer.optimizers.Adam(alpha=alpha, beta1=beta1, beta2=beta2), comm)
optimizer.setup(model)
return optimizer
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--config_path', type=str, default='configs/base.yml', help='path to config file')
parser.add_argument('--data_dir', type=str, default='./data/imagenet')
parser.add_argument('--results_dir', type=str, default='./results/gans',
help='directory to save the results to')
parser.add_argument('--inception_model_path', type=str, default='./datasets/inception_model',
help='path to the inception model')
parser.add_argument('--snapshot', type=str, default='',
help='path to the snapshot')
parser.add_argument('--loaderjob', type=int,
help='number of parallel data loading processes')
parser.add_argument('--communicator', type=str,
default='hierarchical', help='Type of communicator')
args = parser.parse_args()
config = yaml_utils.Config(yaml.load(open(args.config_path)))
comm = chainermn.create_communicator(args.communicator)
device = comm.intra_rank
chainer.cuda.get_device_from_id(device).use()
print("init")
multiprocessing.set_start_method('forkserver')
if comm.rank == 0:
print('==========================================')
print('Using {} communicator'.format(args.communicator))
print('==========================================')
# Model
gen, dis = load_models(config)
gen.to_gpu()
dis.to_gpu()
models = {"gen": gen, "dis": dis}
# Optimizer
opt_gen = make_optimizer(gen, comm,
alpha=config.adam['alpha'], beta1=config.adam['beta1'], beta2=config.adam['beta2'])
opt_dis = make_optimizer(dis, comm,
alpha=config.adam['alpha'], beta1=config.adam['beta1'], beta2=config.adam['beta2'])
opts = {"opt_gen": opt_gen, "opt_dis": opt_dis}
# Dataset
if config['dataset'][
'dataset_name'] != 'CIFAR10Dataset': # Cifar10 dataset handler does not take "root" as argument.
config['dataset']['args']['root'] = args.data_dir
if comm.rank == 0:
dataset = yaml_utils.load_dataset(config)
else:
_ = yaml_utils.load_dataset(config) # Dummy, for adding path to the dataset module
dataset = None
dataset = chainermn.scatter_dataset(dataset, comm)
# Iterator
iterator = chainer.iterators.MultiprocessIterator(dataset, config.batchsize,
n_processes=args.loaderjob)
kwargs = config.updater['args'] if 'args' in config.updater else {}
kwargs.update({
'models': models,
'iterator': iterator,
'optimizer': opts,
'device': device,
})
updater = yaml_utils.load_updater_class(config)
updater = updater(**kwargs)
out = args.results_dir
if comm.rank == 0:
create_result_dir(out, args.config_path, config)
trainer = training.Trainer(updater, (config.iteration, 'iteration'), out=out)
report_keys = ["loss_dis", "loss_gen", "inception_mean", "inception_std"]
if comm.rank == 0:
# Set up logging
trainer.extend(extensions.snapshot(), trigger=(config.snapshot_interval, 'iteration'))
for m in models.values():
trainer.extend(extensions.snapshot_object(
m, m.__class__.__name__ + '_{.updater.iteration}.npz'), trigger=(config.snapshot_interval, 'iteration'))
trainer.extend(extensions.LogReport(keys=report_keys,
trigger=(config.display_interval, 'iteration')))
trainer.extend(extensions.PrintReport(report_keys), trigger=(config.display_interval, 'iteration'))
if gen.n_classes > 0:
trainer.extend(sample_generate_conditional(gen, out, n_classes=gen.n_classes),
trigger=(config.evaluation_interval, 'iteration'),
priority=extension.PRIORITY_WRITER)
else:
trainer.extend(sample_generate(gen, out),
trigger=(config.evaluation_interval, 'iteration'),
priority=extension.PRIORITY_WRITER)
trainer.extend(sample_generate_light(gen, out, rows=10, cols=10),
trigger=(config.evaluation_interval // 10, 'iteration'),
priority=extension.PRIORITY_WRITER)
trainer.extend(calc_inception(gen, n_ims=5000, splits=1, path=args.inception_model_path),
trigger=(config.evaluation_interval, 'iteration'),
priority=extension.PRIORITY_WRITER)
trainer.extend(extensions.ProgressBar(update_interval=config.progressbar_interval))
ext_opt_gen = extensions.LinearShift('alpha', (config.adam['alpha'], 0.),
(config.iteration_decay_start, config.iteration), opt_gen)
ext_opt_dis = extensions.LinearShift('alpha', (config.adam['alpha'], 0.),
(config.iteration_decay_start, config.iteration), opt_dis)
trainer.extend(ext_opt_gen)
trainer.extend(ext_opt_dis)
if args.snapshot:
print("Resume training with snapshot:{}".format(args.snapshot))
chainer.serializers.load_npz(args.snapshot, trainer)
# Run the training
print("start training")
trainer.run()
if __name__ == '__main__':
main()