-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConvexOptimization.py
196 lines (113 loc) · 4.9 KB
/
ConvexOptimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import pandas as pd
import numpy as np
import cvxpy as cp
import matplotlib.pyplot as plt
# A = error_filtered
# n_val_fixed= 6
def mean(x):
return cp.sum(x) / x.size
class CustomizedOptimization:
def __init__(self,
alpha,
gamma,
delta,
n_val_fixed):
self.alpha= alpha
self.gamma= gamma
self.delta= delta
self.n_val_fixed= n_val_fixed
# self.delta2 = delta2
# self.A= A
def customized_optimization(self, A):
n_validation, n_model = A.shape
self.delta1= self.delta[0]
self.delta2= self.delta[1]
x = cp.Variable(n_model)
l1_list = []
for i in range(self.n_val_fixed):
objective_value = cp.norm(A[i, :] @ x, 1)
l1_list.append(objective_value)
l2_list = []
for i in range(self.n_val_fixed):
variance = cp.sum_squares(A[i, :] * x - mean(A[0, :] * x))
l2_list.append(variance)
l_infinity_list = []
for i in range(self.n_val_fixed):
variance = cp.norm(A[0, :] * x, "inf")
l_infinity_list.append(variance)
l1_residual = sum(np.array(l1_list))
variance_sum = sum(np.array(l2_list))
max_error = sum(np.array(l_infinity_list))
testing_error_co = l1_residual + self.gamma * variance_sum
# testing_error_co = objective_value1 + objective_value2 + objective_value3 + objective_value4 + objective_value5 + objective_value6 + self.gamma * variance_sum
objective = cp.Minimize(testing_error_co)
# constraints = [alpha2 <= x, 1 - delta1 <= sum(x), 1 + delta2 >= sum(x)]
constraints = [self.alpha <= x]
constraints += [1 - self.delta1 <= sum(x)]
constraints += [1 + self.delta2 >= sum(x)]
prob = cp.Problem(objective, constraints)
# The optimal objective value is returned by `prob.solve()`.
result = prob.solve(solver=cp.ECOS)
x_optimal = x.value
return x_optimal
class CustomizedOptimizationTrainingError:
def __init__(self,
alpha,
gamma,
delta,
alpha_train,
n_val_fixed):
self.alpha= alpha
self.gamma= gamma
self.delta= delta
self.alpha_train= alpha_train
self.n_val_fixed= n_val_fixed
def customized_optimization(self, A_train, A_val):
n_validation, n_model = A_val.shape
n_train, n_model = A_train.shape
self.delta1= self.delta[0]
self.delta2= self.delta[1]
x = cp.Variable(n_model)
l1_list = []
for i in range(self.n_val_fixed):
objective_value = cp.norm(A_val[i, :] @ x, 1)
l1_list.append(objective_value)
l2_list = []
for i in range(self.n_val_fixed):
variance = cp.sum_squares(A_val[i, :] * x - mean(A_val[0, :] * x))
l2_list.append(variance)
l_infinity_list = []
for i in range(self.n_val_fixed):
variance = cp.norm(A_val[0, :] * x, "inf")
l_infinity_list.append(variance)
l1_residual = sum(np.array(l1_list))
variance_sum = sum(np.array(l2_list))
max_error = sum(np.array(l_infinity_list))
testing_error = l1_residual + self.gamma * variance_sum
l1_list_train = []
for i in range(n_train):
objective_value = cp.norm(A_train[i, :] @ x, 1)
l1_list_train.append(objective_value)
l2_list_train = []
for i in range(n_train):
variance = cp.sum_squares(A_train[i, :] * x - mean(A_train[0, :] * x))
l2_list_train.append(variance)
l_infinity_list_train = []
for i in range(n_train):
max = cp.norm(A_train[0, :] * x, "inf")
l_infinity_list_train.append(max)
l1_residual_train = sum(np.array(l1_list_train))
variance_sum_train = sum(np.array(l2_list_train))
max_error_train = sum(np.array(l_infinity_list_train))
training_error= l1_residual_train + self.gamma*variance_sum_train
total_error= testing_error + self.alpha_train* training_error
objective = cp.Minimize(total_error)
# constraints = [alpha2 <= x, 1 - delta1 <= sum(x), 1 + delta2 >= sum(x)]
constraints = [self.alpha <= x]
constraints += [1 - self.delta1 <= sum(x)]
constraints += [1 + self.delta2 >= sum(x)]
prob = cp.Problem(objective, constraints)
# The optimal objective value is returned by `prob.solve()`.
result = prob.solve(solver=cp.ECOS)
x_optimal = x.value
return x_optimal