-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflatline_server.cpp
241 lines (214 loc) · 8.12 KB
/
flatline_server.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#include <json/json.h>
#include <llama.h>
#include <ostream>
#include <spdlog/sinks/stdout_color_sinks.h>
#include <spdlog/spdlog.h>
#include <string_view>
#include <tuple>
#include <array>
#include <iostream>
#include <memory>
#include <optional>
#include <stdexcept>
#define CPPHTTPLIB_THREAD_POOL_COUNT 1
#include <httplib.h>
#undef CPPHTTPLIB_THREAD_POOL_COUNT
namespace {
std::shared_ptr<spdlog::logger> logger() {
static auto logger_ = spdlog::stdout_color_mt("flatline");
return logger_;
}
} // namespace
namespace {
struct llama_model_deleter {
void operator()(llama_model *model) noexcept { llama_free_model(model); }
};
struct llama_context_deleter {
void operator()(llama_context *context) noexcept { llama_free(context); }
};
using unique_llama_model = std::unique_ptr<llama_model, llama_model_deleter>;
using unique_llama_context =
std::unique_ptr<llama_context, llama_context_deleter>;
class llama_cpp_model {
public:
static llama_cpp_model load_from_file(std::string const &model_file_path,
size_t n_threads, size_t n_gpu_layers) {
llama_model_params model_params = llama_model_default_params();
model_params.n_gpu_layers = n_gpu_layers;
unique_llama_model model(
llama_load_model_from_file(model_file_path.c_str(), model_params));
if (!model) {
throw std::runtime_error("wrong model_path");
}
llama_context_params ctx_params = llama_context_default_params();
ctx_params.seed = 1234;
ctx_params.n_ctx = 2048; // TODO
ctx_params.n_threads = n_threads;
ctx_params.n_threads_batch = n_threads;
unique_llama_context ctx(
llama_new_context_with_model(model.get(), ctx_params));
if (!ctx) {
throw std::runtime_error("failed to create context with model");
}
return llama_cpp_model(std::move(model), std::move(ctx));
}
std::vector<float> calc_next_token_logits(std::vector<int> const &input_ids) {
llama_batch batch = llama_batch_init(2048, 0); // TODO
if (is_first(input_ids)) {
logger()->info("no kv_cache");
llama_kv_cache_tokens_rm(ctx_.get(), -1, -1);
batch.n_tokens = input_ids.size();
for (size_t i = 0; i < batch.n_tokens; ++i) {
batch.token[i] = input_ids[i];
batch.pos[i] = i;
batch.seq_id[i] = 0;
batch.logits[i] = false;
}
batch.logits[batch.n_tokens - 1] = true;
} else {
logger()->info("using kv_cache");
batch.token[0] = input_ids[input_ids.size() - 1];
batch.pos[0] = input_ids.size() - 1;
batch.seq_id[0] = 0;
batch.logits[0] = true;
batch.n_tokens = 1;
}
// if (auto result = llama_decode(ctx_, batch); result != 0) {
if (auto result = llama_decode(ctx_.get(), batch); result < 0) {
throw std::runtime_error("llama_decode failed " + std::to_string(result));
}
auto *logits_data = llama_get_logits_ith(ctx_.get(), batch.n_tokens - 1);
std::vector<float> logits(vocab_size_);
std::copy(logits_data, logits_data + vocab_size_, logits.begin());
return logits;
}
private:
llama_cpp_model(unique_llama_model &&model, unique_llama_context &&ctx)
: model_(std::move(model)), ctx_(std::move(ctx)) {}
bool is_first(std::vector<int> const &input_ids) {
static std::vector<int> input_ids_before_backup = std::vector<int>();
std::vector<int> input_ids_before = input_ids_before_backup;
input_ids_before_backup = input_ids;
if (input_ids_before.size() > input_ids.size()) {
return true;
}
for (size_t i = 0; i < input_ids_before.size(); ++i) {
if (input_ids_before[i] != input_ids[i]) {
return true;
}
}
return false;
}
size_t vocab_size_ = 51200; // TODO load from model data
unique_llama_model model_;
unique_llama_context ctx_;
};
} // namespace
std::optional<Json::Value> try_to_parse_json(httplib::Request const &req) {
Json::CharReaderBuilder builder;
const std::unique_ptr<Json::CharReader> reader(builder.newCharReader());
Json::Value root;
JSONCPP_STRING err;
std::string_view body = req.body;
logger()->info("request {}", body);
if (!reader->parse(body.data(), body.data() + body.size(), &root, &err)) {
return std::nullopt;
}
return root;
}
std::vector<int> get_request_data(Json::Value const &root) {
Json::Value input_tokens_value = root["input_tokens"];
std::vector<int> input_tokens(input_tokens_value.size());
std::transform(input_tokens_value.begin(), input_tokens_value.end(),
input_tokens.begin(),
[](Json::Value const &e) { return e.asInt(); });
return input_tokens;
}
std::string make_response_json(std::vector<float> const &next_token_logits) {
Json::Value response;
Json::Value next_token_logits_value = Json::Value(Json::arrayValue);
for (float logit : next_token_logits) {
next_token_logits_value.append(logit);
}
response["next_token_logits"] = next_token_logits_value;
Json::FastWriter json_fast_writer;
return json_fast_writer.write(response);
}
#include <structopt/app.hpp>
struct app_options {
std::optional<std::string> host = "localhost";
std::optional<int> port = 57045;
std::optional<std::string> model_path;
std::optional<bool> numa = true;
std::optional<int> n_threads = -1;
std::optional<int> n_gpu_layers = 35;
};
STRUCTOPT(app_options, port, model_path, numa, n_threads, n_gpu_layers);
int main(int argc, char **argv) {
auto options = structopt::app("flatline").parse<app_options>(argc, argv);
if (!options.model_path) {
throw std::runtime_error("wrong model_path");
}
const size_t server_thread_num = 1; // Must be 1
const size_t max_thread_num = std::thread::hardware_concurrency();
const size_t infer_thread_num =
*options.n_threads < 0 ? max_thread_num / 2 : *options.n_threads;
llama_backend_init(*options.numa);
auto model = llama_cpp_model::load_from_file(
*options.model_path, infer_thread_num, *options.n_gpu_layers);
logger()->info("model loading finished");
httplib::Server server;
server.Get("/", [](httplib::Request const &req, httplib::Response &res) {
res.set_content("Flatline backend server is available", "text/plain");
});
server.Get("/config", [&options](httplib::Request const &req,
httplib::Response &res) {
Json::Value config;
config["port"] = *options.port;
config["model_path"] = *options.model_path;
config["numa"] = *options.numa;
config["n_threads"] = *options.n_threads;
config["n_gpu_layers"] = *options.n_gpu_layers;
Json::FastWriter json_fast_writer;
res.set_content(json_fast_writer.write(config), "application/json");
});
constexpr int status_bad_request = 400;
std::mutex computing_resource_mutex;
server.Post("/v1/calc_next_token_logits", [&model, &computing_resource_mutex](
httplib::Request const &req,
httplib::Response &res) {
// Header check
if (req.get_header_value("Content-type") != "application/json") {
res.status = status_bad_request;
res.set_content("\"Content-type\" must be \"application/json\"",
"text/plain");
logger()->info("Content-type is not application/json");
return;
}
// Data check & parse
std::optional<Json::Value> root_opt = try_to_parse_json(req);
if (!root_opt) {
res.status = status_bad_request;
res.set_content("JSON data is broken", "text/plain");
logger()->info("JSON data is broken");
return;
}
Json::Value const &root = *root_opt;
std::vector<int> input_tokens = get_request_data(root);
std::vector<float> next_token_logits;
{
// lock
std::unique_lock lock(computing_resource_mutex);
// Calc next token logits
next_token_logits = model.calc_next_token_logits(input_tokens);
}
// Send response
std::string response_json = make_response_json(next_token_logits);
res.set_content(response_json.c_str(), "application/json");
logger()->info("sent response {}",
std::string(response_json.c_str()).substr(0, 128) + "...");
});
server.listen(*options.host, *options.port);
llama_backend_free();
return 0;
}