-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathleanangle_py
230 lines (158 loc) · 6.85 KB
/
leanangle_py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
class berryIMU_class:
import sys
import time
import math
import IMU
import datetime
import os
# If the IMU is upside down (Skull logo facing up), change this value to 1
IMU_UPSIDE_DOWN = 0
RAD_TO_DEG = 57.29578
M_PI = 3.14159265358979323846
A_GAIN = 0.0573
G_GAIN = 0.070 # [deg/s/LSB] If you change the dps for gyro, you need to update this value accordingly
DT = 0.02 #loop period. 20ms
AA = 0.97 #fiter constant
MAG_LPF_FACTOR = 0.4 # Low pass filter constant magnetometer
ACC_LPF_FACTOR = 0.4 # Low pass filter constant for accelerometer
ACC_MEDIANTABLESIZE = 10 # Median filter table size for accelerometer. Higher = smoother but a longer delay
MAG_MEDIANTABLESIZE = 10 # Median filter table size for magnetometer. Higher = smoother but a longer delay
#Kalman filter variables
Q_angle = 0.01
Q_gyro = 0.0003
R_angle = 0.01
y_bias = 0.0
x_bias = 0.0
XP_00 = 0.0
XP_01 = 0.0
XP_10 = 0.0
XP_11 = 0.0
YP_00 = 0.0
YP_01 = 0.0
YP_10 = 0.0
YP_11 = 0.0
KFangleX = 0.0
KFangleY = 0.0
def kalmanFilterY ( accAngle, gyroRate, DT):
y=0.0
S=0.0
K_0
K_1
global KFangleY
global Q_angle
global Q_gyro
global y_bias
global YP_00
global YP_01
global YP_10
global YP_11
berryIMU_class.KFangleY = berryIMU_class.KFangleY + DT * (gyroRate - berryIMU_class.y_bias)
berryIMU_class.YP_00 = berryIMU_class.YP_00 + ( - DT * (berryIMU_class.YP_10 + berryIMU_class.YP_01) + berryIMU_class.Q_angle * DT )
berryIMU_class.YP_01 = berryIMU_class.YP_01 + ( - DT * berryIMU_class.YP_11 )
berryIMU_class.YP_10 = berryIMU_class.YP_10 + ( - DT * berryIMU_class.YP_11 )
berryIMU_class.YP_11 = berryIMU_class.YP_11 + ( + berryIMU_class.Q_gyro * DT )
y = accAngle - berryIMU_class.KFangleY
S = berryIMU_class.YP_00 + berryIMU_class.R_angle
K_0 = berryIMU_class.YP_00 / S
K_1 = berryIMU_class.YP_10 / S
berryIMU_class.KFangleY = berryIMU_class.KFangleY + ( K_0 * y )
berryIMU_class.y_bias = berryIMU_class.y_bias + ( K_1 * y )
berryIMU_class.YP_00 = berryIMU_class.YP_00 - ( K_0 * berryIMU_class.YP_00 )
berryIMU_class.YP_01 = berryIMU_class.YP_01 - ( K_0 * berryIMU_class.YP_01 )
berryIMU_class.YP_10 = berryIMU_class.YP_10 - ( K_1 * berryIMU_class.YP_00 )
berryIMU_class.YP_11 = berryIMU_class.YP_11 - ( K_1 * berryIMU_class.YP_01 )
return berryIMU_class.KFangleY
def kalmanFilterX ( accAngle, gyroRate, DT):
x=0.0
S=0.0
global KFangleX
global Q_angle
global Q_gyro
global x_bias
global XP_00
global XP_01
global XP_10
global XP_11
berryIMU_class.KFangleX = berryIMU_class.KFangleX + DT * (gyroRate - berryIMU_class.x_bias)
berryIMU_class.XP_00 = berryIMU_class.XP_00 + ( - DT * (berryIMU_class.XP_10 + berryIMU_class.XP_01) + berryIMU_class.Q_angle * DT )
berryIMU_class.XP_01 = berryIMU_class.XP_01 + ( - DT * berryIMU_class.XP_11 )
berryIMU_class.XP_10 = berryIMU_class.XP_10 + ( - DT * berryIMU_class.XP_11 )
berryIMU_class.XP_11 = berryIMU_class.XP_11 + ( + berryIMU_class.Q_gyro * DT )
x = accAngle - berryIMU_class.KFangleX
S = berryIMU_class.XP_00 + berryIMU_class.R_angle
K_0 = berryIMU_class.XP_00 / S
K_1 = berryIMU_class.XP_10 / S
berryIMU_class.KFangleX = berryIMU_class.KFangleX + ( K_0 * x )
berryIMU_class.x_bias = berryIMU_class.x_bias + ( K_1 * x )
berryIMU_class.XP_00 = berryIMU_class.XP_00 - ( K_0 * berryIMU_class.XP_00 )
berryIMU_class.XP_01 = berryIMU_class.XP_01 - ( K_0 * berryIMU_class.XP_01 )
berryIMU_class.XP_10 = berryIMU_class.XP_10 - ( K_1 * berryIMU_class.XP_00 )
berryIMU_class.XP_11 = berryIMU_class.XP_11 - ( K_1 * berryIMU_class.XP_01 )
return berryIMU_class.KFangleX
gyroXangle = 0.0
gyroYangle = 0.0
gyroZangle = 0.0
CFangleX = 0.0
CFangleY = 0.0
CFangleXFiltered = 0.0
CFangleYFiltered = 0.0
kalmanX = 0.0
kalmanY = 0.0
oldXAccRawValue = 0
oldYAccRawValue = 0
oldZAccRawValue = 0
a = datetime.datetime.now()
IMU.detectIMU() #Detect if BerryIMUv1 or BerryIMUv2 is connected.
IMU.initIMU() #Initialise the accelerometer, gyroscope and compass
def readvalues(self):
import IMU
import math
import time
import datetime
#Read the accelerometer,gyroscope
ACCx = IMU.readACCx()
ACCy = IMU.readACCy()
ACCz = IMU.readACCz()
GYRx = IMU.readGYRx()
GYRy = IMU.readGYRy()
GYRz = IMU.readGYRz()
##Calculate loop Period(LP). How long between Gyro Reads
b = datetime.datetime.now() - berryIMU_class.a
berryIMU_class.a = datetime.datetime.now()
LP = b.microseconds/(1000000*1.0)
#Convert Gyro raw to degrees per second
rate_gyr_x = GYRx * berryIMU_class.G_GAIN
rate_gyr_y = GYRy * berryIMU_class.G_GAIN
rate_gyr_z = GYRz * berryIMU_class.G_GAIN
#Calculate the angles from the gyro.
berryIMU_class.gyroXangle+=rate_gyr_x*LP
berryIMU_class.gyroYangle+=rate_gyr_y*LP
berryIMU_class.gyroZangle+=rate_gyr_z*LP
#Convert Accelerometer values to degrees
AccXangle = (math.atan2(ACCy,ACCz)*berryIMU_class.RAD_TO_DEG)
AccYangle = (math.atan2(ACCz,ACCx)+berryIMU_class.M_PI)*berryIMU_class.RAD_TO_DEG
#Change the rotation value of the accelerometer to -/+ 180 and
#move the Y axis '0' point to up. This makes it easier to read.
AccXangle -= 180.0
if AccYangle > 90:
AccYangle -= 270.0
else:
AccYangle += 90.0
#Kalman filter used to combine the accelerometer and gyro values.
berryIMU_class.kalmanY = berryIMU_class.kalmanFilterY(AccYangle, rate_gyr_y,LP)
berryIMU_class.kalmanX = berryIMU_class.kalmanFilterX(AccXangle, rate_gyr_x,LP)
print (" berryIMU_class.kalmanX %7.3f berryIMU_class.kalmanY%7.3f " % (berryIMU_class.kalmanX,berryIMU_class.kalmanY))
if 1: #Change to '0' to stop showing the angles from the accelerometer
print ("# ACCX Angle %5.2f ACCY Angle %5.2f # " % (AccXangle, AccYangle)),
if 1: #Change to '0' to stop showing the angles from the gyro
print ("\t# GRYX Angle %5.2f GYRY Angle %5.2f GYRZ Angle %5.2f # " % (berryIMU_class.gyroXangle,berryIMU_class.gyroYangle,berryIMU_class.gyroZangle)),
print ("")
# Time in UTC!
# Velocity Test:
DeltaTime = time.time() - OldTime
VelocityY = VelocityY + AccYangle
# OldTime
sensor_data = {"Time": time.time(), "AccXangle":AccXangle, "AccYangle":AccYangle, "gyroXangle":berryIMU_class.gyroXangle,"gyroYangle":berryIMU_class.gyroYangle,"gyroZangle":berryIMU_class.gyroZangle,"kalmanX":berryIMU_class.kalmanX,"kalmanY":berryIMU_class.kalmanY}
#slow program down a bit, makes the output more readable
time.sleep(0.03)
return sensor_data