generated from pamelafox/python-project-template
-
Notifications
You must be signed in to change notification settings - Fork 154
/
Copy pathchained_calls.py
77 lines (61 loc) · 2.21 KB
/
chained_calls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import os
import azure.identity
import openai
from dotenv import load_dotenv
# Setup the OpenAI client to use either Azure, OpenAI.com, or Ollama API
load_dotenv(override=True)
API_HOST = os.getenv("API_HOST", "github")
if API_HOST == "azure":
token_provider = azure.identity.get_bearer_token_provider(
azure.identity.DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default"
)
client = openai.AzureOpenAI(
api_version=os.environ["AZURE_OPENAI_VERSION"],
azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
azure_ad_token_provider=token_provider,
)
MODEL_NAME = os.environ["AZURE_OPENAI_DEPLOYMENT"]
elif API_HOST == "ollama":
client = openai.OpenAI(base_url=os.environ["OLLAMA_ENDPOINT"], api_key="nokeyneeded")
MODEL_NAME = os.environ["OLLAMA_MODEL"]
elif API_HOST == "github":
client = openai.OpenAI(base_url="https://models.inference.ai.azure.com", api_key=os.environ["GITHUB_TOKEN"])
MODEL_NAME = os.getenv("GITHUB_MODEL", "gpt-4o")
else:
client = openai.OpenAI(api_key=os.environ["OPENAI_KEY"])
MODEL_NAME = os.environ["OPENAI_MODEL"]
response = client.chat.completions.create(
model=MODEL_NAME,
temperature=0.7,
messages=[{"role": "user", "content": "Explain how LLMs work in a single paragraph."}],
)
explanation = response.choices[0].message.content
print("Explanation: ", explanation)
response = client.chat.completions.create(
model=MODEL_NAME,
temperature=0.7,
messages=[
{
"role": "user",
"content": "You're an editor. Review the explanation and provide feedback (but don't edit yourself):\n\n"
+ explanation,
}
],
)
feedback = response.choices[0].message.content
print("\n\nFeedback: ", feedback)
response = client.chat.completions.create(
model=MODEL_NAME,
temperature=0.7,
messages=[
{
"role": "user",
"content": (
"Revise the article using the following feedback, but keep it to a single paragraph."
f"\nExplanation:\n{explanation}\n\nFeedback:\n{feedback}"
),
}
],
)
final_article = response.choices[0].message.content
print("\n\nFinal Article: ", final_article)