-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsecp256k1.go
655 lines (566 loc) · 22.2 KB
/
secp256k1.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
package secp256k1
/*
#cgo CFLAGS: -I${SRCDIR}/secp256k1-zkp -I${SRCDIR}/secp256k1-zkp/src
#include <stdlib.h>
#include <stdint.h>
#include <syscall.h>
#define USE_BASIC_CONFIG 1
#include "src/basic-config.h"
//#define SURJECTION_PARAMETERS_LOG 1
#define ENABLE_MODULE_ECDH 1
#define ENABLE_MODULE_RECOVERY 1
#define ENABLE_MODULE_GENERATOR 1
#define ENABLE_MODULE_COMMITMENT 1
#define ENABLE_MODULE_RANGEPROOF 1
#define ENABLE_MODULE_BULLETPROOF 1
#define ENABLE_MODULE_AGGSIG 1
#define ENABLE_MODULE_SCHNORRSIG 1
#define ENABLE_MODULE_WHITELIST 1
#define ENABLE_MODULE_SURJECTIONPROOF 1
#include "src/secp256k1.c"
#include "src/testrand_impl.h"
#include "src/util.h"
#include "src/hash_impl.h"
inline secp256k1_pubkey** makePubkeyArray(int size) { return calloc(sizeof(secp256k1_pubkey*), size); }
inline void setArrayPubkey(secp256k1_pubkey **a, secp256k1_pubkey *pubkey, int n) { a[n] = pubkey; }
inline void freePubkeyArray(secp256k1_pubkey * *a) { free(a); }
//long long getSelfThreadId64() { return (long long)pthread_self; }
//uint32_t getSelfThreadId() { return (uint32_t)syscall(SYS_gettid); }
void random_scalar_order256(unsigned char *out) {
do {
int overflow = 0;
secp256k1_scalar num;
secp256k1_rand256(out);
secp256k1_scalar_set_b32(&num, out, &overflow);
if (!overflow && !secp256k1_scalar_is_zero(&num)) break;
}
while (1);
}
*/
import "C"
import (
"crypto/rand"
"encoding/hex"
"errors"
"fmt"
"unsafe"
)
const (
/** Flags to pass to secp256k1_context_create. */
ContextNone = uint(C.SECP256K1_CONTEXT_NONE)
ContextSign = uint(C.SECP256K1_CONTEXT_SIGN)
ContextVerify = uint(C.SECP256K1_CONTEXT_VERIFY)
ContextBoth = uint(C.SECP256K1_CONTEXT_SIGN | C.SECP256K1_CONTEXT_VERIFY)
// Flags for EcPubkeySerialize
EcCompressed = uint(C.SECP256K1_EC_COMPRESSED)
EcUncompressed = uint(C.SECP256K1_EC_UNCOMPRESSED)
// Length of elements byte representations
LenCompressed int = 33
LenUncompressed int = 65
LenMsgHash int = 32
LenPrivateKey int = 32
LenCompactSig int = 64
LenMaxDerSig int = 72
// Errors returned by functions
ErrorPrivateKeyNull string = "Private key cannot be null"
ErrorPrivateKeyInvalid string = "Invalid private key"
ErrorPublicKeyNull string = "Public key cannot be null"
ErrorEcdsaSignatureNull string = "Signature cannot be null"
ErrorEcdsaRecoverableSignatureNull string = "Recoverable signature cannot be null"
ErrorEcdh string = "Unable to do ECDH"
ErrorPublicKeyCreate string = "Unable to produce public key"
ErrorPublicKeyCombine string = "Unable to combine public keys"
ErrorTweakSize string = "Tweak must be exactly 32 bytes"
ErrorMsg32Size string = "Message hash must be exactly 32 bytes"
ErrorPrivateKeySize string = "Private key must be exactly 32 bytes"
ErrorPublicKeySize string = "Public key must be 33 or 65 bytes"
ErrorTweakingPublicKey string = "Unable to tweak this public key"
ErrorTweakingPrivateKey string = "Unable to tweak this private key"
ErrorProducingSignature string = "Unable to produce signature"
ErrorProducingRecoverableSignature string = "Unable to produce recoverable signature"
ErrorCompactSigSize string = "Compact signature must be exactly 64 bytes"
ErrorCompactSigParse string = "Unable to parse this compact signature"
ErrorDerSigParse string = "Unable to parse this DER signature"
ErrorRecoverableSigParse string = "Unable to parse this recoverable signature"
ErrorRecoveryFailed string = "Failed to recover public key"
ErrorPublicKeyParse string = "Unable to parse this public key"
)
// Context wraps a *secp256k1_context, required to use all
// functions. It can be initialized for signing, verification,
// or both.
type Context struct {
ctx *C.secp256k1_context
}
// PublicKey wraps a *secp256k1_pubkey, which contains the prefix plus
// the X+Y coordidnates
type PublicKey struct {
pk *C.secp256k1_pubkey
}
// EcdsaSignature wraps a *secp256k1_ecdsa_signature, containing the R
// and S values.
type EcdsaSignature struct {
sig *C.secp256k1_ecdsa_signature
}
// EcdsaRecoverableSignature wraps a *secp256k1_ecdsa_recoverable_signature
// which contains the signature, and information about public key recovery.
type EcdsaRecoverableSignature struct {
sig *C.secp256k1_ecdsa_recoverable_signature
}
// Helper methods for this library
func newContext() *Context {
var ctx *C.secp256k1_context
return &Context{ctx}
}
func newPublicKey() *PublicKey {
return &PublicKey{
pk: &C.secp256k1_pubkey{},
}
}
func newEcdsaSignature() *EcdsaSignature {
return &EcdsaSignature{
sig: &C.secp256k1_ecdsa_signature{},
}
}
func newEcdsaRecoverableSignature() *EcdsaRecoverableSignature {
return &EcdsaRecoverableSignature{
sig: &C.secp256k1_ecdsa_recoverable_signature{},
}
}
var ctxmap map[uint]*Context
func init() {
seed := make([]byte, 16)
rand.Read(seed)
C.secp256k1_rand_seed(cBuf(seed))
ctxmap = make(map[uint]*Context)
}
// Begin bindings for secp256k1.h
// ContextCreate produces a new *Context, initialized with a bitmask
// of flags depending on it's intended usage. The supported flags
// are currently ContextSign and ContextVerify. Although expressed
// in the return type signature, the function does not currently
// return an error.
func ContextCreate(flags uint) (*Context, error) {
context := newContext()
context.ctx = C.secp256k1_context_create(C.uint(flags))
return context, nil
}
// ContextClone makes a copy of the provided *Context. The provided
// context must not be NULL.
func ContextClone(ctx *Context) (*Context, error) {
other := newContext()
other.ctx = C.secp256k1_context_clone(ctx.ctx)
return other, nil
}
// ContextDestroy destroys the context. The provided context must not
// be NULL.
func ContextDestroy(ctx *Context) {
C.secp256k1_context_destroy(ctx.ctx)
}
// ContextRandomize accepts a [32]byte seed in order to update the context
// randomization. NULL may be passed to reset to initial state. The context
// pointer must not be null.
func ContextRandomize(ctx *Context, seed32 [32]byte) int {
return int(C.secp256k1_context_randomize(ctx.ctx, cBuf(seed32[:])))
}
func SharedContext(flags uint) (context *Context) {
flags = flags & ContextBoth
context, exists := ctxmap[flags]
if !exists {
var err error
context, err = ContextCreate(flags)
if err != nil {
panic(fmt.Sprintf("error creating default context object (flags: %d, error: %s)", flags, err))
}
ctxmap[flags] = context
}
return
}
// EcPubkeyParse deserializes a variable-length public key into a *Pubkey
// object. The function will reject any input of zero bytes in length.
// This function supports parsing compressed (33 bytes, header byte 0x02 or
// 0x03), uncompressed (65 bytes, header byte 0x04), or hybrid (65 bytes,
// header byte 0x06 or 0x07) format public keys. The return code is 1 if
// the public key was fully valid, or 0 if the public key was invalid or
// could not be parsed.
func EcPubkeyParse(ctx *Context, publicKey []byte) (int, *PublicKey, error) {
l := len(publicKey)
if l < 1 {
return 0, nil, errors.New(ErrorPublicKeySize)
}
pk := newPublicKey()
result := int(C.secp256k1_ec_pubkey_parse(ctx.ctx, pk.pk, cBuf(publicKey), C.size_t(l)))
if result != 1 {
return result, nil, errors.New(ErrorPublicKeyParse)
}
return result, pk, nil
}
// EcPubkeySerialize serializes a pubkey object into a []byte. The output
// is an array of 65-bytes (if compressed==0), or 33-bytes (if compressed==1).
// Use EcCompressed or EcUncompressed to request a certain format. The
// function will always return 1, because the only
// public key objects are valid ones.
func EcPubkeySerialize(ctx *Context, publicKey *PublicKey, flags uint) (int, []byte, error) {
var size int
if flags == EcCompressed {
size = LenCompressed
} else {
size = LenUncompressed
}
output := make([]C.uchar, size)
outputLen := C.size_t(size)
result := int(C.secp256k1_ec_pubkey_serialize(ctx.ctx, &output[0], &outputLen, publicKey.pk, C.uint(flags)))
return result, goBytes(output, C.int(outputLen)), nil
}
// EcdsaSignatureParseCompact parses an ECDSA signature in compact (64
// bytes) format. The return code is 1 when the signature could be
// parsed, 0 otherwise. The signature must consist of a 32-byte big
// endian R value, followed by a 32-byte big endian S value. If R or S fall
// outside of [0..order-1], the encoding is invalid. R and S with value 0
// are allowed in the encoding. After the call, sig will always be
// initialized. If parsing failed or R or S are zero, the resulting sig
// value is guaranteed to fail validation for any message and public key.
func EcdsaSignatureParseCompact(ctx *Context, signature []byte) (int, *EcdsaSignature, error) {
if len(signature) != LenCompactSig {
return 0, nil, errors.New(ErrorCompactSigSize)
}
sig := newEcdsaSignature()
result := int(C.secp256k1_ecdsa_signature_parse_compact(ctx.ctx, sig.sig,
(*C.uchar)(unsafe.Pointer(&signature[0])),
))
if result != 1 {
return result, nil, errors.New(ErrorCompactSigParse)
}
return result, sig, nil
}
// Serialize an ECDSA signature in compact (64 byte) format. Return code is
// always 1. See EcdsaSignatureParseCompact for details about the encoding.
func EcdsaSignatureSerializeCompact(ctx *Context, sig *EcdsaSignature) (int, []byte, error) {
output := make([]C.uchar, LenCompactSig)
result := int(C.secp256k1_ecdsa_signature_serialize_compact(ctx.ctx, &output[0], sig.sig))
return result, goBytes(output, C.int(LenCompactSig)), nil
}
// Parse a DER ECDSA signature. Returns 1 when the signature
// could be parsed, 0 otherwise. This function will accept any
// valid DER encoded signature, even if the encoded numbers are
// out of range.
// After the call, sig will always be initialized. If parsing failed or the
// encoded numbers are out of range, signature validation with it is
// guaranteed to fail for every message and public key.
func EcdsaSignatureParseDer(ctx *Context, signature []byte) (int, *EcdsaSignature, error) {
sig := newEcdsaSignature()
result := int(C.secp256k1_ecdsa_signature_parse_der(ctx.ctx, sig.sig,
(*C.uchar)(unsafe.Pointer(&signature[0])),
(C.size_t)(len(signature))))
if result != 1 {
return result, nil, errors.New(ErrorDerSigParse)
}
return result, sig, nil
}
// Serialize an ECDSA signature in DER format. The return code for this
// function _should_ always return 1, since the serializedSig is
// initialized to LenMaxDerSig. If some day it doesn't, it's serious.
func EcdsaSignatureSerializeDer(ctx *Context, sig *EcdsaSignature) (int, []byte, error) {
serializedSig := make([]C.uchar, LenMaxDerSig)
outputLen := C.size_t(len(serializedSig))
result := int(C.secp256k1_ecdsa_signature_serialize_der(ctx.ctx, &serializedSig[0], &outputLen, sig.sig))
return result, goBytes(serializedSig, C.int(outputLen)), nil
}
// Verify an ECDSA signature. Return code is 1 for a correct signature,
// or 0 if incorrect. To avoid accepting malleable signature, only ECDSA
// signatures in lower-S form are accepted. If you need to accept ECDSA
// sigantures from sources that do not obey this rule, apply
// EcdsaSignatureNormalize() prior to validation (however, this results in
// malleable signatures)
func EcdsaVerify(ctx *Context, sig *EcdsaSignature, msg32 []byte,
pubkey *PublicKey) (int, error) {
if len(msg32) != LenMsgHash {
return 0, errors.New(ErrorMsg32Size)
}
result := C.secp256k1_ecdsa_verify(ctx.ctx, sig.sig, cBuf(msg32[:]), pubkey.pk)
return int(result), nil
}
// Create an ECDSA signature. Return code is 1 if the signature was
// created, or is zero and the error is set if the nonce generation
// function failed, or the private key was invalid. The created
// signature is always in lower-S form. See EcdsaSignatureNormalize for
// details.
func EcdsaSign(ctx *Context, msg32 []byte, seckey []byte) (int, *EcdsaSignature, error) {
if len(msg32) != LenMsgHash {
return 0, nil, errors.New(ErrorMsg32Size)
}
if len(seckey) != LenPrivateKey {
return 0, nil, errors.New(ErrorPrivateKeySize)
}
signature := newEcdsaSignature()
result := int(C.secp256k1_ecdsa_sign(ctx.ctx, signature.sig,
cBuf(msg32[:]), cBuf(seckey[:]), nil, nil))
if result != 1 {
return result, nil, errors.New(ErrorProducingSignature)
}
return result, signature, nil
}
// Verify a secret key. Returns 1 if the secret key is valid, or 0 if an
// error occured or the key was empty.
func EcSeckeyVerify(ctx *Context, seckey []byte) (int, error) {
if len(seckey) < 1 {
return 0, errors.New(ErrorPrivateKeyNull)
}
result := int(C.secp256k1_ec_seckey_verify(ctx.ctx, cBuf(seckey[:])))
if result != 1 {
return result, errors.New(ErrorPrivateKeyInvalid)
}
return result, nil
}
// EcPubkeyCreate will compute the public key for a secret key. The
// return code is 1 and the key returned if the secret was valid.
// Otherwise, the return code is 0, and an error is returned. The key
// length must be 32-bytes.
func EcPubkeyCreate(ctx *Context, seckey []byte) (int, *PublicKey, error) {
if len(seckey) != LenPrivateKey {
return 0, nil, errors.New(ErrorPrivateKeySize)
}
pk := newPublicKey()
result := int(C.secp256k1_ec_pubkey_create(ctx.ctx, pk.pk, cBuf(seckey[:])))
if result != 1 {
return result, nil, errors.New(ErrorPublicKeyCreate)
}
return result, pk, nil
}
// EcPrivkeyNegate will negate a public key in place. The return code is
// 1 if the operation was successful, or 0 if the length was invalid.
func EcPrivkeyNegate(ctx *Context, seckey []byte) (int, error) {
if len(seckey) != LenPrivateKey {
return 0, errors.New(ErrorPrivateKeySize)
}
result := int(C.secp256k1_ec_privkey_negate(ctx.ctx, (*C.uchar)(unsafe.Pointer(&seckey[0]))))
return result, nil
}
// EcPubkeyNegate will negate a public key object in place. The return code
// is always 1.
func EcPubkeyNegate(ctx *Context, pubkey *PublicKey) (int, error) {
result := int(C.secp256k1_ec_pubkey_negate(ctx.ctx, pubkey.pk))
return result, nil
}
// EcPrivkeyTweakAdd modifies the provided `seckey` by adding tweak to
// it. The return code is 0 if `tweak` was out of range (chance of
// around 1 in 2^128 for uniformly random 32-byte arrays), or if the
// resulting private key would be invalid (only when the tweak is the
// complement of the private key). The return code is 1 otherwise.
func EcPrivkeyTweakAdd(ctx *Context, seckey []byte, tweak []byte) (int, error) {
if len(tweak) != LenPrivateKey {
return 0, errors.New(ErrorTweakSize)
}
if len(seckey) != LenPrivateKey {
return 0, errors.New(ErrorPrivateKeySize)
}
result := int(C.secp256k1_ec_privkey_tweak_add(ctx.ctx, (*C.uchar)(unsafe.Pointer(&seckey[0])), cBuf(tweak[:])))
if result != 1 {
return result, errors.New(ErrorTweakingPrivateKey)
}
return result, nil
}
// Tweak a private key by multiplying it by a tweak. The return code is 0
// if the tweak was out of range (chance of around 1 in 2^128 for uniformly
// random 32-byte arrays) or zero. The code is 1 otherwise.
func EcPrivkeyTweakMul(ctx *Context, seckey []byte, tweak []byte) (int, error) {
if len(tweak) != LenPrivateKey {
return 0, errors.New(ErrorTweakSize)
}
if len(seckey) != LenPrivateKey {
return 0, errors.New(ErrorPrivateKeySize)
}
result := int(C.secp256k1_ec_privkey_tweak_mul(ctx.ctx, (*C.uchar)(unsafe.Pointer(&seckey[0])), cBuf(tweak[:])))
if result != 1 {
return result, errors.New(ErrorTweakingPrivateKey)
}
return result, nil
}
// Tweak a public key by adding tweak times the generator to it. The
// return code is 0 if the tweak was out of range (chance of around 1 in
// 2^128 for uniformly random 32-byte arrays) or if the resulting public
// key would be invalid. The return code is 1 otherwise.
func EcPubkeyTweakAdd(ctx *Context, pk *PublicKey, tweak []byte) (int, error) {
if len(tweak) != LenPrivateKey {
return 0, errors.New(ErrorTweakSize)
}
result := int(C.secp256k1_ec_pubkey_tweak_add(ctx.ctx, pk.pk, cBuf(tweak)))
if result != 1 {
return result, errors.New(ErrorTweakingPublicKey)
}
return result, nil
}
// Tweak a public key by multiplying it by a tweak. The return code is 0
// if the tweak was out of range (chance of around 1 in 2^128 for uniformly
// random 32-byte arrays) or zero. The code is 1 otherwise.
func EcPubkeyTweakMul(ctx *Context, pk *PublicKey, tweak []byte) (int, error) {
if len(tweak) != LenPrivateKey {
return 0, errors.New(ErrorTweakSize)
}
result := int(C.secp256k1_ec_pubkey_tweak_mul(ctx.ctx, pk.pk, cBuf(tweak)))
if result != 1 {
return result, errors.New(ErrorTweakingPublicKey)
}
return result, nil
}
// EcPubkeyCombine will compute sum of all the provided public keys,
// returning a new point. The error code is 1 if the sum is valid, 0
// otherwise. There must be at least one public key.
func EcPubkeyCombine(ctx *Context, vPk []*PublicKey) (int, *PublicKey, error) {
l := len(vPk)
if l < 1 {
return 0, nil, errors.New("Must provide at least one public key")
}
array := C.makePubkeyArray(C.int(l))
for i := 0; i < l; i++ {
C.setArrayPubkey(array, vPk[i].pk, C.int(i))
}
defer C.freePubkeyArray(array)
pkOut := newPublicKey()
result := int(C.secp256k1_ec_pubkey_combine(ctx.ctx, pkOut.pk, array, C.size_t(l)))
if result != 1 {
return result, nil, errors.New(ErrorPublicKeyCombine)
}
return result, pkOut, nil
}
// Compute an EC Diffie-Hellman secret in constant time. Return code is
// 1 if exponentiation was successful, or 0 if the scalar was invalid.
func Ecdh(ctx *Context, pubKey *PublicKey, privKey []byte) (int, []byte, error) {
if len(privKey) != LenPrivateKey {
return 0, []byte{}, errors.New(ErrorPrivateKeySize)
}
secret := make([]byte, LenPrivateKey)
result := int(C.secp256k1_ecdh(ctx.ctx, cBuf(secret[:]), pubKey.pk, cBuf(privKey[:])))
if result != 1 {
return result, []byte{}, errors.New(ErrorEcdh)
}
return result, secret, nil
}
// Parse a compact ECDSA signature from the 64-byte signature and recovery
// id (0, 1, 2, or 3). The return code is 1 if successful, 0 otherwise.
func EcdsaRecoverableSignatureParseCompact(ctx *Context, signature []byte, recid int) (int, *EcdsaRecoverableSignature, error) {
if len(signature) != LenCompactSig {
return 0, nil, errors.New(ErrorCompactSigSize)
}
sig := newEcdsaRecoverableSignature()
result := int(C.secp256k1_ecdsa_recoverable_signature_parse_compact(ctx.ctx, sig.sig,
(*C.uchar)(unsafe.Pointer(&signature[0])), C.int(recid)))
if result != 1 {
return result, nil, errors.New(ErrorRecoverableSigParse)
}
return result, sig, nil
}
// Serialize an ECDSA signature in compact format, returning the []byte
// and the recovery id. Return code is always 1.
func EcdsaRecoverableSignatureSerializeCompact(ctx *Context, sig *EcdsaRecoverableSignature) (int, []byte, int, error) {
output := make([]C.uchar, LenCompactSig)
r := C.int(0)
result := int(C.secp256k1_ecdsa_recoverable_signature_serialize_compact(ctx.ctx, &output[0], &r, sig.sig))
return result, goBytes(output, C.int(LenCompactSig)), int(r), nil
}
// Convert a recoverable signature into a normal signature. The return code
// is always 1.
func EcdsaRecoverableSignatureConvert(ctx *Context, sig *EcdsaRecoverableSignature) (int, *EcdsaSignature, error) {
sigOut := newEcdsaSignature()
result := int(C.secp256k1_ecdsa_recoverable_signature_convert(ctx.ctx, sigOut.sig, sig.sig))
return result, sigOut, nil
}
// Create a recoverable ECDSA signature. The return code is 1 when the sig
// was created, or 0 if nonce generation failed or the private key was
// invalid.
func EcdsaSignRecoverable(ctx *Context, msg32 []byte, seckey []byte) (int, *EcdsaRecoverableSignature, error) {
if len(msg32) != LenMsgHash {
return 0, nil, errors.New(ErrorMsg32Size)
}
if len(seckey) != LenPrivateKey {
return 0, nil, errors.New(ErrorPrivateKeySize)
}
recoverable := newEcdsaRecoverableSignature()
result := int(C.secp256k1_ecdsa_sign_recoverable(ctx.ctx, recoverable.sig, cBuf(msg32), cBuf(seckey), nil, nil))
if result != 1 {
return result, nil, errors.New(ErrorProducingRecoverableSignature)
}
return result, recoverable, nil
}
// Recover an ECDSA public key from a signature. The return code is 1 if
// the key was successfully recovered (which guarantees a correct
// signature), and is 0 otherwise.
func EcdsaRecover(ctx *Context, sig *EcdsaRecoverableSignature, msg32 []byte) (int, *PublicKey, error) {
if len(msg32) != LenMsgHash {
return 0, nil, errors.New(ErrorMsg32Size)
}
recovered := newPublicKey()
result := int(C.secp256k1_ecdsa_recover(ctx.ctx, recovered.pk, sig.sig, cBuf(msg32)))
if result != 1 {
return result, nil, errors.New(ErrorRecoveryFailed)
}
return result, recovered, nil
}
func cBuf(goSlice []byte) *C.uchar {
if goSlice == nil {
return nil
}
return (*C.uchar)(unsafe.Pointer(&goSlice[0]))
}
func u64Arr(a []uint64) *C.uint64_t {
if a == nil {
return nil
}
return (*C.uint64_t)(unsafe.Pointer(&a[0]))
}
func goBytes(cSlice []C.uchar, size C.int) []byte {
return C.GoBytes(unsafe.Pointer(&cSlice[0]), size)
}
/*func Random256() [32]byte {
s := make([]byte, 32)
l, err := rand.Read(s)
var r [32]byte
copy(r[:], s[:32])
if l != 32 || err != nil {
return r
}
return r
}*/
/*
void random_scalar_order256(secp256k1_scalar *num) {
int overflow = 0;
do {
unsigned char b32[32];
secp256k1_rand256(b32);
secp256k1_scalar_set_b32(num, b32, &overflow);
}
while (overflow || secp256k1_scalar_is_zero(num));
}
*/
// Generate a pseudorandom 32-byte array with long sequences of zero and one bits
func Random256() (rnd32 [32]byte) {
C.secp256k1_rand256(cBuf(rnd32[:]))
return
}
// Generate a pseudorandom 32-byte array with long sequences of zero and one bits
// Random sequence generated by this function will not exceed scalar order
func RandomScalarOrder256() (rnd32 [32]byte) {
C.random_scalar_order256(cBuf(rnd32[:]))
return
}
func (pubkey *PublicKey) Bytes(context *Context) (bytes []byte) {
_, bytes, _ = EcPubkeySerialize(context, pubkey, EcCompressed)
return
}
func (pubkey *PublicKey) BytesUncompressed(context *Context) (bytes []byte) {
_, bytes, _ = EcPubkeySerialize(context, pubkey, EcUncompressed)
return
}
func (pubkey *PublicKey) Hex(context *Context) string {
return hex.EncodeToString(pubkey.Bytes(context))
}
func (context *Context) PublicKeyFromHex(str string) (pubkey *PublicKey) {
bytes, _ := hex.DecodeString(str)
_, pubkey, _ = EcPubkeyParse(context, bytes)
return
}
/*func GetThreadId() uint32 {
return uint32(C.getSelfThreadId())
}
func GetThreadId64() uint64 {
return uint64(C.getSelfThreadId64())
}*/