-
Notifications
You must be signed in to change notification settings - Fork 798
/
Copy path_run_impl.py
871 lines (779 loc) · 31.2 KB
/
_run_impl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
from __future__ import annotations
import asyncio
import inspect
from collections.abc import Awaitable
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, cast
from openai.types.responses import (
ResponseComputerToolCall,
ResponseFileSearchToolCall,
ResponseFunctionToolCall,
ResponseFunctionWebSearch,
ResponseOutputMessage,
)
from openai.types.responses.response_computer_tool_call import (
ActionClick,
ActionDoubleClick,
ActionDrag,
ActionKeypress,
ActionMove,
ActionScreenshot,
ActionScroll,
ActionType,
ActionWait,
)
from openai.types.responses.response_input_param import ComputerCallOutput
from openai.types.responses.response_reasoning_item import ResponseReasoningItem
from .agent import Agent, ToolsToFinalOutputResult
from .agent_output import AgentOutputSchema
from .computer import AsyncComputer, Computer
from .exceptions import AgentsException, ModelBehaviorError, UserError
from .guardrail import InputGuardrail, InputGuardrailResult, OutputGuardrail, OutputGuardrailResult
from .handoffs import Handoff, HandoffInputData
from .items import (
HandoffCallItem,
HandoffOutputItem,
ItemHelpers,
MessageOutputItem,
ModelResponse,
ReasoningItem,
RunItem,
ToolCallItem,
ToolCallOutputItem,
TResponseInputItem,
)
from .lifecycle import RunHooks
from .logger import logger
from .models.interface import ModelTracing
from .run_context import RunContextWrapper, TContext
from .stream_events import RunItemStreamEvent, StreamEvent
from .tool import ComputerTool, FunctionTool, FunctionToolResult
from .tracing import (
SpanError,
Trace,
function_span,
get_current_trace,
guardrail_span,
handoff_span,
trace,
)
from .util import _coro, _error_tracing
if TYPE_CHECKING:
from .run import RunConfig
class QueueCompleteSentinel:
pass
QUEUE_COMPLETE_SENTINEL = QueueCompleteSentinel()
_NOT_FINAL_OUTPUT = ToolsToFinalOutputResult(is_final_output=False, final_output=None)
@dataclass
class ToolRunHandoff:
handoff: Handoff
tool_call: ResponseFunctionToolCall
@dataclass
class ToolRunFunction:
tool_call: ResponseFunctionToolCall
function_tool: FunctionTool
@dataclass
class ToolRunComputerAction:
tool_call: ResponseComputerToolCall
computer_tool: ComputerTool
@dataclass
class ProcessedResponse:
new_items: list[RunItem]
handoffs: list[ToolRunHandoff]
functions: list[ToolRunFunction]
computer_actions: list[ToolRunComputerAction]
def has_tools_to_run(self) -> bool:
# Handoffs, functions and computer actions need local processing
# Hosted tools have already run, so there's nothing to do.
return any(
[
self.handoffs,
self.functions,
self.computer_actions,
]
)
@dataclass
class NextStepHandoff:
new_agent: Agent[Any]
@dataclass
class NextStepFinalOutput:
output: Any
@dataclass
class NextStepRunAgain:
pass
@dataclass
class SingleStepResult:
original_input: str | list[TResponseInputItem]
"""The input items i.e. the items before run() was called. May be mutated by handoff input
filters."""
model_response: ModelResponse
"""The model response for the current step."""
pre_step_items: list[RunItem]
"""Items generated before the current step."""
new_step_items: list[RunItem]
"""Items generated during this current step."""
next_step: NextStepHandoff | NextStepFinalOutput | NextStepRunAgain
"""The next step to take."""
@property
def generated_items(self) -> list[RunItem]:
"""Items generated during the agent run (i.e. everything generated after
`original_input`)."""
return self.pre_step_items + self.new_step_items
def get_model_tracing_impl(
tracing_disabled: bool, trace_include_sensitive_data: bool
) -> ModelTracing:
if tracing_disabled:
return ModelTracing.DISABLED
elif trace_include_sensitive_data:
return ModelTracing.ENABLED
else:
return ModelTracing.ENABLED_WITHOUT_DATA
class RunImpl:
@classmethod
async def execute_tools_and_side_effects(
cls,
*,
agent: Agent[TContext],
# The original input to the Runner
original_input: str | list[TResponseInputItem],
# Everything generated by Runner since the original input, but before the current step
pre_step_items: list[RunItem],
new_response: ModelResponse,
processed_response: ProcessedResponse,
output_schema: AgentOutputSchema | None,
hooks: RunHooks[TContext],
context_wrapper: RunContextWrapper[TContext],
run_config: RunConfig,
) -> SingleStepResult:
# Make a copy of the generated items
pre_step_items = list(pre_step_items)
new_step_items: list[RunItem] = []
new_step_items.extend(processed_response.new_items)
# First, lets run the tool calls - function tools and computer actions
function_results, computer_results = await asyncio.gather(
cls.execute_function_tool_calls(
agent=agent,
tool_runs=processed_response.functions,
hooks=hooks,
context_wrapper=context_wrapper,
config=run_config,
),
cls.execute_computer_actions(
agent=agent,
actions=processed_response.computer_actions,
hooks=hooks,
context_wrapper=context_wrapper,
config=run_config,
),
)
new_step_items.extend([result.run_item for result in function_results])
new_step_items.extend(computer_results)
# Second, check if there are any handoffs
if run_handoffs := processed_response.handoffs:
return await cls.execute_handoffs(
agent=agent,
original_input=original_input,
pre_step_items=pre_step_items,
new_step_items=new_step_items,
new_response=new_response,
run_handoffs=run_handoffs,
hooks=hooks,
context_wrapper=context_wrapper,
run_config=run_config,
)
# Third, we'll check if the tool use should result in a final output
check_tool_use = await cls._check_for_final_output_from_tools(
agent=agent,
tool_results=function_results,
context_wrapper=context_wrapper,
config=run_config,
)
if check_tool_use.is_final_output:
# If the output type is str, then let's just stringify it
if not agent.output_type or agent.output_type is str:
check_tool_use.final_output = str(check_tool_use.final_output)
if check_tool_use.final_output is None:
logger.error(
"Model returned a final output of None. Not raising an error because we assume"
"you know what you're doing."
)
return await cls.execute_final_output(
agent=agent,
original_input=original_input,
new_response=new_response,
pre_step_items=pre_step_items,
new_step_items=new_step_items,
final_output=check_tool_use.final_output,
hooks=hooks,
context_wrapper=context_wrapper,
)
# Now we can check if the model also produced a final output
message_items = [item for item in new_step_items if isinstance(item, MessageOutputItem)]
# We'll use the last content output as the final output
potential_final_output_text = (
ItemHelpers.extract_last_text(message_items[-1].raw_item) if message_items else None
)
# There are two possibilities that lead to a final output:
# 1. Structured output schema => always leads to a final output
# 2. Plain text output schema => only leads to a final output if there are no tool calls
if output_schema and not output_schema.is_plain_text() and potential_final_output_text:
final_output = output_schema.validate_json(potential_final_output_text)
return await cls.execute_final_output(
agent=agent,
original_input=original_input,
new_response=new_response,
pre_step_items=pre_step_items,
new_step_items=new_step_items,
final_output=final_output,
hooks=hooks,
context_wrapper=context_wrapper,
)
elif (
not output_schema or output_schema.is_plain_text()
) and not processed_response.has_tools_to_run():
return await cls.execute_final_output(
agent=agent,
original_input=original_input,
new_response=new_response,
pre_step_items=pre_step_items,
new_step_items=new_step_items,
final_output=potential_final_output_text or "",
hooks=hooks,
context_wrapper=context_wrapper,
)
else:
# If there's no final output, we can just run again
return SingleStepResult(
original_input=original_input,
model_response=new_response,
pre_step_items=pre_step_items,
new_step_items=new_step_items,
next_step=NextStepRunAgain(),
)
@classmethod
def process_model_response(
cls,
*,
agent: Agent[Any],
response: ModelResponse,
output_schema: AgentOutputSchema | None,
handoffs: list[Handoff],
) -> ProcessedResponse:
items: list[RunItem] = []
run_handoffs = []
functions = []
computer_actions = []
handoff_map = {handoff.tool_name: handoff for handoff in handoffs}
function_map = {tool.name: tool for tool in agent.tools if isinstance(tool, FunctionTool)}
computer_tool = next((tool for tool in agent.tools if isinstance(tool, ComputerTool)), None)
for output in response.output:
if isinstance(output, ResponseOutputMessage):
items.append(MessageOutputItem(raw_item=output, agent=agent))
elif isinstance(output, ResponseFileSearchToolCall):
items.append(ToolCallItem(raw_item=output, agent=agent))
elif isinstance(output, ResponseFunctionWebSearch):
items.append(ToolCallItem(raw_item=output, agent=agent))
elif isinstance(output, ResponseReasoningItem):
items.append(ReasoningItem(raw_item=output, agent=agent))
elif isinstance(output, ResponseComputerToolCall):
items.append(ToolCallItem(raw_item=output, agent=agent))
if not computer_tool:
_error_tracing.attach_error_to_current_span(
SpanError(
message="Computer tool not found",
data={},
)
)
raise ModelBehaviorError(
"Model produced computer action without a computer tool."
)
computer_actions.append(
ToolRunComputerAction(tool_call=output, computer_tool=computer_tool)
)
elif not isinstance(output, ResponseFunctionToolCall):
logger.warning(f"Unexpected output type, ignoring: {type(output)}")
continue
# At this point we know it's a function tool call
if not isinstance(output, ResponseFunctionToolCall):
continue
# Handoffs
if output.name in handoff_map:
items.append(HandoffCallItem(raw_item=output, agent=agent))
handoff = ToolRunHandoff(
tool_call=output,
handoff=handoff_map[output.name],
)
run_handoffs.append(handoff)
# Regular function tool call
else:
if output.name not in function_map:
_error_tracing.attach_error_to_current_span(
SpanError(
message="Tool not found",
data={"tool_name": output.name},
)
)
raise ModelBehaviorError(f"Tool {output.name} not found in agent {agent.name}")
items.append(ToolCallItem(raw_item=output, agent=agent))
functions.append(
ToolRunFunction(
tool_call=output,
function_tool=function_map[output.name],
)
)
return ProcessedResponse(
new_items=items,
handoffs=run_handoffs,
functions=functions,
computer_actions=computer_actions,
)
@classmethod
async def execute_function_tool_calls(
cls,
*,
agent: Agent[TContext],
tool_runs: list[ToolRunFunction],
hooks: RunHooks[TContext],
context_wrapper: RunContextWrapper[TContext],
config: RunConfig,
) -> list[FunctionToolResult]:
async def run_single_tool(
func_tool: FunctionTool, tool_call: ResponseFunctionToolCall
) -> Any:
with function_span(func_tool.name) as span_fn:
if config.trace_include_sensitive_data:
span_fn.span_data.input = tool_call.arguments
try:
_, _, result = await asyncio.gather(
hooks.on_tool_start(context_wrapper, agent, func_tool),
(
agent.hooks.on_tool_start(context_wrapper, agent, func_tool)
if agent.hooks
else _coro.noop_coroutine()
),
func_tool.on_invoke_tool(context_wrapper, tool_call.arguments),
)
await asyncio.gather(
hooks.on_tool_end(context_wrapper, agent, func_tool, result),
(
agent.hooks.on_tool_end(context_wrapper, agent, func_tool, result)
if agent.hooks
else _coro.noop_coroutine()
),
)
except Exception as e:
_error_tracing.attach_error_to_current_span(
SpanError(
message="Error running tool",
data={"tool_name": func_tool.name, "error": str(e)},
)
)
if isinstance(e, AgentsException):
raise e
raise UserError(f"Error running tool {func_tool.name}: {e}") from e
if config.trace_include_sensitive_data:
span_fn.span_data.output = result
return result
tasks = []
for tool_run in tool_runs:
function_tool = tool_run.function_tool
tasks.append(run_single_tool(function_tool, tool_run.tool_call))
results = await asyncio.gather(*tasks)
return [
FunctionToolResult(
tool=tool_run.function_tool,
output=result,
run_item=ToolCallOutputItem(
output=result,
raw_item=ItemHelpers.tool_call_output_item(tool_run.tool_call, str(result)),
agent=agent,
),
)
for tool_run, result in zip(tool_runs, results)
]
@classmethod
async def execute_computer_actions(
cls,
*,
agent: Agent[TContext],
actions: list[ToolRunComputerAction],
hooks: RunHooks[TContext],
context_wrapper: RunContextWrapper[TContext],
config: RunConfig,
) -> list[RunItem]:
results: list[RunItem] = []
# Need to run these serially, because each action can affect the computer state
for action in actions:
results.append(
await ComputerAction.execute(
agent=agent,
action=action,
hooks=hooks,
context_wrapper=context_wrapper,
config=config,
)
)
return results
@classmethod
async def execute_handoffs(
cls,
*,
agent: Agent[TContext],
original_input: str | list[TResponseInputItem],
pre_step_items: list[RunItem],
new_step_items: list[RunItem],
new_response: ModelResponse,
run_handoffs: list[ToolRunHandoff],
hooks: RunHooks[TContext],
context_wrapper: RunContextWrapper[TContext],
run_config: RunConfig,
) -> SingleStepResult:
# If there is more than one handoff, add tool responses that reject those handoffs
if len(run_handoffs) > 1:
output_message = "Multiple handoffs detected, ignoring this one."
new_step_items.extend(
[
ToolCallOutputItem(
output=output_message,
raw_item=ItemHelpers.tool_call_output_item(
handoff.tool_call, output_message
),
agent=agent,
)
for handoff in run_handoffs[1:]
]
)
actual_handoff = run_handoffs[0]
with handoff_span(from_agent=agent.name) as span_handoff:
handoff = actual_handoff.handoff
new_agent: Agent[Any] = await handoff.on_invoke_handoff(
context_wrapper, actual_handoff.tool_call.arguments
)
span_handoff.span_data.to_agent = new_agent.name
# Append a tool output item for the handoff
new_step_items.append(
HandoffOutputItem(
agent=agent,
raw_item=ItemHelpers.tool_call_output_item(
actual_handoff.tool_call,
handoff.get_transfer_message(new_agent),
),
source_agent=agent,
target_agent=new_agent,
)
)
# Execute handoff hooks
await asyncio.gather(
hooks.on_handoff(
context=context_wrapper,
from_agent=agent,
to_agent=new_agent,
),
(
agent.hooks.on_handoff(
context_wrapper,
agent=new_agent,
source=agent,
)
if agent.hooks
else _coro.noop_coroutine()
),
)
# If there's an input filter, filter the input for the next agent
input_filter = handoff.input_filter or (
run_config.handoff_input_filter if run_config else None
)
if input_filter:
logger.debug("Filtering inputs for handoff")
handoff_input_data = HandoffInputData(
input_history=tuple(original_input)
if isinstance(original_input, list)
else original_input,
pre_handoff_items=tuple(pre_step_items),
new_items=tuple(new_step_items),
)
if not callable(input_filter):
_error_tracing.attach_error_to_span(
span_handoff,
SpanError(
message="Invalid input filter",
data={"details": "not callable()"},
),
)
raise UserError(f"Invalid input filter: {input_filter}")
filtered = input_filter(handoff_input_data)
if not isinstance(filtered, HandoffInputData):
_error_tracing.attach_error_to_span(
span_handoff,
SpanError(
message="Invalid input filter result",
data={"details": "not a HandoffInputData"},
),
)
raise UserError(f"Invalid input filter result: {filtered}")
original_input = (
filtered.input_history
if isinstance(filtered.input_history, str)
else list(filtered.input_history)
)
pre_step_items = list(filtered.pre_handoff_items)
new_step_items = list(filtered.new_items)
return SingleStepResult(
original_input=original_input,
model_response=new_response,
pre_step_items=pre_step_items,
new_step_items=new_step_items,
next_step=NextStepHandoff(new_agent),
)
@classmethod
async def execute_final_output(
cls,
*,
agent: Agent[TContext],
original_input: str | list[TResponseInputItem],
new_response: ModelResponse,
pre_step_items: list[RunItem],
new_step_items: list[RunItem],
final_output: Any,
hooks: RunHooks[TContext],
context_wrapper: RunContextWrapper[TContext],
) -> SingleStepResult:
# Run the on_end hooks
await cls.run_final_output_hooks(agent, hooks, context_wrapper, final_output)
return SingleStepResult(
original_input=original_input,
model_response=new_response,
pre_step_items=pre_step_items,
new_step_items=new_step_items,
next_step=NextStepFinalOutput(final_output),
)
@classmethod
async def run_final_output_hooks(
cls,
agent: Agent[TContext],
hooks: RunHooks[TContext],
context_wrapper: RunContextWrapper[TContext],
final_output: Any,
):
await asyncio.gather(
hooks.on_agent_end(context_wrapper, agent, final_output),
agent.hooks.on_end(context_wrapper, agent, final_output)
if agent.hooks
else _coro.noop_coroutine(),
)
@classmethod
async def run_single_input_guardrail(
cls,
agent: Agent[Any],
guardrail: InputGuardrail[TContext],
input: str | list[TResponseInputItem],
context: RunContextWrapper[TContext],
) -> InputGuardrailResult:
with guardrail_span(guardrail.get_name()) as span_guardrail:
result = await guardrail.run(agent, input, context)
span_guardrail.span_data.triggered = result.output.tripwire_triggered
return result
@classmethod
async def run_single_output_guardrail(
cls,
guardrail: OutputGuardrail[TContext],
agent: Agent[Any],
agent_output: Any,
context: RunContextWrapper[TContext],
) -> OutputGuardrailResult:
with guardrail_span(guardrail.get_name()) as span_guardrail:
result = await guardrail.run(agent=agent, agent_output=agent_output, context=context)
span_guardrail.span_data.triggered = result.output.tripwire_triggered
return result
@classmethod
def stream_step_result_to_queue(
cls,
step_result: SingleStepResult,
queue: asyncio.Queue[StreamEvent | QueueCompleteSentinel],
):
for item in step_result.new_step_items:
if isinstance(item, MessageOutputItem):
event = RunItemStreamEvent(item=item, name="message_output_created")
elif isinstance(item, HandoffCallItem):
event = RunItemStreamEvent(item=item, name="handoff_requested")
elif isinstance(item, HandoffOutputItem):
event = RunItemStreamEvent(item=item, name="handoff_occured")
elif isinstance(item, ToolCallItem):
event = RunItemStreamEvent(item=item, name="tool_called")
elif isinstance(item, ToolCallOutputItem):
event = RunItemStreamEvent(item=item, name="tool_output")
elif isinstance(item, ReasoningItem):
event = RunItemStreamEvent(item=item, name="reasoning_item_created")
else:
logger.warning(f"Unexpected item type: {type(item)}")
event = None
if event:
queue.put_nowait(event)
@classmethod
async def _check_for_final_output_from_tools(
cls,
*,
agent: Agent[TContext],
tool_results: list[FunctionToolResult],
context_wrapper: RunContextWrapper[TContext],
config: RunConfig,
) -> ToolsToFinalOutputResult:
"""Returns (i, final_output)."""
if not tool_results:
return _NOT_FINAL_OUTPUT
if agent.tool_use_behavior == "run_llm_again":
return _NOT_FINAL_OUTPUT
elif agent.tool_use_behavior == "stop_on_first_tool":
return ToolsToFinalOutputResult(
is_final_output=True, final_output=tool_results[0].output
)
elif isinstance(agent.tool_use_behavior, dict):
names = agent.tool_use_behavior.get("stop_at_tool_names", [])
for tool_result in tool_results:
if tool_result.tool.name in names:
return ToolsToFinalOutputResult(
is_final_output=True, final_output=tool_result.output
)
return ToolsToFinalOutputResult(is_final_output=False, final_output=None)
elif callable(agent.tool_use_behavior):
if inspect.iscoroutinefunction(agent.tool_use_behavior):
return await cast(
Awaitable[ToolsToFinalOutputResult],
agent.tool_use_behavior(context_wrapper, tool_results),
)
else:
return cast(
ToolsToFinalOutputResult, agent.tool_use_behavior(context_wrapper, tool_results)
)
logger.error(f"Invalid tool_use_behavior: {agent.tool_use_behavior}")
raise UserError(f"Invalid tool_use_behavior: {agent.tool_use_behavior}")
class TraceCtxManager:
"""Creates a trace only if there is no current trace, and manages the trace lifecycle."""
def __init__(
self,
workflow_name: str,
trace_id: str | None,
group_id: str | None,
metadata: dict[str, Any] | None,
disabled: bool,
):
self.trace: Trace | None = None
self.workflow_name = workflow_name
self.trace_id = trace_id
self.group_id = group_id
self.metadata = metadata
self.disabled = disabled
def __enter__(self) -> TraceCtxManager:
current_trace = get_current_trace()
if not current_trace:
self.trace = trace(
workflow_name=self.workflow_name,
trace_id=self.trace_id,
group_id=self.group_id,
metadata=self.metadata,
disabled=self.disabled,
)
self.trace.start(mark_as_current=True)
return self
def __exit__(self, exc_type, exc_val, exc_tb):
if self.trace:
self.trace.finish(reset_current=True)
class ComputerAction:
@classmethod
async def execute(
cls,
*,
agent: Agent[TContext],
action: ToolRunComputerAction,
hooks: RunHooks[TContext],
context_wrapper: RunContextWrapper[TContext],
config: RunConfig,
) -> RunItem:
output_func = (
cls._get_screenshot_async(action.computer_tool.computer, action.tool_call)
if isinstance(action.computer_tool.computer, AsyncComputer)
else cls._get_screenshot_sync(action.computer_tool.computer, action.tool_call)
)
_, _, output = await asyncio.gather(
hooks.on_tool_start(context_wrapper, agent, action.computer_tool),
(
agent.hooks.on_tool_start(context_wrapper, agent, action.computer_tool)
if agent.hooks
else _coro.noop_coroutine()
),
output_func,
)
await asyncio.gather(
hooks.on_tool_end(context_wrapper, agent, action.computer_tool, output),
(
agent.hooks.on_tool_end(context_wrapper, agent, action.computer_tool, output)
if agent.hooks
else _coro.noop_coroutine()
),
)
# TODO: don't send a screenshot every single time, use references
image_url = f"data:image/png;base64,{output}"
return ToolCallOutputItem(
agent=agent,
output=image_url,
raw_item=ComputerCallOutput(
call_id=action.tool_call.call_id,
output={
"type": "computer_screenshot",
"image_url": image_url,
},
type="computer_call_output",
),
)
@classmethod
async def _get_screenshot_sync(
cls,
computer: Computer,
tool_call: ResponseComputerToolCall,
) -> str:
action = tool_call.action
if isinstance(action, ActionClick):
computer.click(action.x, action.y, action.button)
elif isinstance(action, ActionDoubleClick):
computer.double_click(action.x, action.y)
elif isinstance(action, ActionDrag):
computer.drag([(p.x, p.y) for p in action.path])
elif isinstance(action, ActionKeypress):
computer.keypress(action.keys)
elif isinstance(action, ActionMove):
computer.move(action.x, action.y)
elif isinstance(action, ActionScreenshot):
computer.screenshot()
elif isinstance(action, ActionScroll):
computer.scroll(action.x, action.y, action.scroll_x, action.scroll_y)
elif isinstance(action, ActionType):
computer.type(action.text)
elif isinstance(action, ActionWait):
computer.wait()
return computer.screenshot()
@classmethod
async def _get_screenshot_async(
cls,
computer: AsyncComputer,
tool_call: ResponseComputerToolCall,
) -> str:
action = tool_call.action
if isinstance(action, ActionClick):
await computer.click(action.x, action.y, action.button)
elif isinstance(action, ActionDoubleClick):
await computer.double_click(action.x, action.y)
elif isinstance(action, ActionDrag):
await computer.drag([(p.x, p.y) for p in action.path])
elif isinstance(action, ActionKeypress):
await computer.keypress(action.keys)
elif isinstance(action, ActionMove):
await computer.move(action.x, action.y)
elif isinstance(action, ActionScreenshot):
await computer.screenshot()
elif isinstance(action, ActionScroll):
await computer.scroll(action.x, action.y, action.scroll_x, action.scroll_y)
elif isinstance(action, ActionType):
await computer.type(action.text)
elif isinstance(action, ActionWait):
await computer.wait()
return await computer.screenshot()