-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathseed.py
893 lines (742 loc) · 35.9 KB
/
seed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
"""Utility file to seed PlatePalBiz and PlatePalReview tables from equivalent Yelp tables."""
import json
import random
import requests
import time
from model import CAT_CODES
from model import YelpBiz, YelpUser, YelpReview
from model import PlatePalBiz, PlatePalUser, PlatePalReview
from model import UserList, ListEntry
from model import Category, ReviewCategory, BizSentiment
from model import Sentence, SentenceCategory
from model import City, CityDistance, CityDistCat
from model import connect_to_db, db
from server import app
from pandas import DataFrame
from datetime import datetime
from sqlalchemy.sql import func
from sqlalchemy import distinct
from sqlalchemy.sql import not_
from geopy.geocoders import Nominatim
from geopy.distance import vincenty
from pdclassifier import categorize_text
from pdclassifier import predict_sentiment
from pdclassifier import PennTreebankPunkt
# filepaths to Yelp JSON
YELP_JSON_FP = 'data/yelp/yelp_academic_dataset.json'
def get_scatter_data():
QUERY="""
SELECT revcat_id, revcats.review_id, reviews.review_date, revcats.sen_score, reviews.yelp_stars
FROM revcats
JOIN reviews on reviews.review_id = revcats.review_id
WHERE reviews.biz_id = 2171
ORDER BY reviews.review_date"""
sen_scores_by_date = db.session.execute(QUERY).fetchall()
# calculate months from date
date_format = "%Y-%m-%d"
zero_date = sen_scores_by_date[0][2]
zero_date = datetime.strptime(zero_date, date_format)
# import pdb; pdb.set_trace()
with open("./static/csv/scatterplot.csv", "w") as record_file:
record_file.write("reviewDate,timeDelta,sentimentScore,stars\n")
for entry in sen_scores_by_date:
entry_date = datetime.strptime(entry[2], date_format)
delta = entry_date - zero_date
entry_days = delta.days
record_file.write(entry[2] +","+ str(entry_days) +","+str(entry[3])+","+ str(entry[4])+"\n")
record_file.close()
return
def gets_data_frames(file_path, target_cat_list=[u'Restaurants']):
"""
Returns pandas DataFrames containing JSON entries for biz and reviews.
file_path: the absolute path of the JSON file that contains the academic dataset
target_cat_list (default u'Restaurants'): takes a list of categories for sorting
business entries
"""
biz_records = []
review_records = []
fp = open(file_path)
for line in enumerate(fp):
# academic dataset puts lines of json in tuples...
record = line[1].rstrip('\n')
# convert json
record = json.loads(record)
if record['type'] == 'business':
if set(target_cat_list) & set(record['categories']):
biz_records.append(record)
elif record['type'] == 'review':
review_records.append(record)
# insert all records stored in lists into respective pandas DataFrames
bdf = DataFrame(biz_records)
rdf = DataFrame(review_records)
return (bdf, rdf)
def load_pp_biz(bdf):
"""Load businesses from Yelp table into PlatePal table"""
print "PlatePal Businesses"
PlatePalBiz.query.delete()
for row in bdf.iterrows():
row_pd = row[1]
yelp_biz_id = row_pd['business_id'] # unicode
name = row_pd['name'] # unicode
address = row_pd['full_address'] # unicode
city = row_pd['city'] # unicode
state = str(row_pd['state']) # unicode
lat = row_pd['latitude'] # float
lng = row_pd['longitude'] # float
stars = row_pd['stars'] # float
review_count = row_pd['review_count'] # int
is_open = row_pd['open'] # bool
if 'photo_url' in row_pd:
photo_url = row_pd['photo_url']
else:
photo_url = None
biz = PlatePalBiz(yelp_biz_id=yelp_biz_id,
name=name,
address=address,
city=city,
state=state,
lat=lat,
lng=lng,
is_open=is_open,
photo_url=photo_url,
)
db.session.add(biz)
db.session.commit()
def load_pp_reviews(rdf):
"""Load reviews from Yelp table into PlatePal table"""
print "PlatePal Reviews"
PlatePalReview.query.delete()
# update for reviews in businesses only ...
for row in rdf.iterrows():
row_pd = row[1]
yelp_biz_id = row_pd['business_id'] # unicode
# check if business is in YelpBiz Table
# if not, skip review entry
# import pdb; pdb.set_trace()
check_biz = YelpBiz.query.filter(YelpBiz.biz_id==yelp_biz_id).first()
# check_pp_biz = PlatePalBiz.query.filter_by(yelp_biz_id=biz_id).first()
if not check_biz:
continue
# else, add review to database
else:
yelp_user_id = row_pd['user_id'] # unicode
# yelp_review = YelpReview.query.filter((YelpReview.biz_id==biz_id) & (YelpReview.user_id==yelp_user_id)).one()
# yelp_review_id = yelp_review.review_id
yelp_stars = row_pd['stars'] # integer
text = row_pd['text'] # text
rev_date = row_pd['date'] # date
# format date as date object
rev_date = datetime.strptime(rev_date, '%Y-%m-%d')
# will have to insert review ID later
review = PlatePalReview(yelp_review_id=None,
yelp_stars=yelp_stars,
yelp_biz_id=yelp_biz_id,
user_id=None,
yelp_user_id=yelp_user_id,
cat_code=None,
stars=None,
review_date=rev_date,
text=text
)
db.session.add(review)
db.session.commit()
def fix_biz_id(num_to_fix, num_to_offset):
"""
Moves biz_id entry to yelp_biz_id field for all reviews
num_to_fix is the number of entries to fix
"""
# select only reviews where the 22-character yelp_biz_id is in the biz_id field
reviews = PlatePalReview.query.filter(func.length(PlatePalReview.biz_id)==22).limit(num_to_fix).offset(num_to_offset)
# reviews_n = random.sample(reviews, num_to_fix)
for review in reviews:
# import pdb; pdb.set_trace()
yelp_biz_id = review.biz_id
review_biz = PlatePalBiz.query.filter_by(yelp_biz_id=yelp_biz_id).first()
review.biz_id = review_biz.biz_id
db.session.commit()
return
# TODO This looks like it can be deleted ...
# def load_biz_id(n):
# """
# Populates the biz_id field for reviews in PlatePalReview
# n is the number of entries to seed.
# """
# print "... populating %d biz ids in reviews ..." % n
# print
# import random
# reviews = PlatePalReview.query.filter(PlatePalReview.biz_id.is_(None))
# reviews_n = random.sample(reviews, n)
# # lookup biz_id for each review and add to entry
# # for review in reviews_n:
# # review_biz = PlatePalBiz.query.filter_by(yelp_biz_id=review.yelp)
def seed_revcat(cat_search, category):
"""Used by keywordsearch.py to populate RevCat table with cat_reviews"""
# lookup cat_code in CAT_CODES dict imported from model
cat_code = CAT_CODES[category]
# iterate over entries in cat_reviews
for csearch in cat_search:
for review in csearch:
biz_id = review[0]
biz_name = review[1]
review_id = review[2]
review_date = review[3]
review_text = review[4]
# check whether review id / cat_code pair already in db
revcat = ReviewCategory.query.filter(ReviewCategory.review_id == review_id, ReviewCategory.cat_code == cat_code).first()
# if not exists, add
if revcat is None:
revcat = ReviewCategory(review_id=review_id,
biz_id=biz_id,
cat_code=cat_code
)
db.session.add(revcat)
db.session.commit()
return
def seed_keyword_revcat(search_term, cat_code):
"""Add more revcats by using like '%vegan%'
Tested on all reviews containing 'vegan' where reviews.biz_id=148, then
reran for all reviews containing 'vegan' where reviews.biz_id != 148
"""
# sqlite> select reviews.review_id, revcats.revcat_id, sentences.sent_id from reviews
# ...> LEFT JOIN revcats ON revcats.review_id = reviews.review_id
# ...> LEFT JOIN sentences on sentences.review_id = reviews.review_id
# ...> WHERE reviews.biz_id = 148 and reviews.text like '%vegan%';
# sqlite> select count(*) from reviews where reviews.biz_id != 148 and reviews.text like '%vegan%';
# count(*)
# 3946
# query db for all reviews containing the word 'vegan'
# search_term = 'vegan'
reviews = db.session.query(PlatePalReview, ReviewCategory, Sentence, SentenceCategory)
reviews_joined = reviews.outerjoin(ReviewCategory).outerjoin(Sentence).outerjoin(SentenceCategory)
keyword_reviews = reviews_joined.filter(PlatePalReview.text.like(('%'+search_term+'%')))
# vegan_reviews = reviews_joined.filter(PlatePalReview.biz_id!=148, PlatePalReview.review_id!=7617, PlatePalReview.text.like(('%'+search_term+'%')))
# instantiate preprocessor for splitting text into sentences
preprocessor = PennTreebankPunkt(use_flag="sentences")
for group in keyword_reviews:
review = group[0]
revcats = group[1]
sentences = group[2]
sentcats = group[3]
# check if review has revcats
if not revcats:
# get sentiment score of review
sen_score = get_sentiment(review.text)
# add review to revcat 'vgan'
revcat = ReviewCategory(review_id=review.review_id,
biz_id=review.biz_id,
cat_code=cat_code,
sen_score=sen_score,
)
db.session.add(revcat)
db.session.commit()
else: # there are revcats
pass
# check if review has sentences
if not sentences:
# tokenize into sentences and add to sentences
sentence_list = preprocessor(review.text)
# add sentence to Sentences table
for sentence in sentence_list:
sent = Sentence(review_id=review.review_id,
sent_text=sentence
)
db.session.add(sent)
db.session.commit()
# add sentences containing search_term to sentcats
if search_term in sentence:
sent_id = db.session.query(Sentence.sent_id).filter(Sentence.sent_text==sentence, Sentence.review_id==review.review_id).all()
if sent_id:
for sid in sent_id:
# import pdb; pdb.set_trace()
# get sentiment score of sentence
sen_score = get_sentiment(sentence)
sentcat = SentenceCategory(sent_id=sid[0],
cat_code=cat_code,
sen_score=sen_score)
db.session.add(sentcat)
db.session.commit()
else:
pass
else: #there are sentences, so check if sentences containing search_term have sentcats
if not sentcats:
# check if more than one sentence
if isinstance(type(sentences), list):
for sentence in sentences:
if search_term in sentence.text:
sent_id = db.session.query(Sentence.sent_id).filter(Sentence.sent_text==sentence, Sentence.review_id==review.review_id).all()
if sent_id:
for sid in sent_id:
# get sentiment score of sentence TODO fix
sen_score = get_sentiment(sentence.sent_text)
sentcat = SentenceCategory(sent_id=sid[0],
cat_code=cat_code,
sen_score=sen_score)
db.session.add(sentcat)
db.session.commit()
else: # single sentence in sentences
sentence = sentences
if search_term in sentence.sent_text:
# get sentiment score of sentence
sen_score = get_sentiment(sentence.sent_text)
sentcat = SentenceCategory(sent_id=sentence.sent_id,
cat_code=cat_code,
sen_score=sen_score)
db.session.add(sentcat)
db.session.commit()
else: # there are sencats ... make sure cat_code matches sencat.cat_code
# check if sentiment score exists
if isinstance(type(sentcats), list):
for sentcat in sentcats:
if sentcat.cat_code == cat_code:
sentence_text = db.session.query(Sentence.sent_text).filter(Sentence.sent_id==sentcat.sent_id).one()
if search_term in sentence_text:
if not sentcat.sen_score:
# get sentiment score of sentence
sen_score = get_sentiment(sentence_text)
sentcat.sen_score = sen_score
db.session.add(sentcat)
db.session.commit()
elif sentcat.sen_score == 0:
# get sentiment score of sentence
sen_score = get_sentiment(sentence_text)
sentcat.sen_score = sen_score
db.session.add(sentcat)
db.session.commit()
else: # there is a non-zero sentiment score
print "sentiment score exists for sentcat %d", sentcat.sentcat_id
else: # sentcat.cat_code != cat_code
pass
else: #single sentcat
sentcat = sentcats
if sentcat.cat_code == cat_code:
sentence_text = db.session.query(Sentence.sent_text).filter(Sentence.sent_id==sentcat.sent_id).one()
if search_term in sentence_text:
if not sentcat.sen_score:
# get sentiment score of sentence
sen_score = get_sentiment(sentence.sent_text)
sentcat.sen_score = sen_score
db.session.add(sentcat)
db.session.commit()
elif sentcat.sen_score == 0:
# get sentiment score of sentence
sen_score = get_sentiment(sentence.sent_text)
sentcat.sen_score = sen_score
db.session.add(sentcat)
db.session.commit()
else: # there is a non-zero sentiment score
print "sentiment score exists for sentcat %d", sentcat.sentcat_id
else: #sentcat.cat_code != cat_code
pass
return
def update_revcat_sen_score(cat='gltn'):
"""Update RevCat table with sen_scores"""
# select all revcat entries where cat_code == category and return the review text
results = db.session.query(ReviewCategory.revcat_id, PlatePalReview.text).join(PlatePalReview)
results_by_cat = results.filter(ReviewCategory.cat_code==cat).all()
# for the list of revcats / review text
for result in results_by_cat:
revcat_id = result[0]
text = result[1]
# note: predict_sentiment components revived in function
sentiment_score = predict_sentiment([text])
# store prediction_list[0][0][2] (decision_function score) as sen_score
sen_score = sentiment_score[0][2]
# update entry in db --> get entire entry from revcat by revcat_id
revcat = db.session.query(ReviewCategory).filter(ReviewCategory.revcat_id==revcat_id).one()
revcat.sen_score = sen_score
# print "this is revcat.revcat_id", revcat.revcat_id
# print "this is revcat.sen_score", revcat.sen_score
db.session.add(revcat)
db.session.commit()
print "... database updated!"
return
def replace_revcat_sen_score(cat='gltn'):
"""Replace sen_scores in RevCat table with text-processing API scores"""
url = "http://text-processing.com/api/sentiment/"
# select all revcat entries where cat_code == category and return the review text
results = db.session.query(ReviewCategory.revcat_id, PlatePalReview.text).join(PlatePalReview)
results_by_cat = results.filter(ReviewCategory.cat_code==cat).all()
# for the list of revcats / review text
for result in results_by_cat:
revcat_id = result[0]
text = result[1]
# check that text does not exceed API's character limit
if len(text) < 80000:
# query text-processing API for sentiment score
payload = {'text': text}
# make API call
r = requests.post(url, data=payload)
# load JSON from API call
result = json.loads(r.text)
# pull sentiment score
sen_score = result['probability']['pos']
time.sleep(random.randint(0,10))
# update entry in db --> get entire entry from revcat by revcat_id
revcat = db.session.query(ReviewCategory).filter(ReviewCategory.revcat_id==revcat_id).one()
if revcat:
revcat.sen_score = sen_score
db.session.add(revcat)
db.session.commit()
print "... database updated!"
return
def get_revcat_sen_score(cat='vgan'):
"""Replace 'NULL' sen_scores in RevCat table with text-processing API scores"""
url = "http://text-processing.com/api/sentiment/"
# select all revcat entries where cat_code == category and return the review text
revcat_ids = [301, 304, 305, 310, 329, 333, 340, 345]
results = db.session.query(ReviewCategory.revcat_id, PlatePalReview.text).join(PlatePalReview)
results_by_cat = results.filter(ReviewCategory.cat_code==cat, ReviewCategory.sen_score==None).all()
# for the list of revcats / review text
for result in results_by_cat:
revcat_id = result[0]
text = result[1]
# check that text does not exceed API's character limit
if len(text) < 80000:
# query text-processing API for sentiment score
payload = {'text': text}
# make API call
r = requests.post(url, data=payload)
# load JSON from API call
result = json.loads(r.text)
# pull sentiment score
sen_score = result['probability']['pos']
time.sleep(random.randint(0,5))
# update entry in db --> get entire entry from revcat by revcat_id
revcat = db.session.query(ReviewCategory).filter(ReviewCategory.revcat_id==revcat_id).one()
if revcat:
revcat.sen_score = sen_score
db.session.add(revcat)
db.session.commit()
print "... database updated!"
return
def seed_sentences():
"""
For reviews in RevCats, split reviews into sentences and store
sentences in Sentences table.
"""
decision = raw_input("Are you sure you want to seed SENTENCES table? Y or N")
if decision.lower() == 'y':
# instantiate preprocessor imported from pdclassifier.py
preprocessor = PennTreebankPunkt(use_flag="sentences")
# query db for reviews in revcats
results = db.session.query(PlatePalReview.review_id, PlatePalReview.text).join(ReviewCategory).all()
# for each review...
for review in results:
# split reviews into sentences
sentence_list = preprocessor(review.text)
# add sentence to Sentences table
for sentence in sentence_list:
sent = Sentence(review_id=review.review_id,
sent_text=sentence
)
db.session.add(sent)
db.session.commit()
else:
print "Phew! That was close."
return
def seed_sentcats():
"""
For sentences in Sentences, categorize using multilabel classifier
Add results to SentCats -- Initial seeding version
"""
# select all sentences from Sentences table
results = db.session.query(Sentence).offset(0).all()
# for each sentence, categorize with classifier
for sentence in results:
sent_id = sentence.sent_id
text = sentence.sent_text
predictions = categorize_text(text)
for cat in predictions:
# for 'gltn', perform sentiment analysis
if cat == 'gltn':
# note: predict_sentiment components revived in function
sentiment_score = predict_sentiment([text])
# store prediction_list[0][0][2] (decision_function score) as sen_score
sen_score = sentiment_score[0][2]
# query db to check for entry
sentcat = SentenceCategory.query.filter(SentenceCategory.sent_id==sent_id).first()
if not sentcat:
sentcat = SentenceCategory(sent_id=sent_id,
cat_code='gltn',
sen_score=sen_score)
else:
sentcat.sen_score=sen_score
else:
# query db to check for entry
sentcat = SentenceCategory.query.filter(SentenceCategory.sent_id==sent_id).first()
if not sentcat:
# TODO: will have to perform sentiment analysis and update later
sentcat = SentenceCategory(sent_id=sent_id,
cat_code=cat
)
else:
pass
db.session.add(sentcat)
db.session.commit()
return
def update_sentcat_score(cat_code, search_term):
"""Replace hand-built sentiment score with text-processing API score"""
# checking progress of update_sentcat_score('vgan', 'vegan')
# sqlite> select sentences.sent_text, sentcats.sentcat_id, sentcats.sen_score from sentences
# ...> left join sentcats on sentcats.sent_id = sentences.sent_id
# ...> where sentcats.cat_code = 'vgan'
# ...> limit 10;
url = "http://text-processing.com/api/sentiment/"
updated_cat_codes = ['gltn', 'algy']
# get all sentences containing search term
sentences = Sentence.query.filter(Sentence.sent_text.like('%'+search_term+'%')).all()
# get inverse sentences and set sen_score = 0
# ! check this ! sentences = SentenceCategory.query.outerjoin(Sentence).filter((not_(Sentence.sent_text.like('%gluten%'))) | (not_(Sentence.sent_text.like('%celiac%')))).all()
for sentence in sentences:
# query text-processing API for sentiment score
doc = sentence.sent_text
payload = {'text': doc}
# make API call
r = requests.post(url, data=payload)
# load JSON from API call
result = json.loads(r.text)
# pull sentiment score
sen_score = result['probability']['pos']
# check if sentence is in sentcat
result = SentenceCategory.query.filter(SentenceCategory.sent_id==sentence.sent_id).one()
if result:
# don't update gltn reviews again
if result.cat_code not in updated_cat_codes:
# update sen_score
result.sen_score = sen_score
else:
# add sentence to sentcat
sentcat = SentenceCategory(sent_id=sentence.sent_id,
cat_code=cat_code,
sen_score=sen_score)
# sentence.sen_score = 0
db.session.commit()
# wait 5 seconds before making the next call
time.sleep(random.randint(0,10))
return
# MVP 3a. build class/method for avg rating per cat
# this should only be applied to the businesses that are in revcats, as the other
# businesses are classified as "unknown" and therefore don't have a category
# or their scores for the category would be unknown
def calc_avg_rating_per_cat():
"""Calculate average stars for business by category"""
# 1. find the businesses having more than one revcat (multiple reviews for a business)
# SELECT biz_id, COUNT(cat_code) as num_revcats FROM revcats GROUP BY biz_id HAVING COUNT(cat_code) > 1 ORDER BY COUNT(cat_code) DESC;
# 2. find the businesses with more than one cat_code (multiple categories within multiple reviews)
# SELECT biz_id, COUNT(DISTINCT cat_code) as num_cats FROM revcats GROUP BY biz_id HAVING COUNT(cat_code) > 1 ORDER BY COUNT(DISTINCT cat_code) DESC;
# --> SELECT biz_id as num_cats FROM revcats GROUP BY biz_id HAVING COUNT(cat_code) > 1 ORDER BY COUNT(DISTINCT cat_code) DESC;
# multiple_cat_biz = db.session.query(ReviewCategory.biz_id).group_by(ReviewCategory.biz_id).having(func.count(ReviewCategory.cat_code)>1).order_by(func.count(distinct(ReviewCategory.cat_code))).all()
# 3. for each of these biz_ids, select the cat codes
# query ReviewCategory for unique biz_ids
# revcat_biz = db.session.query(distinct(ReviewCategory.biz_id)).all()
# revcat_biz = db.session.query(distinct(ReviewCategory.biz_id), ReviewCategory.cat_code).order_by(ReviewCategory.cat_code).all()
revcats = db.session.query(ReviewCategory.review_id, ReviewCategory.biz_id, ReviewCategory.cat_code).order_by(ReviewCategory.biz_id).all()
unique_biz = set([revcat[1] for revcat in revcats])
#for each biz_id with more than one review
for biz in unique_biz:
biz_id = biz
# find distinct categories for biz in revcat
cats = set([revcat[2] for revcat in revcats if revcat[1] == biz_id])
# bizcats = db.session.query(distinct(ReviewCategory.cat_code)).filter(ReviewCategory.biz_id==biz_id).all()
# for a category
for cat in cats:
cat_code = cat
# find all reviews in the current category
revs = [revcat[0] for revcat in revcats if (revcat[1] == biz_id and revcat[2] == cat)]
# revs = db.session.query(ReviewCategory.review_id).filter(ReviewCategory.biz_id==biz_id, ReviewCategory.cat_code==cat_code).all()
# take average of stars for all of those reviews
sum_stars_by_cat = 0
# for each review in category, get num of stars from reviews table
num_revs = len(revs)
for rev in revs:
review_id = rev
stars = db.session.query(PlatePalReview.yelp_stars).filter(PlatePalReview.review_id==review_id).first()
# update sum
sum_stars_by_cat += stars[0]
average_stars_by_cat = (sum_stars_by_cat / num_revs) / 1.0
# update attribute
bizsen_cat = BizSentiment(biz_id=biz_id,
cat_code=cat_code,
avg_cat_review=average_stars_by_cat,
num_revs=num_revs)
# update db
db.session.add(bizsen_cat)
db.session.commit()
return
def calc_agg_sen_per_cat(cat='vgan'):
"""Calculate aggregate sentiment score for business by category"""
# 1. List of PLATEPALBIZ: find the businesses with at least one revcat in cat_code = 'gltn'
# 2. List of REVCATS for Biz: for that business, find all of its reviews in the category
# 1 + 2 --> query for revcat in category, for each revcat, find .biz --> take set of these biz
# ... then for each unique use backref biz.revcat --> this is the list of revcats
# ALTERNATIVELY:, assuming bizsents already seeded with avg_rating by stars
# ... bizsents = BizSentiment.query.filter(BizSentiment.cat_code==cat).all()
# select count(biz_id) from bizsentiments where cat_code = 'gltn';
# 3. Average sentiment scores (sen_score) for all of those reviews and store as agg_sen_score in BIZSENTIMENTS
# 4. Update database
# query ReviewCategory for unique biz_ids (215 for 'gltn' 11/18/2015)
revcat_biz = db.session.query(ReviewCategory).filter(ReviewCategory.cat_code==cat).group_by(ReviewCategory.biz_id).all()
for revcat in revcat_biz:
biz = revcat.biz
biz_revcats = biz.revcat
agg_sen_score = 0.0
total_sen_score = 0.0
num_scores = 0
# calculate average
for entry in biz_revcats:
if entry.cat_code == cat:
num_scores += 1
total_sen_score += entry.sen_score
agg_sen_score = ( 1.0 * total_sen_score / num_scores)
# store average in db BizSentiments
# query and update...
print "\nUpdating bizsentiments table for biz_id=%d ...\n" % biz.biz_id
bizsent = BizSentiment.query.filter(BizSentiment.biz_id==biz.biz_id, BizSentiment.cat_code==cat).first()
if bizsent:
bizsent.agg_sen_score = agg_sen_score
else:
bizsent = BizSentiment(biz_id=biz.biz_id,
cat_code=cat,
agg_sen_score=agg_sen_score
)
db.session.add(bizsent)
print "\n... database updated.\n"
db.session.commit()
return
def seed_cities():
"""Add all cities in Biz table to Cities table"""
# should be 95 cities
# select city, state from biz group by state, city
# group by state, city
all_cities = db.session.query(PlatePalBiz.city, PlatePalBiz.state).filter(PlatePalBiz.city!=u"blacksburg", PlatePalBiz.city!=u'Carrboro Saxapahaw Chapel Hill Durham', PlatePalBiz.city!=u'Greenbelt ')
cities = all_cities.group_by(PlatePalBiz.state).group_by(PlatePalBiz.city).all()
# calculate lat/lng for each city
geolocator = Nominatim()
for city in cities:
location = geolocator.geocode(city[0] + " " + city[1])
print city
print "Lat: {}, Lng: {}".format(location.latitude, location.longitude)
new_city = City(city=city[0],
state=city[1],
lat=location.latitude,
lng=location.longitude)
db.session.add(new_city)
db.session.commit()
return
def seed_city_distance():
"""populate city distances table"""
# should be 95 cities
# select city, state from biz group by state, city
# group by state, city
cities = db.session.query(City)
# find nearby cities (<50 miles)
for city in cities:
city1 = (city.lat, city.lng)
for other_city in cities:
if other_city != city:
city2 = (other_city.lat, other_city.lng)
# evaluate distance
miles = vincenty(city1, city2).miles
new_city_distance = CityDistance(city1_id=city.city_id,
city2_id=other_city.city_id,
miles=miles)
db.session.add(new_city_distance)
db.session.commit()
return
# def seed_citydistcat():
# """Populate CityDistCat table with cities with at least one review in PP categories."""
# # query db for cities by state
# QUERY="""
# SELECT DISTINCT Biz.city, Biz.state from Biz
# INNER JOIN Reviews on reviews.biz_id = Biz.biz_id
# INNER JOIN revcats on revcats.review_id = reviews.review_id
# WHERE revcats.cat_code in ('gltn', 'vgan', 'pleo', 'kshr', 'algy')
# ORDER BY Biz.state;"""
# results = db.session.execute(QUERY).fetchall()
# # create a dictionary where state abbrev = keys and values
# # are a list of cities in the state
# cities_with_cats = set()
# for result in results:
# cities_with_cats.add((result[0], result[1]))
# import pdb; pdb.set_trace()
# for city in cities_with_cats:
# print city
# city_distances = db.session.query(CityDistance).join(City).filter(City.city==city[0], City.state==city[1]).all()
# for cdist in city_distances:
# citycat = CityDistCat(city1_id=cdist.city1_id,
# city2_id=cdist.city2_id,
# miles=cdist.miles)
# db.session.add(citycat)
# db.session.commit()
# return
def update_ppreview_cat():
"""
Correct review.cat_code in PlatePalReview
Incorrectly defined in model.py when initially seeded tables.
Because a review can have multiple categories, RevCats was used to
store the categories for a review.
Review.cat_code can store a string with the cat codes, e.g.
'gltnvganpleo', which can be parsed 4 characters at a time to break
off the cat codes.
"""
pass # TODO
## Helper function for checking if input string represents an int
def RepresentsInt(s):
try:
int(s)
return True
except ValueError:
return False
## helper function for calling text-processing API
def get_sentiment(text):
"""Call text-processing API and get sentiment of text
note API limits 80,000 characters per text, 1000 calls
per IP address
"""
# check that text does not exceed API's character limit
url = "http://text-processing.com/api/sentiment/"
if len(text) < 80000:
# query text-processing API for sentiment score
payload = {'text': text}
# make API call
r = requests.post(url, data=payload)
# load JSON from API call
result = json.loads(r.text)
# pull sentiment score
sen_score = result['probability']['pos']
time.sleep(random.randint(0,5))
return sen_score
if __name__ == "__main__":
connect_to_db(app)
# In case tables haven't been created, create them
db.create_all()
# Import different types of data
# bdf, rdf = gets_data_frames(YELP_JSON_FP)
# Seed PlatePalBiz and PlatePalReview
# load_pp_biz(bdf)
# load_pp_reviews(rdf)
# FOR FIXING PlatePalBiz BIZ IDs (fixed as of 11/8/2015)
# Seed PlatePalReview biz_id from PlatePalBiz
# print "Would you like to fix PlatePalReview.biz_id?"
# decision = raw_input("Y or N >> ")
# if decision.lower() == 'y':
# num_to_fix = raw_input("Enter an integer value of entries to update >> ")
# num_to_offset = raw_input("Enter an integer value of entries to offset >> ")
# while not RepresentsInt(num_to_fix) or not RepresentsInt(num_to_offset):
# num_to_fix = raw_input("Enter an integer value of entries to update >> ")
# num_to_offset = raw_input("Enter an integer value of entries to offset >> ")
# fix_biz_id(int(num_to_fix), int(num_to_offset))
# else:
# pass
# print "Would you like to seed BizSentiment by category?"
# decision = raw_input("Y or N >> ")
# if decision.lower() == 'y':
# calc_avg_rating_per_cat()
# print "Would you like to seed Cities?"
# decision = raw_input("Y or N >> ")
# if decision.lower() == 'y':
# seed_cities()
# print "Would you like to seed NearbyCities?"
# decision = raw_input("Y or N >> ")
# if decision.lower() == 'y':
# seed_city_distance()