-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathp51-100.py
905 lines (734 loc) · 26.7 KB
/
p51-100.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
from helper import *
def problem_51():
primes = [str(x) for x in primes_sieve(10**6) if x > 10**5]
for p in primes:
dig = next((x for x in '012' if p.count(x) in (3, 6, 9)), None)
if dig is None:
continue
composites = 0
for i in range(int(dig)+1, 10):
if not miller_rabin(int(p.replace(dig, str(i)))):
composites += 1
if composites > 1:
break
else:
return int(p)
def problem_52():
return next(i for i in range(10**5, 10**7) if all(set(str(i)) == set(str(i*x)) for x in range(2, 7)))
def problem_53():
return sum(1 for n in range(1, 101) for r in range(1, n+1) if binomial_coef(n, r) > 10**6)
def problem_55():
def is_lychrel(n):
for j in range(50):
n += int(str(n)[::-1])
if str(n) == str(n)[::-1]:
return False
return True
return sum(1 for n in range(10000) if is_lychrel(n))
def problem_56():
return max([digit_sum(a**b) for a in range(100) for b in range(100)])
def problem_57():
out = 0
num, denom = 3, 2
for _ in range(1000):
if len(str(num)) > len(str(denom)):
out += 1
num, denom = 2*denom+num, num+denom
return out
def problem_58():
diagonal_number, side_len, diagonal_count, prime_count = 1, 1, 1, 0
prime_ratio = 1
while prime_ratio > 0.1:
side_len += 2
for _ in range(4):
diagonal_number += side_len - 1
diagonal_count += 1
if is_prime_naive(diagonal_number):
prime_count += 1
prime_ratio = prime_count/diagonal_count
print(prime_ratio, side_len)
def problem_60():
plist = primes_sieve(10000)
cl = lambda x, y: [int(str(x) + str(y)), int(str(y) + str(x))]
for ix, x in enumerate(plist):
for iy, y in enumerate(plist[ix:]):
if all(miller_rabin(x) for x in cl(x, y)):
for iw, w in enumerate(plist[ix+iy:]):
if all(miller_rabin(x) for x in cl(x, w) + cl(y, w)):
for iz, z in enumerate(plist[ix+iy+iw:]):
if all(miller_rabin(x) for x in cl(x, z) + cl(y, z) + cl(w, z)):
for k in plist[ix+iy+iw+iz:]:
if all(miller_rabin(x) for x in cl(x, k) + cl(y, k) + cl(z, k) + cl(w, k)):
return x+y+z+w+k
def problem_61():
def polyg_4digit(degree):
if degree == 3:
rng = range(45, 141)
elif degree == 4:
rng = range(32, 100)
elif degree == 5:
rng = range(26, 82)
elif degree == 6:
rng = range(23, 71)
elif degree == 7:
rng = range(21, 64)
elif degree == 8:
rng = range(20, 59)
else:
raise NotImplementedError
return [polygonal(degree, x) for x in rng]
def concat_4digit(n1, n2):
return int(str(n1)[2:] + str(n2)[:2])
k3 = polyg_4digit(3)
k4 = polyg_4digit(4)
k5 = polyg_4digit(5)
k6 = polyg_4digit(6)
k7 = polyg_4digit(7)
k8 = polyg_4digit(8)
tmp_map = {3: k3, 4: k4, 5: k5, 6: k6, 7: k7, 8: k8}
def temp_func(loopers, checkers):
p3, p4, p5 = loopers
p6, p7, p8 = checkers
for i3 in p3:
for i4 in p4:
for i5 in p5:
i3i4 = concat_4digit(i3, i4)
i4i5 = concat_4digit(i4, i5)
i5i3 = concat_4digit(i5, i3)
if i3i4 in p6 and i4i5 in p7 and i5i3 in p8:
return i3, i3i4, i4, i4i5, i5, i5i3
if i3i4 in p6 and i4i5 in p8 and i5i3 in p7:
return i3, i3i4, i4, i4i5, i5, i5i3
if i3i4 in p7 and i4i5 in p6 and i5i3 in p8:
return i3, i3i4, i4, i4i5, i5, i5i3
if i3i4 in p7 and i4i5 in p8 and i5i3 in p6:
return i3, i3i4, i4, i4i5, i5, i5i3
if i3i4 in p8 and i4i5 in p6 and i5i3 in p7:
return i3, i3i4, i4, i4i5, i5, i5i3
if i3i4 in p8 and i4i5 in p7 and i5i3 in p6:
return i3, i3i4, i4, i4i5, i5, i5i3
permutations = [(x, tuple(set(tmp_map.keys()) - set(x))) for x in list(itertools.permutations(tmp_map.keys(), 3))]
for permutation in permutations:
loopers = [tmp_map[x] for x in permutation[0]]
checkers = [tmp_map[x] for x in permutation[1]]
out = temp_func(loopers=loopers, checkers=checkers)
if out is not None:
return sum(out), out
def problem_62():
cube_len = 8
while True:
cubes = cubes_with_len(cube_len)
for ix, x in enumerate(cubes):
count = 0
for y in cubes[ix:]:
if contains_same_digits(x, y):
count += 1
if count == 5:
return x
cube_len += 1
def problem_63():
count = 0
for power in range(1, 100):
s = 1
while len(str(s ** power)) <= power:
if len(str(s ** power)) == power:
count += 1
s += 1
return count
def problem_64():
count = 0
for n in range(2, 10000):
sq_n = n**0.5
if int(sq_n) == sq_n:
continue
period_count = 0
m, d, a = 0, 1, n ** 0.5 // 1
known = []
while True:
m = d * a - m
d = (n - m ** 2) / d
a = ((n ** 0.5 + m) / d) // 1
if (d, m) in known:
break
period_count += 1
known.append((d, m))
if period_count % 2 != 0:
count += 1
return count
def problem_65():
e = [2, 1, 2]
for i in range(4, 70, 2):
e.extend((1, 1, i))
ie = iter(e)
r, s = 0, 1
for i in range(1, 101):
a = next(ie)
r, s = s, a * s + r
out = 0
for n in str(s):
out += int(n)
return out
def problem_66():
out = {}
for D in range(2, 1001):
sq_D = D**0.5
if int(sq_D) == sq_D:
continue
m, d, a = 0, 1, int(sq_D)
x, x_1 = a, 1
y, y_1 = 1, 0
while True:
if x * x - D * y * y == 1:
out[D] = int(x)
break
m = d * a - m
d = int((D - m * m) / d)
a = int((sq_D + m) / d)
x_2, x_1 = x_1, x
y_2, y_1 = y_1, y
x = a*x_1 + x_2
y = a*y_1 + y_2
return max(out, key=out.get)
def problem_67():
triangle = []
with open('files/p067_triangle.txt') as fo:
for line in fo:
triangle.append([int(x) for x in line.split()])
n_rows = len(triangle)
for i in range(1, n_rows):
cur_row = triangle[n_rows - 1 - i]
next_row = triangle[n_rows - i]
for j in range(len(cur_row)):
sum_1 = cur_row[j] + next_row[j]
sum_2 = cur_row[j] + next_row[j + 1]
cur_row[j] = max(sum_1, sum_2)
return triangle[0]
def problem_68():
perms = list(itertools.permutations([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]))
out = set()
for p0 in perms:
v0 = (p0[0], p0[1], p0[2])
v1 = (p0[3], p0[2], p0[4])
v2 = (p0[5], p0[4], p0[6])
v3 = (p0[7], p0[6], p0[8])
v4 = (p0[9], p0[8], p0[1])
if not sum(v0) == sum(v1) == sum(v2) == sum(v3) == sum(v4):
continue
v = [v0, v1, v2, v3, v4]
min_vec = np.argmin([x[0] for x in v])
vec_srt = v[min_vec:] + v[:min_vec]
conc_vec = sum(vec_srt, ())
final_number = concat_list(conc_vec)
if len(str(final_number)) == 16:
out.add(final_number)
return max(out)
def problem_69():
s = 1
prime_list = primes_sieve(100)
i = 0
while s * prime_list[i] < 1000000:
s *= prime_list[i]
i += 1
return s
def problem_70():
totient_list = totient_sieve(10000000)
permutations_list = []
for idx, val in enumerate(totient_list, 1):
if contains_same_digits(idx, val):
permutations_list.append((idx, idx/val))
return min(permutations_list, key=lambda x: x[1])
def problem_71():
max_no = int(1e6)
target = 3/7
n, d = 1, 1
closest = 999
closest_pair = (0, 0)
count = 0
while d <= max_no:
count += 1
diff = target - n / d
if 0 < diff < closest:
closest = diff
closest_pair = (n, d)
if n / d < target:
n += 1
else:
d += 1
return count, closest_pair
def problem_72():
return sum(totient_sieve(1000000)) - 1
def problem_73():
max_no = 12000
out = []
for i in range(2, max_no + 1):
for j in range(1, i):
if gcd(i, j) == 1:
out += [(j, i)]
srt = sorted(out, key=lambda x: x[0]/x[1])
count = sum([1 for x in srt if 1/3 < x[0]/x[1] < 1/2])
return count
def problem_74():
count = 0
for x in range(1, 1000000):
tmp = len_of_factorial_chain(x)
if tmp == 60:
count += 1
return count
def problem_75():
limit = 1500000
triangles = [0] * (limit + 1)
result = 0
mlimit = int((limit / 2) ** 0.5)
for m in range(2, mlimit):
for n in range(1, m):
if (n + m) % 2 == 1 and gcd(n, m) == 1:
a = m * m - n * n
b = 2 * m * n
c = m * m + n * n
p = a + b + c
while p <= limit:
triangles[p] += 1
if triangles[p] == 1: result += 1
if triangles[p] == 2: result -= 1
p += a + b + c
return result
def problem_76():
n = 100
parts = [1]
all_polygs = pentag_range_below(n)
i = 1
while True:
tmp_polygs = [x for x in all_polygs if x <= i]
signs = ([1, 1, -1, -1] * (len(tmp_polygs) // 4 + 1))[:len(tmp_polygs)]
parts.append(sum([y*parts[i-x] for x, y in zip(tmp_polygs, signs)]))
if i == n:
return parts[i]-1
i += 1
def problem_77():
max_n = 5000
# We guess a bound on the number. As 100 generated an awful lot of partitions in problem 76, we use this as a bound
guess_bound = 100
# Generate a list of primes up to the guesstimated bound
primes = primes_sieve(guess_bound)
# Initialize list to hold number of prime partitions for each index, initializing with ways[0] = 1
ways = [0] * (guess_bound + 1)
ways[0] = 1
# Use dynamic programming to solve sub-problems as follows:
# For the first prime, add a partition count for each number it can generate below the bound. As 0 can be generated
# once, we find ways[2] = 1, ways[3] = 0, ways[4] = 1, ways[5] = 0, ways[6] = 1, ways[7] = 0, ways[8] = 1, ...
# For the second prime, we follow the same pattern:
# ways[3] = 1, ways[4] = 1, ways[5] = 1, ways[6] = 2, ways[7] = 1, ways[8] = 2 ...
# For the third prime, we get:
# ways[5] = 2, ways[6] = 2, ways[7] = 2, ways[8] = 3, ...
for prime in primes:
for j in range(prime, guess_bound + 1):
ways[j] += ways[j - prime]
# After iterating through all primes below our guesstimated bound, we should have created all partitions possible
# If one partition is greater than 5000 (asked by Project Euler), we return it - if not, the iterator below raises
# an error (and the guesstimate should be increased)
return next(i for i, elem in enumerate(ways) if elem > max_n)
def problem_78():
parts = [1]
all_polygs = pentag_range_below(100000)
i = 1
while True:
tmp_polygs = [x for x in all_polygs if x <= i]
signs = ([1, 1, -1, -1] * (len(tmp_polygs) // 4 + 1))[:len(tmp_polygs)]
parts.append(sum([y*parts[i-x] for x, y in zip(tmp_polygs, signs)]))
if parts[i] % 1000000 == 0:
return i
i += 1
def problem_79():
with open('files/p079_keylog.txt', 'r') as fo:
p = fo.readlines()
p = list(set([x.strip() for x in p]))
before_cipher = {}
after_cipher = {}
for elem in p:
before_cipher.setdefault(elem[2], []).extend([elem[0], elem[1]])
before_cipher.setdefault(elem[1], []).append(elem[0])
after_cipher.setdefault(elem[0], []).extend([elem[1], elem[2]])
after_cipher.setdefault(elem[1], []).append(elem[2])
before_cipher = {key: sorted(list(set(value))) for key, value in before_cipher.items()}
after_cipher = {key: sorted(list(set(value))) for key, value in after_cipher.items()}
for i in range(10):
if str(i) not in before_cipher.keys() and str(i) in after_cipher.keys():
before_cipher[str(i)] = []
if str(i) not in after_cipher.keys() and str(i) in before_cipher.keys():
after_cipher[str(i)] = []
correct_order = sorted(after_cipher, key=lambda x: len(after_cipher[x]), reverse=True)
return int(''.join(correct_order))
def problem_80():
return sum([sum(map(int, str(int_sqrt(x*10**200))[:100])) for x in range(2, 101) if int(x**0.5) != x**0.5])
def problem_81():
m = [[int(x) for x in line.strip().split(',')] for line in open('files/p081_matrix.txt', 'r')]
dim = len(m)
for row in range(dim):
for col in range(dim):
up = float('inf')
left = float('inf')
if col > 0:
left = m[row][col - 1]
if row > 0:
up = m[row - 1][col]
if row or col:
m[row][col] += min(left, up)
return m[-1][-1]
def problem_82():
m = [[int(x) for x in line.strip().split(',')] for line in open('files/p081_matrix.txt', 'r')]
dim = len(m)
# Get second to last column
out = [0]*dim
for i in range(dim):
out[i] = m[i][dim - 1]
# Loop backwards starting with second to last column (last column is dim-1, second to last is dim-2)
# We utilise dynamic programming by solving each column separately going backwards through the columns
for i in range(dim-2, -1, -1):
# For the first row we always go right
out[0] += m[0][i]
# Loop through the rest of the rows, checking if going up or going right is cheaper
for j in range(1, dim):
move_up = out[j-1] + m[j][i]
move_right = out[j] + m[j][i]
out[j] = min(move_up, move_right)
# Loop backwards through the rows, this time checking if going down and right are better than previous solution
for j in range(dim-2, -1, -1):
previous_solution = out[j]
down_and_right = out[j+1] + m[j][i]
out[j] = min(previous_solution, down_and_right)
return min(out)
def problem_83():
m = [[int(x) for x in line.strip().split(',')] for line in open('files/p081_matrix.txt', 'r')]
return AStarSearch(matrix=m).result
def problem_84():
monopoly_odds = MonopolyOdds()
simulation = monopoly_odds.run(iterations=1000000)
common_3_tiles = sorted(list(enumerate(simulation)), key=lambda x: x[1], reverse=True)[:3]
modal_string = ''.join([str(x[0]) if len(str(x[0])) > 1 else '0'+str(x[0]) for x in common_3_tiles])
return modal_string
def problem_85():
max_count = 2e6
closest = 0
i, j = 1, 1
out = (i, j)
while rectangle_count(1, j - 1) < max_count:
grid = rectangle_count(i, j)
if abs(max_count - grid) < abs(max_count - closest):
closest = grid
out = (i, j)
if grid > max_count:
i = 0
j += 1
i += 1
return out[0]*out[1]
def problem_86():
target = 1e6
count = 0
l = 2
while count < target:
l += 1
for wh in range(3, 2*l + 1):
sp = (l * l + wh * wh)**0.5
if sp == int(sp):
if wh <= l:
count += wh // 2
else:
count += 1 + l - math.ceil(wh/2)
return l, count
def problem_87():
max_no = 5e7
plist = primes_sieve(int(max_no ** 0.5))
min_cube = plist[0]**3
min_quad = plist[0]**4
out = set()
for i in plist:
sq = i ** 2
if sq + min_cube + min_quad > max_no:
break
for j in plist:
cub = j ** 3
if cub + sq + min_quad > max_no:
break
for k in plist:
quad = k ** 4
tmp_sum = quad + cub + sq
if tmp_sum > max_no:
break
out.add(tmp_sum)
return len(out)
def problem_88():
def minimal_product_sum(k):
start = k
while True:
start += 1
pf = prime_factors(start)
padded_sum = sum(pf) + k - len(pf)
if padded_sum == start:
return start
elif padded_sum < start:
mp = multiplicative_partitions(start)
for part in mp:
if sum(part) + k - len(part) == start:
return start
tmp = set()
for x in range(2, 12001):
mps = minimal_product_sum(x)
tmp.add(mps)
return sum(tmp)
def problem_89():
roman_txt = [line.strip() for line in open("files/p089_roman.txt", 'r')]
saved_chars = 0
for num in roman_txt:
saved_chars += len(num) - len(integer_to_roman(roman_to_integer(num)))
return saved_chars
def problem_90():
def valid_face_comb(lst_a, lst_b):
lst_a0, lst_a1, lst_a2, lst_a3, lst_a4, lst_a5, lst_a6, lst_a8 = \
0 in lst_a, 1 in lst_a, 2 in lst_a, 3 in lst_a, 4 in lst_a, 5 in lst_a, 6 in lst_a or 9 in lst_a, 8 in lst_a
lst_b0, lst_b1, lst_b2, lst_b3, lst_b4, lst_b5, lst_b6, lst_b8 = \
0 in lst_b, 1 in lst_b, 2 in lst_b, 3 in lst_b, 4 in lst_b, 5 in lst_b, 6 in lst_b or 9 in lst_b, 8 in lst_b
# Check 01
if (lst_a0 and lst_b1) or (lst_a1 and lst_b0):
# Check 04
if (lst_a0 and lst_b4) or (lst_a4 and lst_b0):
# Check 06 (aka 09)
if (lst_a0 and lst_b6) or (lst_a6 and lst_b0):
# Check 16
if (lst_a1 and lst_b6) or (lst_a6 and lst_b1):
# Check 18 (aka 81)
if (lst_a1 and lst_b8) or (lst_a8 and lst_b1):
# Check 25
if (lst_a2 and lst_b5) or (lst_a5 and lst_b2):
# Check 36
if (lst_a3 and lst_b6) or (lst_a6 and lst_b3):
# Check 46 (aka 64)
if (lst_a4 and lst_b6) or (lst_a6 and lst_b4):
return True
return False
count = 0
for a1 in range(0, 5):
for a2 in range(a1 + 1, 6):
for a3 in range(a2 + 1, 7):
for a4 in range(a3 + 1, 8):
for a5 in range(a4 + 1, 9):
for a6 in range(a5 + 1, 10):
dice1 = [a1, a2, a3, a4, a5, a6]
for b1 in range(0, 5):
for b2 in range(b1 + 1, 6):
for b3 in range(b2 + 1, 7):
for b4 in range(b3 + 1, 8):
for b5 in range(b4 + 1, 9):
for b6 in range(b5 + 1, 10):
dice2 = [b1, b2, b3, b4, b5, b6]
if valid_face_comb(dice1, dice2):
count += 1
# We will count double due to the fact that face1 = x, face2 = y is the same as face1 = y, face2 = x. Thus we divide
# by 2 here.
return count//2
def problem_91():
def is_right_angled(P, Q):
def euclidean_norm(A, B=None):
if B is None:
B = (0, 0)
return (A[0] - B[0]) ** 2 + (A[1] - B[1]) ** 2
s1 = euclidean_norm(P, Q)
s2 = euclidean_norm(Q)
s3 = euclidean_norm(P)
sides = sorted([s1, s2, s3])
if sum(sides[:2]) == sides[2]:
return True
return False
count = 0
for p1 in range(51):
for p2 in range(51):
if (p1, p2) == (0, 0):
continue
for q1 in range(51):
for q2 in range(51):
if (q1, q2) == (0, 0) or (q1, q2) == (p1, p2):
continue
if is_right_angled(P=(p1, p2), Q=(q1, q2)):
count += 1
return count//2
def problem_92():
lim = 1e7
arrives_at_89 = defaultdict(lambda: None)
arrives_at_89[89] = 1
arrives_at_89[1] = 0
for i in range(1, int(lim)):
sq_digit = i
tmp_map = []
while True:
tmp_map.append(sq_digit)
if arrives_at_89[sq_digit] == 1:
for num in tmp_map:
arrives_at_89[num] = 1
break
if arrives_at_89[sq_digit] == 0:
for num in tmp_map:
arrives_at_89[num] = 0
break
sq_digit = sum(int(x)**2 for x in str(sq_digit))
return sum([value for key, value in arrives_at_89.items() if key < lim])
def problem_93():
def integer_targets_with_arithmetics(a, b, c, d):
out = set()
number_perms = list(itertools.permutations([a, b, c, d]))
op_perms = list(itertools.product(['+', '-', '*', '/'], repeat=3))
for num_perm in number_perms:
for op_perm in op_perms:
op1, op2, op3 = op_perm
a, b, c, d = num_perm
res1 = '((%s %s %s) %s %s) %s %s' % (a, op1, b, op2, c, op3, d)
res2 = '(%s %s %s) %s (%s %s %s)' % (a, op1, b, op2, c, op3, d)
res3 = '(%s %s (%s %s %s)) %s %s' % (a, op1, b, op2, c, op3, d)
res4 = '%s %s ((%s %s %s) %s %s)' % (a, op1, b, op2, c, op3, d)
res5 = '%s %s (%s %s (%s %s %s))' % (a, op1, b, op2, c, op3, d)
results = [res1, res2, res3, res4, res5]
for res in results:
try:
val = eval(res)
if val == int(val) and val > 0:
out.add(int(val))
except ZeroDivisionError:
continue
return sorted(list(out))
max_nums = None
longest = 0
numbers_to_run = itertools.combinations([1, 2, 3, 4, 5, 6, 7, 8, 9], 4)
for num in numbers_to_run:
conseq = conseq_integers(integer_targets_with_arithmetics(*num))
if conseq > longest:
longest = conseq
max_nums = num
return longest, max_nums
def problem_94():
x = 2
y = 1
limit = 1e9
result = 0
while True:
a3 = 2 * x - 1
area3 = y * (x - 2)
if a3 > limit:
break
if a3 > 0 and area3 > 0 and a3 % 3 == 0 and area3 % 3 == 0:
result += a3 + 1
a3 = 2 * x + 1
area3 = y * (x + 2)
if a3 > 0 and area3 > 0 and a3 % 3 == 0 and area3 % 3 == 0:
result += a3 - 1
next_x = 2 * x + y * 3
next_y = y * 2 + x
x = next_x
y = next_y
return result
def problem_95():
max_sod = 1e6
longest_chain = 0
smallest_number = float('Inf')
amicable = defaultdict(lambda: None)
amicable[1] = False
for i in range(1, int(max_sod) + 1):
sod = sum_of_divisors(i)
if amicable[i] is not None:
continue
if sod == i:
amicable[i] = False
continue
chain = [i]
while True:
chain.append(sod)
if amicable[sod] is False or sod > max_sod:
for elem in chain:
amicable[elem] = False
break
next_sod = sum_of_divisors(sod)
if next_sod in chain and amicable[sod] is None:
for elem in chain:
amicable[elem] = True
conc_chain = chain[chain.index(next_sod):]
chain_len = len(conc_chain)
if chain_len == longest_chain:
smallest_number = min(smallest_number, min(conc_chain))
elif chain_len > longest_chain:
longest_chain = chain_len
smallest_number = min(conc_chain)
break
sod = next_sod
if sod in chain:
break
return smallest_number
def problem_96():
with open('files/p096_sudoku.txt', 'r') as fo:
out = []
tmp = []
for line in fo:
if 'Grid' in line:
if tmp:
out.append(tmp)
tmp = []
else:
tmp2 = []
for no in line.strip():
tmp2.append(int(no))
tmp.append(tmp2)
out.append(tmp)
final_sum = 0
for sudoku in out:
solved = SudokuSolver(sudoku).grid
final_sum += concat_list(solved[0][:3])
return final_sum
def problem_97():
power = 7830457
factor = 28433
addition = 1
for i in range(1, power + 1):
factor *= 2
factor %= 10**10
factor += addition
return factor
def problem_98():
with open('files/p098_words.txt', 'r') as fo:
raw_file = list(eval(fo.read()))
anagrams = []
for i in range(len(raw_file)):
s_word = ''.join(sorted(raw_file[i]))
for j in range(i + 1, len(raw_file)):
if s_word == ''.join(sorted(raw_file[j])):
anagrams.append((raw_file[i], raw_file[j]))
max_anagram = len(max(anagrams, key=lambda x: len(x[0]))[0])
squares = {}
for n in range(2, max_anagram + 1):
lower = int(math.ceil((10**(n-1))**0.5))
upper = int(math.ceil((10**n)**0.5))
squares[n] = [x * x for x in range(lower, upper)]
out = 0
for word1, word2 in anagrams:
for square in squares[len(word1)]:
mapping = word_number_mapping(word1, square)
if mapping is not None:
anagram_int = int(''.join([mapping[char] for char in word2]))
if anagram_int in squares[len(word1)]:
out = max(out, square, anagram_int)
return out
def problem_99():
with open('files/p099_base_exp.txt', 'r') as fo:
temp = 1
j = 0
for line in fo:
j = j + 1
x, y = map(int, line.split(','))
bar = y * math.log(x)
if bar > temp:
stat = j
temp = bar
return stat
def problem_100():
P, Q, K, R, S, L = 3, 2, -2, 4, 3, -3
x, n = 1, 1
while n < 1e12:
x, n = P*x + Q*n + K, R*x + S*n + L
return x, n
if __name__ == '__main__':
print(problem_85())