-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcamera_calibration.py
121 lines (90 loc) · 3.71 KB
/
camera_calibration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# -*- coding: utf-8 -*-
"""Camera_Calibration.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1kkWQ_qrJiYcdqdyL1X0rFTzeLwaVoaKD
# Step 1 : **Camera calibration**
**Compute the camera calibration matrix and distortion coefficients given a set of chessboard images.**
"""
# Commented out IPython magic to ensure Python compatibility.
import numpy as np
import pandas as pd
import cv2
import glob
import matplotlib.pyplot as plt
# %matplotlib inline
!unzip camera_cal.zip
# Load calibration images.
images_calibration = list(map(lambda imageFileName: (imageFileName, cv2.imread(imageFileName)),
glob.glob('camera_cal/calibration*.jpg')))
def showImages(images, cols = 4, rows = 5, figsize=(15,10)):
"""
Display `images` on a [`cols`, `rows`] subplot grid.
"""
imgLength = len(images)
fig, axes = plt.subplots(rows, cols, figsize=figsize)
indexes = range(cols * rows)
for ax, index in zip(axes.flat, indexes):
if index < imgLength:
imagePathName, image = images[index]
ax.imshow(image)
# ax.set_title(imagePathName)
showImages(images_calibration, 3, 3, (15, 13))
# plt.savefig("images_calibration_Exemples.png")
"""**Extract Object Points & Image Points**
I converted images to grayscale using cv2.COLOR_BGR2GRAY because I readed imges using cv2.imread() this will read in an BGR image
"""
print("store object points and image points from all the images....")
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((6*9,3), np.float32)
objp[:,:2] = np.mgrid[0:9,0:6].T.reshape(-1,2) # x and y cordinates.
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d points in real world space
imgpoints = [] # 2d points in image plane.
# Arrays to store pointed images and original images
outimages = []
originalImages = []
# Step through the list and search for chessboard corners
for fname in images_calibration:
fileName, img = fname
# grayscale images :
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# Finding chessboard corners (for an 9x6 board):
ret, corners = cv2.findChessboardCorners(gray, (9,6),None)
# If found, add object points, image points & draw corners
if ret == True:
objpoints.append(objp)
imgpoints.append(corners)
# Draw and display the corners
pointed_img = cv2.drawChessboardCorners(img.copy(), (9,6), corners, ret)
outimages.append(pointed_img)
originalImages.append(img)
print("Done !")
# choose an image to show
index = 7
original = originalImages[index]
chessPoints = outimages[index]
f, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 9))
f.tight_layout()
ax1.imshow(original)
ax1.set_title('Original Image', fontsize=50)
ax2.imshow(chessPoints)
ax2.set_title('Pointed Image', fontsize=50)
plt.subplots_adjust(left=0., right=1, top=0.9, bottom=0.)
plt.savefig("Pointed_Image.png")
"""# **Distortion Correction**"""
def cal_undistort(img, objpoints, imgpoints) :
# Camera calibration, given object points, image points, and the shape of the grayscale image:
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
#Undistorting a test image:
undist = cv2.undistort(img, mtx, dist, None, mtx)
return undist
undistorted = cal_undistort(original, objpoints, imgpoints)
f, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 9))
f.tight_layout()
ax1.imshow(original)
ax1.set_title('Original Image', fontsize=50)
ax2.imshow(undistorted)
ax2.set_title('Undistorted Image', fontsize=50)
plt.subplots_adjust(left=0., right=1, top=0.9, bottom=0.)
plt.savefig("undistorted.png")