-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflatline_lsp.py
384 lines (337 loc) · 12.3 KB
/
flatline_lsp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import argparse
import time
import sys
import os
import requests
from typing import Any, Dict, Optional, List
import threading
import subprocess
from lsprotocol import types as lsp
from pygls.server import LanguageServer
import torch
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
PreTrainedModel,
PreTrainedTokenizer,
PretrainedConfig,
StoppingCriteria,
)
from transformers.modeling_outputs import CausalLMOutput
class LlamaCppConfig(PretrainedConfig): # type: ignore
model_type: str = "llama_cpp"
class LlamaCppCausalLM(PreTrainedModel):
def __init__(
self,
config: LlamaCppConfig,
model_name: str,
backend_server_bin: str,
backend_server_host: str,
backend_server_port: int,
n_threads: int,
n_gpu_layers: int,
):
super().__init__(config)
self.backend_server_bin = backend_server_bin
self.backend_server_host = backend_server_host
self.backend_server_port = backend_server_port
try:
requests.get(
f"http://{self.backend_server_host}:{self.backend_server_port}"
)
except Exception:
subprocess.Popen(
(
f"{self.backend_server_bin}"
f" --port {self.backend_server_port}"
f" --model-path {model_name}"
f" --n-threads {n_threads}"
f" --n-gpu_layers {n_gpu_layers}"
).split(),
stdout=subprocess.DEVNULL,
stderr=subprocess.DEVNULL,
)
while True:
try:
res = requests.get(
f"http://{self.backend_server_host}:{self.backend_server_port}"
)
if res.status_code == 200:
break
except Exception:
pass
time.sleep(1)
@property
def device(self) -> torch.device:
return torch.device("cpu")
@property
def dtype(self) -> torch.dtype:
return torch.float32
def forward( # type: ignore
self,
input_ids: torch.LongTensor,
**kwargs,
) -> CausalLMOutput:
while True:
res = requests.post(
f"http://{self.backend_server_host}:{self.backend_server_port}/v1/calc_next_token_logits",
json=dict(input_tokens=input_ids[0].tolist()),
)
if res.status_code == 200:
break
return CausalLMOutput(
loss=None,
logits=torch.FloatTensor(res.json()["next_token_logits"]).reshape(
1, 1, 51200
),
hidden_states=None,
attentions=None,
)
def prepare_inputs_for_generation(
self,
input_ids: torch.Tensor,
**kwargs,
) -> Dict[str, Any]:
model_inputs = {"input_ids": input_ids}
return model_inputs
class StopWord(StoppingCriteria):
def __init__(self, stop_word: str, tokenizer: PreTrainedTokenizer):
super().__init__()
self.tokenizer = tokenizer
self.stop_word = stop_word
self.stop_tokens_len = len(tokenizer(stop_word).input_ids)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> bool:
suffix_text = self.tokenizer.decode(input_ids[0][-self.stop_tokens_len :])
return suffix_text.endswith(self.stop_word)
class CountStopWord(StoppingCriteria):
def __init__(
self,
stop_word: str,
tokenizer: PreTrainedTokenizer,
initial_token_length: int,
stop_word_count: int,
min_n_tokens: int,
):
super().__init__()
self.tokenizer = tokenizer
self.stop_word = stop_word
self.initial_token_length = initial_token_length
self.stop_word_count = stop_word_count
self.min_n_tokens = min_n_tokens
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> bool:
if len(input_ids[0]) < self.min_n_tokens:
return False
generated_text: str = self.tokenizer.decode(
input_ids[0][self.initial_token_length :]
)
return generated_text.count(self.stop_word) >= self.stop_word_count
class StopCutoffCompletion(StoppingCriteria):
def __init__(
self,
latest_completion_id: List[int],
latest_completion_id_lock: threading.Lock,
completion_id: int,
lang_server: LanguageServer,
):
super().__init__()
self.latest_completion_id = latest_completion_id
self.latest_completion_id_lock = latest_completion_id_lock
self.completion_id = completion_id
self.lang_server = lang_server
def __call__(self, *args, **kwargs) -> bool:
with self.latest_completion_id_lock:
if self.latest_completion_id[0] != self.completion_id:
self.lang_server.show_message(
f"stop-cutoff-completion {self.completion_id}", lsp.MessageType.Info
)
return True
else:
return False
class LanguageModelForCompletion:
def __init__(
self,
lang_server: LanguageServer,
max_new_tokens: int,
min_new_tokens: int,
max_context_lines: int,
max_new_lines: int,
max_context_tokens: int,
tokenizer: PreTrainedTokenizer,
model: PreTrainedModel,
):
self.lang_server = lang_server
self.max_new_tokens = max_new_tokens
self.min_new_tokens = min_new_tokens
assert self.max_new_tokens >= self.min_new_tokens
self.max_context_lines = max_context_lines
self.max_new_lines = max_new_lines
self.max_context_tokens = max_context_tokens
self.tokenizer = tokenizer
self.model = model
self.latest_completion_id_lock = threading.Lock()
self.computing_resource_lock = threading.Lock()
self.latest_completion_id = [0] # Must be list to avoid copy
self.stop_word = StopWord(stop_word="\n", tokenizer=self.tokenizer)
def generate_completion(self, text: str) -> str:
with self.latest_completion_id_lock:
self.latest_completion_id[0] += 1
stop_cutoff_completion = StopCutoffCompletion(
latest_completion_id=self.latest_completion_id,
latest_completion_id_lock=self.latest_completion_id_lock,
completion_id=self.latest_completion_id[0],
lang_server=self.lang_server,
)
with self.computing_resource_lock:
if stop_cutoff_completion():
return "<canceled>"
tokenized_prompt = self.tokenizer(text).input_ids[
-self.max_context_tokens :
]
count_stop_word = CountStopWord(
stop_word="\n",
tokenizer=self.tokenizer,
initial_token_length=len(tokenized_prompt),
stop_word_count=self.max_new_lines,
min_n_tokens=len(tokenized_prompt) + self.min_new_tokens,
)
generated_tokens = self.model.generate(
inputs=torch.LongTensor([tokenized_prompt]),
max_new_tokens=self.max_new_tokens,
do_sample=False,
# stopping_criteria=[stop_cutoff_completion, self.stop_word],
stopping_criteria=[stop_cutoff_completion, count_stop_word],
)[0]
# stopping_criteria=[stop_cutoff_completion])[0]
generated_text = self.tokenizer.decode(
generated_tokens[len(tokenized_prompt) :]
)
return generated_text
lm_for_completion: Optional[LanguageModelForCompletion] = None
server = LanguageServer("flatline-lsp", "v0.0")
@server.thread()
@server.feature(
lsp.TEXT_DOCUMENT_COMPLETION,
lsp.CompletionOptions(
trigger_characters=[".", ",", " ", "(", ")", "[", "]", "{", "}"]
),
)
def completions(
ls: LanguageServer, params: Optional[lsp.CompletionParams] = None
) -> lsp.CompletionList:
# assert lm_for_completion is not None
document = ls.workspace.get_text_document(params.text_document.uri)
line_index = params.position.line
character_index = params.position.character
if lm_for_completion is not None:
max_context_lines = lm_for_completion.max_context_lines
else:
max_context_lines = 4
prompt = "".join(
list(
document.lines[
max(0, line_index - max_context_lines) : line_index
]
)
+ [document.lines[line_index][:character_index]]
)
if lm_for_completion is None:
completed_text = "<flatline_lsp_lm_for_completion is not initialized>"
else:
completed_text = lm_for_completion.generate_completion(text=prompt)
# completed_lines = completed_text.split("\n")
# completed_text_list = ["\n".join(completed_lines[:i]) for i in range(1, len(completed_lines))]
completed_text_list = [completed_text]
return lsp.CompletionList(
is_incomplete=True,
items=[
lsp.CompletionItem(
# label="(FL)" + completed_text.replace("\n", "\\n"),
label="(FL)" + completed_text,
insert_text=completed_text,
insert_text_mode=lsp.InsertTextMode(1), # AsIs
documentation=completed_text,
)
for completed_text in completed_text_list
],
)
def resource_path(relative_path: str):
try:
base_path = sys._MEIPASS
except Exception:
base_path = os.path.dirname(__file__)
return os.path.join(base_path, relative_path)
def main() -> None:
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("--max-new-tokens", type=int, default=256)
parser.add_argument("--min-new-tokens", type=int, default=32)
parser.add_argument("--max-context-lines", type=int, default=16)
parser.add_argument("--max-new-lines", type=int, default=8)
parser.add_argument("--max-context-tokens", type=int, default=1024)
parser.add_argument(
"--tokenizer-name",
type=str,
help="tokenizer name or path",
default=resource_path("./flatline/model_data/codegen25-7b-multi"),
)
parser.add_argument(
"--model-name",
type=str,
help="model name or path",
default=resource_path(
"./flatline/model_data/codegen25-7b-multi/ggml-model-Q4_K.gguf"
),
)
parser.add_argument(
"--backend-server-bin",
type=str,
help="llm inference backend server binary path",
default=resource_path("./flatline/backend_server/flatline-server"),
)
parser.add_argument(
"--backend-server-host",
type=str,
help="llm inference backend server host name",
default="localhost",
)
parser.add_argument(
"--backend-server-port",
type=int,
help="llm inference backend server port number",
default=57045,
)
parser.add_argument("--backend-server-n-threads", type=int, default=-1)
parser.add_argument("--backend-server-n-gpu-layers", type=int, default=35)
args = parser.parse_args()
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name, trust_remote_code=True
)
if args.model_name.endswith(".gguf"):
model = LlamaCppCausalLM(
config=LlamaCppConfig(),
model_name=args.model_name,
backend_server_bin=args.backend_server_bin,
backend_server_host=args.backend_server_host,
backend_server_port=args.backend_server_port,
n_threads=args.backend_server_n_threads,
n_gpu_layers=args.backend_server_n_gpu_layers,
)
else:
model = AutoModelForCausalLM.from_pretrained(
args.model_name, trust_remote_code=True
)
global lm_for_completion
lm_for_completion = LanguageModelForCompletion(
lang_server=server,
max_new_tokens=args.max_new_tokens,
min_new_tokens=args.min_new_tokens,
max_context_lines=args.max_context_lines,
max_new_lines=args.max_new_lines,
max_context_tokens=args.max_context_tokens,
tokenizer=tokenizer,
model=model,
)
server.start_io()
if __name__ == "__main__":
main()