Skip to content

BUG: to_numeric fails to convert a Pyarrow Decimal series containing NA values. #61641

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
3 tasks done
kzvezdarov opened this issue Jun 12, 2025 · 2 comments · May be fixed by #61659
Open
3 tasks done

BUG: to_numeric fails to convert a Pyarrow Decimal series containing NA values. #61641

kzvezdarov opened this issue Jun 12, 2025 · 2 comments · May be fixed by #61659
Assignees
Labels
Arrow pyarrow functionality Bug Dtype Conversions Unexpected or buggy dtype conversions

Comments

@kzvezdarov
Copy link

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd
import pyarrow as pa

decimal_type = pd.ArrowDtype(pa.decimal128(3, scale=2))

series = pd.Series([1, None], dtype=decimal_type)

pd.to_numeric(series, errors="coerce")

Issue Description

pandas.to_numeric fails to coerce Pyarrow Decimal series that contain NA values due to those NA values getting dropped, leading to an index mismatch:

import pandas as pd
import pyarrow as pa

decimal_type = pd.ArrowDtype(pa.decimal128(3, scale=2))

series = pd.Series([1, None], dtype=decimal_type)

pd.to_numeric(series, errors="coerce")
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In[13], line 8
      4 decimal_type = pd.ArrowDtype(pa.decimal128(3, scale=2))
      6 series = pd.Series([1, None], dtype=decimal_type)
----> 8 pd.to_numeric(series, errors="coerce")

File /opt/homebrew/lib/python3.13/site-packages/pandas/core/tools/numeric.py:319, in to_numeric(arg, errors, downcast, dtype_backend)
    316         values = ArrowExtensionArray(values.__arrow_array__())
    318 if is_series:
--> 319     return arg._constructor(values, index=arg.index, name=arg.name)
    320 elif is_index:
    321     # because we want to coerce to numeric if possible,
    322     # do not use _shallow_copy
    323     from pandas import Index

File /opt/homebrew/lib/python3.13/site-packages/pandas/core/series.py:575, in Series.__init__(self, data, index, dtype, name, copy, fastpath)
    573     index = default_index(len(data))
    574 elif is_list_like(data):
--> 575     com.require_length_match(data, index)
    577 # create/copy the manager
    578 if isinstance(data, (SingleBlockManager, SingleArrayManager)):

File /opt/homebrew/lib/python3.13/site-packages/pandas/core/common.py:573, in require_length_match(data, index)
    569 """
    570 Check the length of data matches the length of the index.
    571 """
    572 if len(data) != len(index):
--> 573     raise ValueError(
    574         "Length of values "
    575         f"({len(data)}) "
    576         "does not match length of index "
    577         f"({len(index)})"
    578     )

ValueError: Length of values (1) does not match length of index (2)

This seems to be due to this conversion to a numpy type setting the dtype to object, which causes this condition to be false, which skips re-adding the NA values, leading to a final values array shorter than the original index.

Expected Behavior

I'd expect the series to get converted (to values of decimal.Decimal type, with dtype=object) without raising an exception, preserving the null elements.

Installed Versions

INSTALLED VERSIONS ------------------ commit : 0691c5c python : 3.13.2 python-bits : 64 OS : Darwin OS-release : 24.5.0 Version : Darwin Kernel Version 24.5.0: Tue Apr 22 19:53:27 PDT 2025; root:xnu-11417.121.6~2/RELEASE_ARM64_T6041 machine : arm64 processor : arm byteorder : little LC_ALL : en_CA.UTF-8 LANG : None LOCALE : en_CA.UTF-8

pandas : 2.2.3
numpy : 2.2.2
pytz : 2025.1
dateutil : 2.9.0.post0
pip : 25.0
Cython : None
sphinx : None
IPython : 8.32.0
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.13.4
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : 2025.2.0
html5lib : None
hypothesis : 6.125.2
gcsfs : None
jinja2 : 3.1.5
lxml.etree : None
matplotlib : 3.10.3
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
psycopg2 : None
pymysql : None
pyarrow : 19.0.0
pyreadstat : None
pytest : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.15.2
sqlalchemy : 2.0.38
tables : None
tabulate : None
xarray : 2025.1.2
xlrd : None
xlsxwriter : None
zstandard : 0.23.0
tzdata : 2025.1
qtpy : None
pyqt5 : None

@kzvezdarov kzvezdarov added Bug Needs Triage Issue that has not been reviewed by a pandas team member labels Jun 12, 2025
@arthurlw
Copy link
Member

Confirmed on main. PRs and investigations are welcome. From a quick look I do think that .dropna() from your link above does cause this issue.

Thanks for raising this!

@arthurlw arthurlw added Arrow pyarrow functionality Dtype Conversions Unexpected or buggy dtype conversions and removed Needs Triage Issue that has not been reviewed by a pandas team member labels Jun 13, 2025
@chilin0525
Copy link
Contributor

take

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Arrow pyarrow functionality Bug Dtype Conversions Unexpected or buggy dtype conversions
Projects
None yet
Development

Successfully merging a pull request may close this issue.

3 participants