Skip to content

Commit 023002b

Browse files
authored
Update tutorial links (#255)
* update tutorial links Signed-off-by: Faith Xu <[email protected]> * update scoring table Signed-off-by: Faith Xu <[email protected]>
1 parent a16e7f0 commit 023002b

File tree

1 file changed

+21
-21
lines changed

1 file changed

+21
-21
lines changed

README.md

Lines changed: 21 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -28,7 +28,7 @@ Below is a list of services that can output ONNX models customized for your data
2828
| [Chainer](https://chainer.org/) | [chainer/onnx-chainer](https://github.com/chainer/onnx-chainer) | [Example](tutorials/ChainerOnnxExport.ipynb) |
2929
| [Cognitive Toolkit (CNTK)](https://www.microsoft.com/en-us/cognitive-toolkit/) | [built-in](https://docs.microsoft.com/en-us/cognitive-toolkit/setup-cntk-on-your-machine) | [Example](tutorials/CntkOnnxExport.ipynb) |
3030
| [CoreML (Apple)](https://developer.apple.com/documentation/coreml) | [onnx/onnxmltools](https://github.com/onnx/onnxmltools) | [Example](https://github.com/onnx/onnx-docker/blob/master/onnx-ecosystem/converter_scripts/coreml_onnx.ipynb) |
31-
| [Keras](https://github.com/keras-team/keras) | [onnx/keras-onnx](https://github.com/onnx/keras-onnx) | [Example](https://github.com/onnx/onnx-docker/blob/master/onnx-ecosystem/converter_scripts/keras_onnx.ipynb) | n/a |
31+
| [Keras](https://github.com/keras-team/keras) | [onnx/tensorflow-onnx](https://github.com/onnx/tensorflow-onnx) | [Example](https://github.com/onnx/tensorflow-onnx/blob/master/tutorials/keras-resnet50.ipynb) | n/a |
3232
| [LibSVM](https://github.com/cjlin1/libsvm) | [onnx/onnxmltools](https://github.com/onnx/onnxmltools) | [Example](https://github.com/onnx/onnx-docker/blob/master/onnx-ecosystem/converter_scripts/libsvm_onnx.ipynb) | n/a |
3333
| [LightGBM](https://github.com/Microsoft/LightGBM) | [onnx/onnxmltools](https://github.com/onnx/onnxmltools) | [Example](https://github.com/onnx/onnx-docker/blob/master/onnx-ecosystem/converter_scripts/lightgbm_onnx.ipynb) | n/a |
3434
| [MATLAB](https://www.mathworks.com/) | [Deep Learning Toolbox](https://www.mathworks.com/matlabcentral/fileexchange/67296) | [Example](https://www.mathworks.com/help/deeplearning/ref/exportonnxnetwork.html) |
@@ -52,40 +52,40 @@ Once you have an ONNX model, it can be scored with a variety of tools.
5252
| [Menoh](https://github.com/pfnet-research/menoh) | [Github Packages](https://github.com/pfnet-research/menoh/releases) or from [Nuget](https://www.nuget.org/packages/Menoh/) | [Example](tutorials/OnnxMenohHaskellImport.ipynb) |
5353
| [ML.NET](https://github.com/dotnet/machinelearning/) | [Microsoft.ML Nuget Package](https://www.nuget.org/packages/Microsoft.ML/) | [Example](https://github.com/dotnet/machinelearning/blob/master/test/Microsoft.ML.OnnxTransformerTest/OnnxTransformTests.cs) |
5454
| [MXNet (Apache)](http://mxnet.incubator.apache.org/) - [Github](https://github.com/apache/incubator-mxnet/tree/master/python/mxnet/contrib/onnx) | [MXNet](http://mxnet.incubator.apache.org/versions/master/install/index.html?platform=Linux&language=Python&processor=CPU) | [API](http://mxnet.incubator.apache.org/api/python/contrib/onnx.html)<br>[Example](tutorials/OnnxMxnetImport.ipynb) |
55-
[ONNX Runtime](https://github.com/microsoft/onnxruntime) | Python (Pypi) - [onnxruntime](https://pypi.org/project/onnxruntime/) and [onnxruntime-gpu](https://pypi.org/project/onnxruntime-gpu)<br>C/C# (Nuget) - [Microsoft.ML.OnnxRuntime](https://www.nuget.org/packages/Microsoft.ML.OnnxRuntime/) and [Microsoft.ML.OnnxRuntime.Gpu](https://www.nuget.org/packages/Microsoft.ML.OnnxRuntime.Gpu/)| APIs: [Python](https://aka.ms/onnxruntime-python), [C#](https://github.com/Microsoft/onnxruntime/blob/master/docs/CSharp_API.md), [C](https://github.com/Microsoft/onnxruntime/blob/master/docs/C_API.md), [C++](https://github.com/Microsoft/onnxruntime/blob/master/onnxruntime/core/session/inference_session.h)<br>Examples - [Python](https://microsoft.github.io/onnxruntime/python/auto_examples/plot_load_and_predict.html#), [C#](https://github.com/Microsoft/onnxruntime/blob/master/csharp/test/Microsoft.ML.OnnxRuntime.Tests/InferenceTest.cs#L54), [C](https://github.com/Microsoft/onnxruntime/blob/master/csharp/test/Microsoft.ML.OnnxRuntime.EndToEndTests.Capi/C_Api_Sample.cpp) |
55+
[ONNX Runtime](https://github.com/microsoft/onnxruntime) | See [onnxruntime.ai](https://onnxruntime.ai)| [Documentation](https://onnxruntime.ai/docs/) |
5656
| [SINGA (Apache)](http://singa.apache.org/) - [Github](https://github.com/apache/incubator-singa/blob/master/python/singa/sonnx.py) [experimental]| [built-in](https://github.com/apache/incubator-singa/blob/master/doc/en/docs/installation.md) | [Example](https://github.com/apache/incubator-singa/tree/master/examples/onnx) |
5757
| [Tensorflow](https://www.tensorflow.org/) | [onnx-tensorflow](https://github.com/onnx/onnx-tensorflow) | [Example](tutorials/OnnxTensorflowImport.ipynb)|
5858
| [TensorRT](https://developer.nvidia.com/tensorrt) | [onnx-tensorrt](https://github.com/onnx/onnx-tensorrt) | [Example](https://github.com/onnx/onnx-tensorrt/blob/master/README.md) |
5959
| [Windows ML](https://docs.microsoft.com/en-us/windows/ai/windows-ml) | Pre-installed on [Windows 10](https://docs.microsoft.com/en-us/windows/ai/release-notes) | [API](https://docs.microsoft.com/en-us/windows/ai/api-reference)<br>Tutorials - [C++ Desktop App](https://docs.microsoft.com/en-us/windows/ai/get-started-desktop), [C# UWP App](https://docs.microsoft.com/en-us/windows/ai/get-started-uwp)<br> [Examples](https://docs.microsoft.com/en-us/windows/ai/tools-and-samples) |
6060

6161

6262
## End-to-End Tutorials
63-
64-
### Conversion to deployment
63+
Tutorials demonstrating how to use ONNX in practice for varied scenarios across frameworks, platforms, and device types
64+
65+
### General
66+
* [AI-Serving](https://github.com/autodeployai/ai-serving/blob/master/examples/AIServingMnistOnnxModel.ipynb)
67+
* [AWS Lambda](https://machinelearnings.co/serving-pytorch-models-on-aws-lambda-with-caffe2-onnx-7b096806cfac)
68+
* [Cortex](https://towardsdatascience.com/how-to-deploy-onnx-models-in-production-60bd6abfd3ae)
69+
* MXNet
70+
* [MXNet Model Server](tutorials/ONNXMXNetServer.ipynb)
71+
* [AWS SageMaker and MXNet](https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/mxnet_onnx_eia/mxnet_onnx_eia.ipynb)
72+
* [MXNet to ONNX to ML.NET with SageMaker, ECS and ECR](https://cosminsanda.com/posts/mxnet-to-onnx-to-ml.net-with-sagemaker-ecs-and-ecr/) - external link
73+
* ONNX Runtime
74+
* [ONNX Runtime Tutorials](https://onnxruntime.ai/docs/tutorials/)
75+
* [Azure ML and ONNX Runtime](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/deployment/onnx)
76+
77+
78+
### Mobile
6579
* [Converting SuperResolution model from PyTorch to Caffe2 with ONNX and deploying on mobile device](tutorials/PytorchCaffe2SuperResolution.ipynb)
6680
* [Transferring SqueezeNet from PyTorch to Caffe2 with ONNX and to Android app](tutorials/PytorchCaffe2MobileSqueezeNet.ipynb)
6781
* [Converting Style Transfer model from PyTorch to CoreML with ONNX and deploying to an iPhone](https://github.com/onnx/tutorials/tree/master/examples/CoreML/ONNXLive)
68-
* [Serving PyTorch Models on AWS Lambda with Caffe2 & ONNX](https://machinelearnings.co/serving-pytorch-models-on-aws-lambda-with-caffe2-onnx-7b096806cfac)
69-
* [MXNet to ONNX to ML.NET with SageMaker, ECS and ECR](https://cosminsanda.com/posts/mxnet-to-onnx-to-ml.net-with-sagemaker-ecs-and-ecr/) - external link
70-
* [Convert CoreML YOLO model to ONNX, score with ONNX Runtime, and deploy in Azure](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/onnx/onnx-convert-aml-deploy-tinyyolo.ipynb)
71-
* [Inference PyTorch Bert Model for High Performance in ONNX Runtime](https://github.com/microsoft/onnxruntime/blob/master/onnxruntime/python/tools/transformers/notebooks/PyTorch_Bert-Squad_OnnxRuntime_GPU.ipynb)
72-
* [Inference TensorFlow Bert Model for High Performance in ONNX Runtime](https://github.com/microsoft/onnxruntime/blob/master/onnxruntime/python/tools/transformers/notebooks/Tensorflow_Keras_Bert-Squad_OnnxRuntime_CPU.ipynb)
73-
* [Inference Bert Model for High Performance with ONNX Runtime on AzureML](https://github.com/microsoft/onnxruntime/blob/master/onnxruntime/python/tools/transformers/notebooks/Inference_Bert_with_OnnxRuntime_on_AzureML.ipynb)
74-
* [Various Samples: Inferencing ONNX models using ONNX Runtime (Python, C#, C, Java, etc)](https://github.com/microsoft/onnxruntime/tree/master/samples)
82+
* [Deploy ONNX Runtime on Mobile/Edge devices](https://onnxruntime.ai/docs/how-to/mobile/)
83+
84+
7585

7686
### ONNX Quantization
7787
* [HuggingFace Bert Quantization with ONNX Runtime](https://github.com/microsoft/onnxruntime/blob/master/onnxruntime/python/tools/quantization/notebooks/Bert-GLUE_OnnxRuntime_quantization.ipynb)
7888

79-
### Serving
80-
* [Serving ONNX models with AI-Serving](https://github.com/autodeployai/ai-serving/blob/master/examples/AIServingMnistOnnxModel.ipynb)
81-
* [Serving ONNX models with Cortex](https://towardsdatascience.com/how-to-deploy-onnx-models-in-production-60bd6abfd3ae)
82-
* [Serving ONNX models with MXNet Model Server](tutorials/ONNXMXNetServer.ipynb)
83-
* [Serving ONNX models with ONNX Runtime Server](tutorials/OnnxRuntimeServerSSDModel.ipynb)
84-
* [ONNX model hosting with AWS SageMaker and MXNet](https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/mxnet_onnx_eia/mxnet_onnx_eia.ipynb)
85-
* [Serving ONNX models with ONNX Runtime on Azure ML](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/deployment/onnx)
86-
* [FER Facial Expression Recognition](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/onnx/onnx-inference-facial-expression-recognition-deploy.ipynb)
87-
* [MNIST Handwritten Digits](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/onnx/onnx-inference-mnist-deploy.ipynb)
88-
* [Resnet50 Image Classification](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/onnx/onnx-modelzoo-aml-deploy-resnet50.ipynb)
8989

9090
### ONNX as an intermediary format
9191
* [Convert a PyTorch model to Tensorflow using ONNX](tutorials/PytorchTensorflowMnist.ipynb)

0 commit comments

Comments
 (0)