description |
---|
Predict the time series data |
Give a data frame with these columns
Date | Close |
---|---|
2014-04-14 | 133.95 |
Base data can come from Yahoo driver
The model will predict SVR, LINEAR, ARIMA for 20 days on Close value
dataset = naas_drivers.yahoo.stock("TSLA")
pr = naas_drivers.prediction.get(dataset=dataset, prediction_type="all")
data_points
: The number of days in the future that are to predict.
dataset = naas_drivers.yahoo.stock("TSLA")
pr = naas_drivers.prediction.get(dataset=dataset, data_points=50)
All the parameters of the above formula are explained below.
prediction_type
: The model to predict, it can be SVR, LINEAR, ARIMA, or all
dataset = naas_drivers.yahoo.stock("TSLA")
pr = naas_drivers.prediction.get(dataset=dataset, prediction_type="ARIMA")
dataset
: the dataset in DataFrame formatcolumn
: The exact name of the column that is to be predicted, from the datasetdate_column
:The date range from the dataset. Will be used as the output index.prediction_type
: Can be ARIMA, LINEAR, SVR, COMPOUND or alldata_points
**(optional):** number of days to predictconcact_label
(optional): A column name who will generate a concatenated frame with past and future data.
dataset = naas_drivers.yahoo.stock("TSLA")
pr = naas_drivers.prediction.get(dataset=dataset)
Once you have predicted using the above predict formula, you can plot the predictions
naas_drivers.plotly.stock(pr, , "linechart_close")
Check more options on the link below