-
-
Notifications
You must be signed in to change notification settings - Fork 19.2k
Open
Labels
Description
-
I have searched the [pandas] tag on StackOverflow for similar questions.
-
I have asked my usage related question on StackOverflow.
Question about pandas
Hi,
I have a persistent problem with concatenating multiple DataFrames with shapes:
- (48, 5674)
- (48, 9022)
- (48, 7340),
- (47, 6539)
- (47, 10369)
- (47, 17242)
- (47, 19248)
- (47, 14282)
If I want to concatenate this, or even any part of it with
pd.concat(df_list)I get the following error:
Traceback (most recent call last):
File "E:/OneDrive/Informatik Studium/KIT Master/SS20/AGD Praktikum/phase-2/1_code/MyTest.py", line 46, in <module>
df_result = __parallelize_dataframe(func=apply_functions, df_data=df_train.copy(), config_tupels=config_tupels)
File "E:/OneDrive/Informatik Studium/KIT Master/SS20/AGD Praktikum/phase-2/1_code/MyTest.py", line 22, in __parallelize_dataframe
df_pool_result = pd.concat(pool_result[0:2])
File "E:\venv\lib\site-packages\pandas\core\reshape\concat.py", line 284, in concat
return op.get_result()
File "E:\venv\lib\site-packages\pandas\core\reshape\concat.py", line 497, in get_result
mgrs_indexers, self.new_axes, concat_axis=self.axis, copy=self.copy
File "E:\venv\lib\site-packages\pandas\core\internals\managers.py", line 2016, in concatenate_block_managers
elif is_uniform_join_units(join_units):
File "E:\venv\lib\site-packages\pandas\core\internals\concat.py", line 388, in is_uniform_join_units
all(not ju.is_na or ju.block.is_extension for ju in join_units)
File "E:\venv\lib\site-packages\pandas\core\internals\concat.py", line 388, in <genexpr>
all(not ju.is_na or ju.block.is_extension for ju in join_units)
AttributeError: 'NoneType' object has no attribute 'is_extension'I found out in my research, that blocks in the join_units are sometimes None. But I don't understand why this is so...
All table entries in my DataFrames are not None/NaN.
Unfortunately I can't post the data here, because they are very extensive.
Maybe it helps to know that I split the rows in my original dataframe for multiprocessing. Afterwards I will concatenate them again, see above.
Thanks a lot!