-
Notifications
You must be signed in to change notification settings - Fork 713
/
Copy pathtime-series-momentum-effect.py
236 lines (200 loc) · 10.6 KB
/
time-series-momentum-effect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# https://quantpedia.com/strategies/time-series-momentum-effect/
#
# The investment universe consists of 24 commodity futures, 12 cross-currency pairs (with 9 underlying currencies), 9 developed equity indices, and 13 developed
# government bond futures.
# Every month, the investor considers whether the excess return of each asset over the past 12 months is positive or negative and goes long on the contract if it is
# positive and short if negative. The position size is set to be inversely proportional to the instrument’s volatility. A univariate GARCH model is used to estimated
# ex-ante volatility in the source paper. However, other simple models could probably be easily used with good results (for example, the easiest one would be using
# historical volatility instead of estimated volatility). The portfolio is rebalanced monthly.
#
# QC implementation changes:
# - instead of GARCH model volatility, we have used simple historical volatility.
from math import sqrt
from AlgorithmImports import *
import numpy as np
import pandas as pd
class TimeSeriesMomentum(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(10000000)
self.symbols = [
"CME_S1", # Soybean Futures, Continuous Contract
"CME_W1", # Wheat Futures, Continuous Contract
"CME_SM1", # Soybean Meal Futures, Continuous Contract
"CME_BO1", # Soybean Oil Futures, Continuous Contract
"CME_C1", # Corn Futures, Continuous Contract
"CME_O1", # Oats Futures, Continuous Contract
"CME_LC1", # Live Cattle Futures, Continuous Contract
"CME_FC1", # Feeder Cattle Futures, Continuous Contract
"CME_LN1", # Lean Hog Futures, Continuous Contract
"CME_GC1", # Gold Futures, Continuous Contract
"CME_SI1", # Silver Futures, Continuous Contract
"CME_PL1", # Platinum Futures, Continuous Contract
"CME_CL1", # Crude Oil Futures, Continuous Contract
"CME_HG1", # Copper Futures, Continuous Contract
"CME_LB1", # Random Length Lumber Futures, Continuous Contract
"CME_NG1", # Natural Gas (Henry Hub) Physical Futures, Continuous Contract
"CME_PA1", # Palladium Futures, Continuous Contract
"CME_RR1", # Rough Rice Futures, Continuous Contract
"CME_DA1", # Class III Milk Futures
"CME_RB1", # Gasoline Futures, Continuous Contract
"CME_KW1", # Wheat Kansas, Continuous Contract
"ICE_CC1", # Cocoa Futures, Continuous Contract
"ICE_CT1", # Cotton No. 2 Futures, Continuous Contract
"ICE_KC1", # Coffee C Futures, Continuous Contract
"ICE_O1", # Heating Oil Futures, Continuous Contract
"ICE_OJ1", # Orange Juice Futures, Continuous Contract
"ICE_SB1", # Sugar No. 11 Futures, Continuous Contract
"ICE_RS1", # Canola Futures, Continuous Contract
"ICE_GO1", # Gas Oil Futures, Continuous Contract
"ICE_WT1", # WTI Crude Futures, Continuous Contract
"CME_AD1", # Australian Dollar Futures, Continuous Contract #1
"CME_BP1", # British Pound Futures, Continuous Contract #1
"CME_CD1", # Canadian Dollar Futures, Continuous Contract #1
"CME_EC1", # Euro FX Futures, Continuous Contract #1
"CME_JY1", # Japanese Yen Futures, Continuous Contract #1
"CME_MP1", # Mexican Peso Futures, Continuous Contract #1
"CME_NE1", # New Zealand Dollar Futures, Continuous Contract #1
"CME_SF1", # Swiss Franc Futures, Continuous Contract #1
"ICE_DX1", # US Dollar Index Futures, Continuous Contract #1
"CME_NQ1", # E-mini NASDAQ 100 Futures, Continuous Contract #1
"EUREX_FDAX1", # DAX Futures, Continuous Contract #1
"CME_ES1", # E-mini S&P 500 Futures, Continuous Contract #1
"EUREX_FSMI1", # SMI Futures, Continuous Contract #1
"EUREX_FSTX1", # STOXX Europe 50 Index Futures, Continuous Contract #1
"LIFFE_FCE1", # CAC40 Index Futures, Continuous Contract #1
"LIFFE_Z1", # FTSE 100 Index Futures, Continuous Contract #1
"SGX_NK1", # SGX Nikkei 225 Index Futures, Continuous Contract #1
"CME_MD1", # E-mini S&P MidCap 400 Futures
"CME_TY1", # 10 Yr Note Futures, Continuous Contract #1
"CME_FV1", # 5 Yr Note Futures, Continuous Contract #1
"CME_TU1", # 2 Yr Note Futures, Continuous Contract #1
"ASX_XT1", # 10 Year Commonwealth Treasury Bond Futures, Continuous Contract #1 # 'Settlement price' instead of 'settle' on quandl.
"ASX_YT1", # 3 Year Commonwealth Treasury Bond Futures, Continuous Contract #1 # 'Settlement price' instead of 'settle' on quandl.
"EUREX_FGBL1", # Euro-Bund (10Y) Futures, Continuous Contract #1
"EUREX_FBTP1", # Long-Term Euro-BTP Futures, Continuous Contract #1
"EUREX_FGBM1", # Euro-Bobl Futures, Continuous Contract #1
"EUREX_FGBS1", # Euro-Schatz Futures, Continuous Contract #1
"SGX_JB1", # SGX 10-Year Mini Japanese Government Bond Futures
"LIFFE_R1" # Long Gilt Futures, Continuous Contract #1
"MX_CGB1", # Ten-Year Government of Canada Bond Futures, Continuous Contract #1 # 'Settlement price' instead of 'settle' on quandl.
]
self.period = 12 * 21
self.SetWarmUp(self.period, Resolution.Daily)
self.targeted_volatility = 0.10
self.vol_target_period = 60
self.leverage_cap = 4
# Daily rolled data.
self.data = {}
for symbol in self.symbols:
data = None
# Back adjusted and spliced data import.
data = self.AddData(QuantpediaFutures, symbol, Resolution.Daily)
data.SetFeeModel(CustomFeeModel())
data.SetLeverage(20)
self.data[symbol] = RollingWindow[float](self.period)
self.recent_month = -1
def OnData(self, data):
# Store daily data.
for symbol in self.symbols:
if symbol in data and data[symbol]:
price = data[symbol].Value
self.data[symbol].Add(price)
if self.recent_month == self.Time.month:
return
self.recent_month = self.Time.month
# Performance and volatility data.
performance_volatility = {}
daily_returns = {}
for symbol in self.symbols:
if self.data[symbol].IsReady:
if (
self.Securities[symbol].GetLastData()
and (
self.Time.date()
- self.Securities[symbol].GetLastData().Time.date()
).days
< 5
):
back_adjusted_prices = np.array([x for x in self.data[symbol]])
performance = back_adjusted_prices[0] / back_adjusted_prices[-1] - 1
daily_rets = (
back_adjusted_prices[:-1] / back_adjusted_prices[1:] - 1
)
back_adjusted_prices = back_adjusted_prices[
: self.vol_target_period
]
daily_rets = (
back_adjusted_prices[:-1] / back_adjusted_prices[1:] - 1
)
volatility_3M = np.std(daily_rets) * sqrt(252)
daily_returns[symbol] = daily_rets[::-1][: self.vol_target_period]
performance_volatility[symbol] = (performance, volatility_3M)
if len(performance_volatility) == 0:
return
# Performance sorting.
long = [x[0] for x in performance_volatility.items() if x[1][0] > 0]
short = [x[0] for x in performance_volatility.items() if x[1][0] < 0]
weight_by_symbol = {}
# Volatility weighting long and short leg separately.
ls_leverage = [] # long and short leverage
for sym_i, symbols in enumerate([long, short]):
total_volatility = sum([1 / performance_volatility[x][1] for x in symbols])
# Inverse volatility weighting.
weights = np.array(
[(1 / performance_volatility[x][1]) / total_volatility for x in symbols]
)
weights_sum = sum(weights)
weights = weights / weights_sum
df = pd.DataFrame()
i = 0
for symbol in symbols:
df[str(symbol)] = [x for x in daily_returns[symbol]]
weight_by_symbol[symbol] = weights[i] if sym_i == 0 else -weights[i]
i += 1
# volatility targeting
portfolio_vol = np.sqrt(
np.dot(weights.T, np.dot(df.cov() * 252, weights.T))
)
leverage = self.targeted_volatility / portfolio_vol
leverage = min(self.leverage_cap, leverage) # cap max leverage
ls_leverage.append(leverage)
# Trade execution.
invested = [x.Key.Value for x in self.Portfolio if x.Value.Invested]
for symbol in invested:
if symbol not in long + short:
self.Liquidate(symbol)
for symbol, w in weight_by_symbol.items():
if w >= 0:
self.SetHoldings(symbol, w * ls_leverage[0])
# self.SetHoldings(symbol, w)
else:
self.SetHoldings(symbol, w * ls_leverage[1])
# self.SetHoldings(symbol, w)
# Quantpedia data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource(
"data.quantpedia.com/backtesting_data/futures/{0}.csv".format(
config.Symbol.Value
),
SubscriptionTransportMedium.RemoteFile,
FileFormat.Csv,
)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaFutures()
data.Symbol = config.Symbol
if not line[0].isdigit():
return None
split = line.split(";")
data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
data["back_adjusted"] = float(split[1])
data["spliced"] = float(split[2])
data.Value = float(split[1])
return data
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))