18
18
StandardNormalVariate ,
19
19
)
20
20
from chemotools .smooth import MeanFilter , MedianFilter , WhittakerSmooth
21
- from chemotools .variable_selection import RangeCut
21
+ from chemotools .variable_selection import RangeCut , SelectFeatures
22
22
from tests .fixtures import (
23
23
spectrum ,
24
24
spectrum_arpls ,
@@ -439,8 +439,8 @@ def test_point_scaler(spectrum):
439
439
440
440
def test_point_scaler_with_wavenumbers ():
441
441
# Arrange
442
- wavenumbers = np .array ([1. , 2. , 3. , 4. , 5. , 6. , 7. , 8. , 9. , 10. ])
443
- spectrum = np .array ([[10. , 12. , 14. , 16. , 14. , 12. , 10. , 12. , 14. , 16. ]])
442
+ wavenumbers = np .array ([1.0 , 2.0 , 3.0 , 4.0 , 5.0 , 6.0 , 7.0 , 8.0 , 9.0 , 10.0 ])
443
+ spectrum = np .array ([[10.0 , 12.0 , 14.0 , 16.0 , 14.0 , 12.0 , 10.0 , 12.0 , 14.0 , 16.0 ]])
444
444
445
445
# Act
446
446
index_scaler = PointScaler (point = 4 , wavenumbers = wavenumbers )
@@ -450,7 +450,6 @@ def test_point_scaler_with_wavenumbers():
450
450
assert np .allclose (spectrum_corrected [0 ], spectrum [0 ] / spectrum [0 ][3 ], atol = 1e-8 )
451
451
452
452
453
-
454
453
def test_range_cut_by_index (spectrum ):
455
454
# Arrange
456
455
range_cut = RangeCut (start = 0 , end = 10 )
@@ -544,6 +543,35 @@ def test_saviszky_golay_filter_3():
544
543
assert np .allclose (spectrum_corrected [0 ], np .ones ((1 , 10 )), atol = 1e-2 )
545
544
546
545
546
+ def test_select_features ():
547
+ # Arrange
548
+ spectrum = np .array ([[1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ]])
549
+ expected = np .array ([[1 , 2 , 3 , 8 , 9 , 10 ]])
550
+
551
+ # Act
552
+ select_features = SelectFeatures (features = np .array ([0 , 1 , 2 , 7 , 8 , 9 ]))
553
+ spectrum_corrected = select_features .fit_transform (spectrum )
554
+
555
+ # Assert
556
+ assert np .allclose (spectrum_corrected [0 ], expected , atol = 1e-8 )
557
+
558
+
559
+ def test_select_features_with_wavenumbers ():
560
+ # Arrange
561
+ wavenumbers = np .array ([1.0 , 2.0 , 3.0 , 4.0 , 5.0 , 6.0 , 7.0 , 8.0 , 9.0 , 10.0 ])
562
+ spectrum = np .array ([[1.0 , 2.0 , 3.0 , 5.0 , 8.0 , 13.0 , 21.0 , 34.0 , 55.0 , 89.0 ]])
563
+ expected = np .array ([[1.0 , 2.0 , 3.0 , 34.0 , 55.0 , 89.0 ]])
564
+
565
+ # Act
566
+ select_features = SelectFeatures (
567
+ features = np .array ([1 , 2 , 3 , 8 , 9 , 10 ]), wavenumbers = wavenumbers
568
+ )
569
+ spectrum_corrected = select_features .fit_transform (spectrum )
570
+
571
+ # Assert
572
+ assert np .allclose (spectrum_corrected [0 ], expected , atol = 1e-8 )
573
+
574
+
547
575
def test_standard_normal_variate (spectrum , reference_snv ):
548
576
# Arrange
549
577
snv = StandardNormalVariate ()
0 commit comments