Skip to content

Commit 95ef846

Browse files
author
Charlene Jiang
committed
Add solution for 4. Median of Two Sorted Arrays.
1 parent 2d46caf commit 95ef846

File tree

1 file changed

+65
-0
lines changed

1 file changed

+65
-0
lines changed

Search/MedianOfTwoSortedArrays.swift

+65
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,65 @@
1+
/**
2+
* Question Link: https://leetcode.com/problems/median-of-two-sorted-arrays/
3+
*
4+
* Primary idea: For arrays of m and n numbers, nums1 and nums2, where m <= n.
5+
* To find an index of mid1 in nums1, to separate the arrays into left and right parts:
6+
* nums1[0, 1, ..., mid1 - 1] | nums1[mid1, mid1 + 1, ..., m]
7+
* nums2[0, 1, ..., mid2 - 1] | nums2[mid2, mid2 + 1, ..., n]
8+
*
9+
* Make sure:
10+
* count of left = count of right
11+
* max of left <= min of right
12+
*
13+
* Time Complexity: O(log(n + m)), Space Complexity: O(1)
14+
*
15+
*/
16+
17+
class Solution {
18+
func findMedianSortedArrays(nums1: [Int], _ nums2: [Int]) -> Double {
19+
let m = nums1.count
20+
let n = nums2.count
21+
22+
if m > n {
23+
return findMedianSortedArrays(nums2, nums1)
24+
}
25+
26+
var halfLength: Int = (m + n + 1) >> 1
27+
var b = 0, e = m
28+
var maxOfLeft = 0
29+
var minOfRight = 0
30+
31+
while b <= e {
32+
let mid1 = (b + e) >> 1
33+
let mid2 = halfLength - mid1
34+
35+
if mid1 > 0 && mid2 < n && nums1[mid1 - 1] > nums2[mid2] {
36+
e = mid1 - 1
37+
} else if mid2 > 0 && mid1 < m && nums1[mid1] < nums2[mid2 - 1] {
38+
b = mid1 + 1
39+
} else {
40+
if mid1 == 0 {
41+
maxOfLeft = nums2[mid2 - 1]
42+
} else if mid2 == 0 {
43+
maxOfLeft = nums1[mid1 - 1]
44+
} else {
45+
maxOfLeft = max(nums1[mid1 - 1], nums2[mid2 - 1])
46+
}
47+
48+
if (m + n) % 2 == 1 {
49+
return Double(maxOfLeft)
50+
}
51+
52+
if mid1 == m {
53+
minOfRight = nums2[mid2]
54+
} else if mid2 == n {
55+
minOfRight = nums1[mid1]
56+
} else {
57+
minOfRight = min(nums1[mid1], nums2[mid2])
58+
}
59+
60+
break
61+
}
62+
}
63+
return Double(maxOfLeft + minOfRight) / 2.0
64+
}
65+
}

0 commit comments

Comments
 (0)