You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
@@ -52,40 +52,40 @@ Once you have an ONNX model, it can be scored with a variety of tools.
52
52
|[Menoh](https://github.com/pfnet-research/menoh)|[Github Packages](https://github.com/pfnet-research/menoh/releases) or from [Nuget](https://www.nuget.org/packages/Menoh/)|[Example](tutorials/OnnxMenohHaskellImport.ipynb)|
*[MXNet Model Server](tutorials/ONNXMXNetServer.ipynb)
71
+
*[AWS SageMaker and MXNet](https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/mxnet_onnx_eia/mxnet_onnx_eia.ipynb)
72
+
*[MXNet to ONNX to ML.NET with SageMaker, ECS and ECR](https://cosminsanda.com/posts/mxnet-to-onnx-to-ml.net-with-sagemaker-ecs-and-ecr/) - external link
*[Azure ML and ONNX Runtime](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/deployment/onnx)
76
+
77
+
78
+
### Mobile
65
79
*[Converting SuperResolution model from PyTorch to Caffe2 with ONNX and deploying on mobile device](tutorials/PytorchCaffe2SuperResolution.ipynb)
66
80
*[Transferring SqueezeNet from PyTorch to Caffe2 with ONNX and to Android app](tutorials/PytorchCaffe2MobileSqueezeNet.ipynb)
67
81
*[Converting Style Transfer model from PyTorch to CoreML with ONNX and deploying to an iPhone](https://github.com/onnx/tutorials/tree/master/examples/CoreML/ONNXLive)
68
-
*[Serving PyTorch Models on AWS Lambda with Caffe2 & ONNX](https://machinelearnings.co/serving-pytorch-models-on-aws-lambda-with-caffe2-onnx-7b096806cfac)
69
-
*[MXNet to ONNX to ML.NET with SageMaker, ECS and ECR](https://cosminsanda.com/posts/mxnet-to-onnx-to-ml.net-with-sagemaker-ecs-and-ecr/) - external link
70
-
*[Convert CoreML YOLO model to ONNX, score with ONNX Runtime, and deploy in Azure](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/onnx/onnx-convert-aml-deploy-tinyyolo.ipynb)
71
-
*[Inference PyTorch Bert Model for High Performance in ONNX Runtime](https://github.com/microsoft/onnxruntime/blob/master/onnxruntime/python/tools/transformers/notebooks/PyTorch_Bert-Squad_OnnxRuntime_GPU.ipynb)
72
-
*[Inference TensorFlow Bert Model for High Performance in ONNX Runtime](https://github.com/microsoft/onnxruntime/blob/master/onnxruntime/python/tools/transformers/notebooks/Tensorflow_Keras_Bert-Squad_OnnxRuntime_CPU.ipynb)
73
-
*[Inference Bert Model for High Performance with ONNX Runtime on AzureML](https://github.com/microsoft/onnxruntime/blob/master/onnxruntime/python/tools/transformers/notebooks/Inference_Bert_with_OnnxRuntime_on_AzureML.ipynb)
*[Deploy ONNX Runtime on Mobile/Edge devices](https://onnxruntime.ai/docs/how-to/mobile/)
83
+
84
+
75
85
76
86
### ONNX Quantization
77
87
*[HuggingFace Bert Quantization with ONNX Runtime](https://github.com/microsoft/onnxruntime/blob/master/onnxruntime/python/tools/quantization/notebooks/Bert-GLUE_OnnxRuntime_quantization.ipynb)
78
88
79
-
### Serving
80
-
*[Serving ONNX models with AI-Serving](https://github.com/autodeployai/ai-serving/blob/master/examples/AIServingMnistOnnxModel.ipynb)
81
-
*[Serving ONNX models with Cortex](https://towardsdatascience.com/how-to-deploy-onnx-models-in-production-60bd6abfd3ae)
82
-
*[Serving ONNX models with MXNet Model Server](tutorials/ONNXMXNetServer.ipynb)
83
-
*[Serving ONNX models with ONNX Runtime Server](tutorials/OnnxRuntimeServerSSDModel.ipynb)
84
-
*[ONNX model hosting with AWS SageMaker and MXNet](https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/mxnet_onnx_eia/mxnet_onnx_eia.ipynb)
85
-
*[Serving ONNX models with ONNX Runtime on Azure ML](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/deployment/onnx)
0 commit comments