@@ -85,7 +85,7 @@ for i in range(ncols * nrows):
85
85
ax.matshow(digits.images[i,...])
86
86
plt.xticks([]); plt.yticks([])
87
87
plt.title(digits.target[i])
88
- plt.savefig('images/digits.png', dpi=150)
88
+ plt.savefig('images/digits-generated .png', dpi=150)
89
89
</pre >
90
90
91
91
![ Digits] ( images/digits.png )
@@ -147,7 +147,7 @@ Here is the result.
147
147
data-executable="true"
148
148
data-type="programlisting">
149
149
scatter(digits_proj, y)
150
- plt.savefig('images/digits_tsne.png', dpi=120)
150
+ plt.savefig('images/digits_tsne-generated .png', dpi=120)
151
151
</pre >
152
152
153
153
![ Transformed digits with t-SNE] ( images/digits_tsne.png )
@@ -224,7 +224,7 @@ plt.subplot(133)
224
224
plt.imshow(P_binary_s[::10, ::10], interpolation='none', cmap=pal)
225
225
plt.axis('off')
226
226
plt.title("$p_{j|i}$ (variable $\sigma$)", fontdict={'fontsize': 16})
227
- plt.savefig('images/similarity.png', dpi=120)
227
+ plt.savefig('images/similarity-generated .png', dpi=120)
228
228
</pre >
229
229
230
230
We can already observe the 10 groups in the data, corresponding to the 10 numbers.
@@ -422,7 +422,7 @@ for i, D in enumerate((2, 5, 10)):
422
422
ax.hist(norm(points, axis=1),
423
423
bins=np.linspace(0., 1., 50))
424
424
ax.set_title('D=%d' % D, loc='left')
425
- plt.savefig('images/spheres.png', dpi=100, bbox_inches='tight')
425
+ plt.savefig('images/spheres-generated .png', dpi=100, bbox_inches='tight')
426
426
</pre >
427
427
428
428
![ Spheres] ( images/spheres.png )
@@ -440,7 +440,7 @@ cauchy = 1/(1+z**2)
440
440
plt.plot(z, gauss, label='Gaussian distribution')
441
441
plt.plot(z, cauchy, label='Cauchy distribution')
442
442
plt.legend()
443
- plt.savefig('images/distributions.png', dpi=100)
443
+ plt.savefig('images/distributions-generated .png', dpi=100)
444
444
</pre >
445
445
446
446
![ Gaussian and Cauchy distributions] ( images/distributions.png )
0 commit comments