-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrigonometry.tex
executable file
·69 lines (52 loc) · 3.44 KB
/
trigonometry.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
\begin{tabular}{l|l|l}
\multicolumn{3}{c}{Тригонометрия} \\
\hline
$\displaystyle sin^2(x) + cos^2(x) = 1$ &
$\displaystyle tg^2(x) + 1 = \frac{1}{cos^2(x)}$ &
$\displaystyle tg(x) = \frac{sin(x)}{cos(x)}$ \\
$\displaystyle tg(x)ctg(x) = 1$ &
$\displaystyle ctg^2(x) + 1 = \frac{1}{sin^2(x)}$ &
$\displaystyle ctg(x) = \frac{cos(x)}{sin(x)}$ \\
\hline
$\displaystyle sin(x \pm y) = sin(x)cos(y) \pm cos(x)sin(y)$ &
$\displaystyle sin(x) = \frac{2tg\left(\frac{x}{2}\right)}{1 + tg^2\left(\frac{x}{2}\right)}$ &
$\displaystyle sin(2x) = 2sin(x)cos(x)$ \\
$\displaystyle cos(x \pm y) = cos(x)cos(y) \mp sin(x)sin(y)$ &
$\displaystyle cos(x) = \frac{1 - tg^2\left(\frac{x}{2}\right)}{1 + tg^2\left(\frac{x}{2}\right)}$ &
$\displaystyle cos(2x) = cos^2(x) - sin^2(x)$ \\
$\displaystyle tg(x \pm y) = \frac{tg(x) \pm tg(y)}{1 \mp tg(x)tg(y)}$ &
$\displaystyle tg(x) = \frac{2tg\left(\frac{x}{2}\right)}{1 - tg^2\left(\frac{x}{2}\right)}$ &
$\displaystyle tg(2x) = \frac{2tg(x)}{1-tg^2(x)}$ \\
$\displaystyle ctg(x \pm y) = \frac{-1 \pm ctg(x)ctg(y)}{ctg(x) \pm ctg(y)}$ &
$\displaystyle ctg(x) = \frac{1 - tg^2\left(\frac{x}{2}\right)}{2tg\left(\frac{x}{2}\right)}$ &
$\displaystyle ctg(2x) = \frac{ctg^2(x) - 1}{2ctg(x)}$ \\
\hline
$\displaystyle sin(x) \pm sin(y) = 2sin\left(\frac{x \pm y}{2}\right)cos\left(\frac{x \mp y}{2}\right)$ &
$\displaystyle sin\left(\frac{x}{2}\right) = \sqrt{\frac{1 - cos(x)}{2}}$ &
$\displaystyle sin^2(x) = \frac{1 - cos(2x)}{2}$ \\
$\displaystyle cos(x) + cos(y) = 2cos\left(\frac{x + y}{2}\right)cos\left(\frac{x - y}{2}\right)$ &
$\displaystyle cos\left(\frac{x}{2}\right) = \sqrt{\frac{1 + cos(x)}{2}}$ &
$\displaystyle cos^2(x) = \frac{1 + cos(2x)}{2}$ \\
$\displaystyle cos(x) - cos(y) = -2sin\left(\frac{x + y}{2}\right)sin\left(\frac{x - y}{2}\right)$ &
$\displaystyle tg\left(\frac{x}{2}\right) = \sqrt{\frac{1 - cos(x)}{1 + cos(x)}}$ &
$\displaystyle (sin(x) + cos(x))^2 = 1 + sin(2x)$ \\
\hline
$\displaystyle sin(x)sin(y) = \frac{1}{2}(cos(x - y) - cos(x + y))$ &
\multicolumn{2}{l}{$\displaystyle sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \ldots + (-1)^n\frac{x^{2n + 1}}{(2n + 1)!} + o(x^{2n+2})$} \\
$\displaystyle cos(x)cos(y) = \frac{1}{2}(cos(x - y) + cos(x + y))$ &
\multicolumn{2}{l}{$\displaystyle cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \ldots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$} \\
$\displaystyle sin(x)cos(y) = \frac{1}{2}(sin(x - y) + sin(x + y))$ &
\multicolumn{2}{l}{$\displaystyle e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots + \frac{x^n}{n!} + o(x^n)$} \\ \cline{1-1}
\multicolumn{3}{r}{$\displaystyle (1 + x)^m = 1 + mx +\frac{m(m-1)}{2!}x^2 + \ldots + \frac{m(m-1)\ldots[m-(n-1)]}{n!}x^n + o(x^n)$} \\
\cline{1-1}
$\displaystyle sin(3x) = 3sin(x) - 4sin^3(x)$ &
\multicolumn{2}{l}{$\displaystyle ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \ldots + (-1)^{n-1}\frac{x^n}{n} + o(x^n)$} \\
$\displaystyle cos(3x) = 4cos^3(x) - 3cos(x)$ &
\multicolumn{2}{c}{} \\
$\displaystyle tg(3x) = \frac{3tg(x) - tg^3(x)}{1 - 3tg^2(x)}$ &
\multicolumn{2}{c}{} \\
\hline
% $\displaystyle $ &
% $\displaystyle $ &
% $\displaystyle $ \\
\end{tabular}